Skip to main content

Deep Learning Based Strategy for Eye-to-Hand Robotic Tracking and Grabbing

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12533))

Included in the following conference series:

Abstract

Moving target tracking and grabbing is a common task for industrial robots. Usually, industrial robot complete complex actions through programming and teaching technologies, which suffers from the limitations of complicated programming logic and low scalability. Based on this, a flexible strategy combining deep learning and Kalman filter is proposed for eye-to-hand robotic tracking and grabbing. Firstly, the classic YOLOv3 algorithm is applied for target detection, and the bounding box of the target on the conveyor belt is obtained. Secondly, the target motion model is built up to obtain the system parameter matrices. Thirdly, the prediction equations can be given by Kalman filtering, and the target prediction position can be calculated and feedback to the robotic arm for the grabbing task. Finally, the experimental results show that the proposed strategy can improve the robustness of industrial robot tracking and grabbing, and its scalability is also improved compared with traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strandhagen, J.W., Alfnes, E., Strandhagen, J.O., Vallandingham, L.R.: The fit of Industry 4.0 applications in manufacturing logistics a multiple case study. Adv. Manuf. 5, 344–358 (2017). https://doi.org/10.1007/s40436-017-0200-y

    Article  Google Scholar 

  2. Gao, M., Yan, Y., Yang, Y., Huang, J., He, Z.: A positioning system based on monocular vision for industrial robots. In: Proceedings of the 3rd International Conference on Information Science and Control Engineering (ICISCE 2016), Beijing, pp. 784–788 (2016). https://doi.org/10.1109/ICISCE.2016.172

  3. Song, K., Chang, Y., Chen, J.: 3D vision for object grasp and obstacle avoidance of a collaborative robot. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2019), Hong Kong, China, pp. 254–258 (2019). https://doi.org/10.1109/AIM.2019.8868694

  4. Zhang, J., Zhou, Z., Xing, L., Sheng, X., Wang, M.: Target recognition and Location based on deep learning. In: Proceedings of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC 2020), Chongqing, China, pp. 247–250 (2020). https://doi.org/10.1109/ITNEC48623.2020.9084826

  5. Wang, S., Jiang, X., Zhao, J., Wang, X., Zhou, W., Liu, Y.: Vision based picking system for automatic express package dispatching. In: Proceedings of the IEEE International Conference on Realtime Computing and Robotics (RCAR 2019), Irkutsk, Russia, pp. 797–802 (2019). https://doi.org/10.1109/RCAR47638.2019.9044094

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  7. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  8. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448. IEEE (2015)

    Google Scholar 

  9. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement [EB/OL] (2018). https://arxiv.org/abs/1804.02767

  10. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014). https://doi.org/10.1109/TPAMI.2013.230

    Article  Google Scholar 

  11. Pallavi, S., Ramya Laxmi, K., Ramya, N., Raja, R.: Study and analysis of modified mean shift method and Kalman filter for moving object detection and tracking. In: Raju, K.S., Govardhan, A., Rani, B.P., Sridevi, R., Murty, M.R. (eds.) Proceedings of the Third International Conference on Computational Intelligence and Informatics. AISC, vol. 1090, pp. 821–828. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1480-7_76

    Chapter  Google Scholar 

  12. He, F., Zhen, J., Wang, Z.: Video target tracking based on adaptive Kalman filter. In: Liang, Q., Wang, W., Liu, X., Na, Z., Jia, M., Zhang, B. (eds.) Video Target Tracking Based on Adaptive Kalman Filter. LNEE, vol. 571, pp. 1198–1201. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9409-6_141

    Chapter  Google Scholar 

  13. Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings of the ICRA Open-Source Software Workshop (2009)

    Google Scholar 

  14. Chitta, S.: MoveIt!: an introduction. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 3–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_1

    Chapter  Google Scholar 

  15. Marchand, E., Spindler, F., Chaumette, F.: ViSP for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robot. Autom. Mag. 12(4), 40–52 (2005). https://doi.org/10.1109/MRA.2005.1577023

    Article  Google Scholar 

  16. Qu, J., Zhang, F., Tang, Y., Fu, Y.: Dynamic visual tracking for robot manipulator using adaptive fading Kalman filter. IEEE Access 8, 35113–35126 (2020). https://doi.org/10.1109/ACCESS.2020.2973299

    Article  Google Scholar 

  17. Wan, N., Yeung, D.: Learning a deep compact image representation for visual tracking. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 809–817 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant number 61671194), Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant number GK199900299012-010) and the Zhejiang Provincial Key Lab of Equipment Electronics (grant number 2019E10009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, J., Sun, W., Cai, Q., Zhang, Z., Dong, Z., Gao, M. (2020). Deep Learning Based Strategy for Eye-to-Hand Robotic Tracking and Grabbing. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63833-7_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63832-0

  • Online ISBN: 978-3-030-63833-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics