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Abstract. The subject of this paper is reinforcement learning. Poli-
cies are considered here that produce actions based on states and ran-
dom elements autocorrelated in subsequent time instants. Consequently,
an agent learns from experiments that are distributed over time and
potentially give better clues to policy improvement. Also, physical im-
plementation of such policies, e.g. in robotics, is less problematic, as it
avoids making robots shake. This is in opposition to most RL algorithms
which add white noise to control causing unwanted shaking of the robots.
An algorithm is introduced here that approximately optimizes the afore-
mentioned policy. Its efficiency is verified for four simulated learning con-
trol problems (Ant, HalfCheetah, Hopper, and Walker2D) against three
other methods (PPO, SAC, ACER). The algorithm outperforms others
in three of these problems.

Keywords: Reinforcement learning · Actor-Critic · Experience replay ·
Fine time discretization.

1 Introduction

The usual goal of Reinforcement Learning (RL) to optimize a policy that samples
an action on the basis of a current state of a learning agent. The only stochastic
dependence between subsequent actions is through state transition: The action
moves the agent to another state which determines the distribution of another
action. Main analytical tools in RL are based on this lack of other dependence
between actions. E.g., for a given policy, its value function expresses the expected
sum of discounted rewards the agent may expect starting from a given state.
The sum of rewards does not depend on actions taken before the given state was
reached. Hence, only the given state and the policy matter.

Lack of dependence between actions beyond state transition leads to several
difficulties. In physical implementation of RL, e.g. in robotics, it usually means
that white noise is added to control actions. However, that makes control discon-
tinuous and rapidly changing all the time. This is often impossible to implement
since electric motors that are to execute these actions can not operate this way.
Even if it is possible, it requires a lot of energy, makes the controlled system
shake, and exposes it to damages.
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It is also questionable if the lack of dependence between actions beyond
state transition does not reduce efficiency of learning. Each action is an ex-
periment that leads to policy improvement. However, due to limited accuracy
of (action-)value function approximation, consequences of a single action may
be difficult to recognize. The finer the time discretization, the more serious this
problem becomes. Consequences of a random experiment distributed over several
time instants could be more tangible thus easier to recognize.

The contribution of this paper may be summarized in the following points:

– A framework is introduced in which a policy produces actions on the basis
of states and values of a stochastic process. That enables relation between
actions that is beyond state transition.

– An algorithm is introduced that approximately optimizes the aforementioned
policy.

– The above algorithm is tested on four benchmark learning control problems:
Ant, Half-Cheetah, Hopper, and Walker2D.

The rest of the paper is organized as follows. Section 2 overviews related
literature. Sec. 3 introduces a policy that produces autocorrelated actions along
with tools for its analysis. Sec. 4 introduces an algorithm that approximately
optimizes that policy. Sec. 5 presents simulations that compare the presented
algorithm with state-of-the-art reinforcement learning methods. The last section
concludes the paper.

2 Related Work

2.1 Stochastic dependence between actions

The idea of introducing stochastic dependence between actions was analyzed
in [16] as a remedy to problems with application of RL in fine time discretiza-
tion. The control process was divided there into “non-Markov periods” in which
actions were stochastically dependent. A policy with autocorrelated actions was
analyzed in [18] with a standard RL algorithm applied to its optimization that
did not account for the dependence of actions.

In [5] a policy was analyzed whose parameters were incremented by the au-
toregressive stochastic process. Essentially, this resulted in autocorrelated ran-
dom components of actions. In [8] a policy was analyzed that produced an action
being a sum of the autoregressive noise and a deterministic function of state.
However, no learning algorithm was presented in this paper that accounted for
specific properties of this policy.

2.2 Reinforcement learning with experience replay

The Actor-Critic architecture of reinforcement learning was introduced in [1].
Approximators were applied to this structure for the first time in [7]. In order to
boost efficiency of these algorithms, they were combined with experience replay
for the first time in [17].



A framework for reinforcement learning with autocorrelated actions 3

Application of experience replay to Actor-Critic encounters the following
problem. The learning algorithm needs to estimate quality of a given policy on
the basis of consequences of actions that were registered when a different policy
was in use. Importance sampling estimators are designed to do that, but they
can have arbitrarily large variance. In [17] that problem was addressed with
truncating density ratios present in those estimators. In [15] specific correction
terms were introduced for that purpose.

Another approach to the aforementioned problem is to prevent the algorithm
from inducing a policy that differs too much from the one tried. That idea was
first applied in Conservative Policy Iteration [6]. It was further extended in
Trust Region Policy Optimization [12]. This algorithm optimizes a policy with
the constraint that the Kullback-Leibler divergence between that policy and the
tried one should not exceed a given threshold. The K-L divergence becomes
an additive penalty in Proximal Policy Optimization algorithms, namely PPO-
Penalty and PPO-Clip [13].

A way to avoid the problem of estimating quality of a given policy on the
basis of the tried one is to approximate the action-value function instead of
estimating the value function. Algorithms based on this approach are Deep Q-
Network (DQN) [11], Deep Deterministic Policy Gradient (DDPG) [10], and Soft
Actor-Critic (SAC) [4]. In the original version of DDPG the time-correlated OU
noise was added to action. However, this algorithm was not adapted to this fact
in any specific way. SAC uses white noise in actions and it is considered one of
the most efficient in this family of algorithms.

3 Policy with autocorrelated actions

Let an action, at, be computed as

at = π(st, ξt; θ) (1)

where π is a deterministic transformation, st is a current state, θ is a vector of
trained parameters, and (ξt, t = 1, 2, . . . ) is a stochastic process. We require this
process to have the following properties:

– Stationarity: The distribution of ξt is the same for each t.
– Zero mean: Eξt = 0 for each t.
– Autocorrelation decreasing with growing lag:

EξTt ξt+k > EξTt ξt+k+1 ≥ 0 for k ≥ 0. (2)

Essentially that means that values of the process are close to each other
when they are in close time instants.

– Markov property: For any t and k, l ≥ 0, the conditional distributions

(ξt, . . . , ξt+k|ξt−1, . . . , ξt−1−l) and (ξt, . . . , ξt+k|ξt−1) (3)

are the same. In words, dependence of future values of (ξt) on its past is
entirely carried over by ξt−1.
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Consequently, if only π (1) is continuous for all its arguments, and subse-
quent states st are close to each other, then the corresponding actions are close,
although random. In words, they create a consistent, distributed in time exper-
iment that can lead to policy improvement.

Fig. 1: A realization of the normal white
noise (εt), and the auto-regressive pro-
cess (ξt) (4).

Example: Auto-Regressive (ξt). Let
α ∈ [0, 1) and

εt ∼ N(0, C), t = 1, 2, . . .

ξ1 = ε1

ξt = αξt−1 +
√

1− α2εt, t = 2, 3, . . .

(4)

Fig. 1 demonstrates a realization of
both the white noise (εt) and (ξt).
Let us analyze if (ξt) has the required
properties.

Both εt and ξt have the same dis-
tribution N(0, C). Therefore (ξt) is
stationary and zero-mean. A simple
derivation reveals that

Eξtξ
T
t+k = α|k|C and EξTt ξt+k = α|k|tr(C)

for any t, k. Therefore, (ξt) is autocorrelated, and this autocorrelation decreases
with growing lag. Consequently, the values of ξt are closer to one another for
subsequent t than the values of εt, namely

E‖εt − εt−1‖2 = E(εt − εt−1)T (εt − εt−1) = 2tr(C)

E‖ξt − ξt−1‖2 = E
(

(α−1)ξt−1 +
√

1− α2εt

)T (
(α− 1)ξt−1 +

√
1− α2εt

)
= (α− 1)2tr(C) + (1− α2)tr(C) = (1− α)2tr(C).

The Markov property of (ξt) directly results from how ξt (4) is computed.
In fact, marginal distributions of the process (ξt), as well as its conditional

marginal distributions are normal, and their parameters have compact forms.
We shall not present derivations of these parameters due to lack of space, but
we shall denote them for further use. Namely, let as consider

ξ̄nt = [ξTt , . . . , ξ
T
t+n−1]T . (5)

The distribution of ξ̄nt is normal

N(0, Ωn0 ), (6)

where Ωn0 is a matrix dependent on n, α, and C. The conditional distribution
(ξ̄nt |ξt−1) is also normal,

N(Bnξt−1, Ω
n
1 ), (7)

where both Bn and Ωn1 are matrices dependent on n, α, and C.
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The neural-normal policy. A simple and practical way to implement π (1) is as
follows. A feedforward neural network,

A(s; θ), (8)

has input s and weights θ. An action is computed as

at = π(st, ξt; θ) = A(st; θ) + ξt, (9)

for ξt in the form (4). While the discussion below can be extended to the general
formulation (1), in order to make it simpler we will further assume that a policy
is of the form (9).

Let us consider

s̄nt = [sTt , . . . , s
T
t+n−1]T ,

āni = [aTt , . . . , a
T
t+n−1]T ,

Ā(s̄ni ; θ) = [A(st; θ)
T , . . . , A(st+n−1; θ)T ]T ,

and fixed θ. With (9) the distributions (ānt |s̄nt ) and (ānt |s̄nt , ξt−1) are both normal,
namely N(Ā(s̄nt ; θ), Ωn0 ), and N(Ā(s̄nt ; θ) + Bnξt−1, Ω

n
1 ), respectively (see (6)

and (7)). The algorithm defined in the next section updates θ to manipulate
the above distributions. Density of the normal distribution with mean µ and
covariance matrix Ω will be denoted by

ϕ(· ;µ,Ω). (10)

Noise-value function. In policy (1) there is a stochastic dependence between
actions beyond the dependence resulting from state transition. Therefore, the
traditional understanding of policy as distribution of actions conditioned on state
does not hold here. Each action depends on the current state, but also previous
states and actions. Analytical usefulness of the traditional value function and
action-value function is thus limited.

As a valid analytical tool we propose noise-value function defined as

Wπ(ξ, s) = Eπ

∑
i≥0

γirt+i

∣∣∣ξt−1 = ξ, st = s

 . (11)

The course of events starting in time t depends on the current state st and the
value ξt−1. Because of Markov property of ξt (3), the pair (ξt−1, st) is a proper
condition for the expected value of future rewards.

The value function V π : S 7→ R is slightly redefined, namely

V π(s) = E
(
W (ξt−1, st)|st = s

)
. (12)

The random value in the above expectation is ξt−1 and its distribution is con-
ditional with the condition st = s. The distribution of ξt−1 may differ for dif-
ferent st. However, being in the state st and not knowing ξt−1 the agent may
expect the sum of future rewards equal to V π(st).
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4 ACERAC: Actor-Critic with Experience Replay and
Autocorrelated aCtions

The algorithm presented here has Actor-Critic structure. It optimizes a policy
of the form (9) and uses Critic,

V (s; ν),

which is an approximator of the value function (12) parametrized by a vector, ν.
For each time instant of the agent-environment interaction the policy (9) is

applied and a tuple, 〈st, At, at, rt, st+1〉, is registered, where At = A(st; θ).
The general goal of training is to maximize Wπ(ξi−1, si) for each state si

registered during the agent-environment interaction. In this order previous time
instants are sampled, and sequences of actions that follow these instants are
made more/less probable depending on their return. More specifically, i is sam-
pled from {1, . . . , t − 1} and the conditional density of the sequence of actions
(ai, . . . , ai+n−1) is being increased/decreased depending on the return

ri + · · ·+ γn−1ri+n−1 + γnV (si+n; ν)

this sequence of actions yields. At the same time adjustments of the same form
are performed for several sequences of actions starting from ai, namely for n =
1, . . . , τ , where τ ∈ N is a parameter.

4.1 Actor & Critic training

The following procedure is repeated several times at each t-th instant of agent–
environment interaction:

1. A random i is sampled from the uniform distribution over {1, . . . , t− 1}.
2. If i is the initial instant of a trial, then consider for n = 1, . . . , τ

µi+j = E(ξi+j) = 0, j = 0, . . . , n− 1

ηi+j = E(ξi+j) = 0, j = 0, . . . , n− 1

Ωn2 = Ωn0 .

Otherwise, consider

µi+j = E(ξi+j |ξi−1 = ai−1 −Ai−1), j = 0, . . . , n− 1

ηi+j = E(ξi+j |ξi−1 = ai−1 −A(si−1; θ)), j = 0, . . . , n− 1

Ωn2 = Ωn1 .

3. Consider the following vectors for n = 1, . . . , τ

µ̄ni = [µTi , . . . , µ
T
i+n−1]T ,

η̄ni = [ηTi , . . . , η
T
i+n−1]T ,

s̄ni = [sTi , . . . , s
T
i+n−1]T ,

āni = [aTi , . . . , a
T
i+n−1]T ,

Āni = [ATi , . . . , A
T
i+n−1]T ,

Ā(s̄ni ; θ) = [A(si; θ)
T , . . . , A(si+n−1; θ)T ]T .
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4. Temporal differences are computed for n = 1, . . . , τ

dni (θ, ν) =
(
ri + · · ·+ γn−1ri+n−1 + γnV (si+n; ν)− V (si; ν)

)
×

× ψb
(
ϕ(āni ; Ā(s̄ni ; θ) + η̄ni , Ω

n
2 )

ϕ(āni ; Āni + µ̄ni , Ω
n
2 )

)
,

(13)

where ψb is a soft-truncating function, e.g. ψb(x) = b tanh(x/b), for a certain
b > 1.

5. Actor and Critic are updated. The improvement directions for Actor and
Critic are

∆θ =
1

τ

τ∑
n=1

∇θ lnϕ(āni ; Ā(s̄ni ; θ) + η̄ni , Ω
n
2 )dni (θ, ν)−∇θL(si, θ) (14)

∆ν =
1

τ

τ∑
n=1

∇νV (si; ν)dni (θ, ν), (15)

where L(s, θ) is a loss function that penalizes Actor for producing actions
that do not satisfy conditions e.g., they exceed their boundaries. ∆θ is de-
signed do increase/decrease the likelihood of the sequence of actions āni pro-
portionally to dni (θ, ν). ∆ν is designed to make V (· ; ν) approximate the value
function (12) better. The improvement directions ∆θ and ∆ν are applied to
update θ and ν, respectively, with the use of either ADAM, SGD, or other
method of stochastic optimization.

In Point 1 the algorithm selects an experienced event to replay. In Points 2
and 3 it determines the parameters the distribution of the sequence of subsequent
actions, āni . In Point 4 it determines the relative quality of āni . The temporal dif-
ference (13) implements two ideas. Firstly, θ is changing due to being optimized,
thus the conditional distribution (āni |ξi−1) is now different than it was at the
time when the actions āni were happening. The density ratio in (13) accounts for
this discrepancy of distributions. Secondly, in order to limit variance of the den-
sity ratio, the soft-truncating function ψb is applied. In Point 5 the parameters
of Actor, θ, and Critic, ν, are being updated.

5 Empirical study

This section presents simulations whose purpose has been to compare the algo-
rithm introduced in Sec. 4 to state-of-the-art reinforcement learning methods. We
compared the new algorithm (ACERAC) to ACER [17], SAC [4] and PPO [13].
We used the rllib implementation [9] of SAC and PPO in the simulations. Our
implementation of ACERAC is available at https://github.com/mszulc913/

acerac.
We used four control tasks, namely Ant, Hopper, HalfCheetah, and Walker2D

(see Fig. 2) from PyBullet physics simulator [2] to compare the algorithms.

https://github.com/mszulc913/acerac
https://github.com/mszulc913/acerac
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A simulator that is more popular in the RL community is MuJoCo [14].1 Hyper-
parameters that assure optimal performance of ACER, SAC, and PPO applied
to the considered environments in MuJoCo are well known. However, PyBul-
let environments introduce several changes to MuJoCo tasks, which make them
more realistic, thus more difficult. Additionally, physics in MuJoCo and PyBul-
lets slightly differ [3], hence we needed to tune the hyperparameters. Their value
can be found in appendix A.

For each learning algorithm we used Actor and Critic structures as described
in [4]. That is, both structures had the form of neural networks with two hidden
layers of 256 units each.

Fig. 2: Environments used in simulations: Ant (left upper), HalfCheetah (right
upper), Hopper (left lower), Walker2D (right lower).

5.1 Experimental setting

Each learning run lasted for 3 million timesteps. Every 30000 timesteps of a simu-
lation was made with frozen weights and without exploration for 5 test episodes.
An average sum of rewards within a test episode was registered. Each run was
repeated 5 times.

1 We chose PyBullet because it is a freeware, while MuJoCo is a commercial software.
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Fig. 3: Learning curves for Ant (left upper), HalfCheetah (right upper), Hopper
(left lower) and Walker2D (right lower) environments: Average sums of rewards
in test trials.
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5.2 Results

Figure 3 presents learning curves for all four environments and all four compared
algorithms. Each graph reports how a sum of rewards in test episodes evolves
within learning. Solid lines represent the average sums of rewards and shaded
areas represent their standard deviations.

It is seen that for Ant the algorithm that achieve the best performance is
ACERAC, then ACER and SAC, then PPO. For HalfCHeetah, the best per-
formance is achieved by ACERAC which is slightly better than ACER, then
SAC, then PPO. For Hopper the algorithms to win are ACERAC ex aequo with
ACER, then PPO, then SAC; actually SAC fails in this task. Eventually, for
Walker2D, PPO achieves the best performance, then ACERAC and SAC, and
then ACER.

5.3 Discussion

It is seen in Fig. 3 that ACERAC is the best performing algorithm for three en-
vironments out of four (in one ACER preforms equally well). ACERAC extends
ACER in two directions. Firstly, it admits autocrrelated actions. This enables
exploration distributed in many actions instead in one. Secondly, in order to
mimic learning with eligibility traces [7], ACER estimates improvement direc-
tions with the use of a sum whose limit is random. This increases variance of
these estimates. Instead, for each state ACERAC computes an improvement di-
rection as an average of increments similar to those ACER selects on random.
Hence smaller variance of improvement direction estimates in ACERAC which
enables larger step-sizes and faster learning.

It is important to note that the algorithm introduced here, ACERAC, has
been designed for fine time discretization and real life control problems. However,
here it has been tested on simulated benchmarks in which time discretization was
not particularly fine and control could be arbitrarily discontinuous. Its relatively
good performance is a desirable result. It allows to expect that this algorithm
will perform relatively even better in real life control problems. That remains to
be confirmed experimentally in further studies.

6 Conclusions and future work

In this paper a framework was introduced to apply reinforcement learning to
policies that admit stochastic dependence between subsequent actions beyond
state transition. This dependence is a tool to enable reinforcement learning in
physical systems and fine time discretization. It can also yield better exploration
thus faster learning.

An algorithm based on this framework, Actor-Critic with Experience Re-
play and Autocorrelated aCtions (ACERAC), was introduced. Its efficiency was
verified in simulations of four learning control problems: Ant, HalfCheetah, Hop-
per, and Walker2D. The algorithm was compared with PPO, SAC, and ACER.
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ACERAC outperformed the competitors in Ant and HalfCheetah. For Hopper
ACERAC was the best ex aequo with ACER. For Walker2D the best results was
obtained by PPO.

It is desirable to combine the framework proposed here with adaptation of
dispersion of actions by introducing reward for the entropy of their distribution,
as it is done in PPO. The framework proposed here is specially designed for
applications in robotics. An obvious step of our further research is to apply it in
this field, obviously much more demanding than simulations.
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A Algorithms’ hyperparameters

This section presents hyperparameters used in simulations reported in Sec. 5. All
algorithms used the discount factor equal to 0.99. The rest of hyperparameters
for ACERAC, ACER, SAC, and PPO, are depicted in Tab. 1, 2, 3, and 4,
respectively.

Parameter Value
Action std. dev. for Hopper 0.3

Action std. dev. for other envs. 0.4
α 0.5

Critic step-size for Walker2D 10−4

Critic step-size for other envs. 6 · 10−5

Actor step-size for Walker2D 5 · 10−5

Actor step-size for other envs. 3 · 10−5

τ 4
b 2

Memory size 106

Minibatch size 256
Target update interval 1

Gradient steps 1
Learning start 103

Table 1: ACERAC hyperparameters

Parameter Value
Action std. dev. 0.3
Critic step-size 10−5

Actor step-size 10−5

λ 0.9
b 2

Memory size 106

Minibatch size 256
Target update interval 1

Gradient steps 1
Learning start 103

Table 2: ACER hyperparameters

Parameter Value
Step-size for Hopper 0.0001

Step-size for other envs 0.0003
Replay buffer size 106

Minibatch size 256
Target smoothing coef. τ 0.005
Target update interval 1

Gradient steps 1
Learning start for Ant 104

Learning start for HalfCheetah 104

Learning start for Hopper 103

Learning start for Walker2D 103

Reward scale for Ant 1
Reward scale for HalfCheetah 0.1

Reward scale for Hopper 30
Reward scale for Walker2D 30

Table 3: SAC hyperparameters

Parameter Value
GAE parameter (λ) 0.95

Minibatch size 64
Step-size 0.0003
Horizon 2048

Number of epochs 10
Policy clipping coef. 0.2

Value function clipping coef. 10
Target KL 0.01

Table 4: PPO hyperparameters
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