Skip to main content

Diabetic Retinopathy Detection Using Multi-layer Neural Networks and Split Attention with Focal Loss

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12534))

Included in the following conference series:

Abstract

Diabetic retinopathy (DR) is the most common eye threatening micro-vascular complication of diabetes. It develops and grows without arbitrary symptoms and can ultimately lead to blindness. However, 90% of the DR-attributed blindness is preventable but needs prompt diagnosis and appropriate treatment. Presently, DR detection is time and resource-consuming, i.e., required qualified ophthalmologist technician to examine the retina colour fundus for investigating the existence of vascular anomaly associated lesions. Nevertheless, an automatic DR scanning with specialised deep learning algorithms can overcome this challenge. In this paper, we present an automatic detection of DR using Multi-layer Neural Networks and Split Attention with Focal Loss. Our method outperformed state-of-the-art (SOTA) networks in early-stage detection and achieved 85.9% accuracy in DR classification. Because of high performance, it is believed that the results obtained in this paper are of great importance to the medical and the relevant research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bravo, M.A., Arbeláez, P.A.: Automatic diabetic retinopathy classification. In: 13th International Conference on Medical Information Processing and Analysis, vol. 10572, p. 105721E. International Society for Optics and Photonics (2017)

    Google Scholar 

  2. Chaturvedi, S.S., Gupta, K., Ninawe, V., Prasad, P.S.: Automated diabetic retinopathy grading using deep convolutional neural network. arXiv preprint arXiv:2004.06334 (2020)

  3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  4. Dekhil, O., Naglah, A., Shaban, M., Ghazal, M., Taher, F., Elbaz, A.: Deep learning based method for computer aided diagnosis of diabetic retinopathy. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–4. IEEE (2019)

    Google Scholar 

  5. Freiberg, F.J., Pfau, M., Wons, J., Wirth, M.A., Becker, M.D., Michels, S.: Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 254(6), 1051–1058 (2016)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  8. Kassani, S.H., Kassani, P.H., Khazaeinezhad, R., Wesolowski, M.J., Schneider, K.A., Deters, R.: Diabetic retinopathy classification using a modified Xception architecture. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1–6. IEEE (2019)

    Google Scholar 

  9. Khushi, M., Clarke, C.L., Graham, J.D.: Bioinformatic analysis of cis-regulatory interactions between progesterone and estrogen receptors in breast cancer. PeerJ 2, e654 (2014)

    Article  Google Scholar 

  10. Khushi, M., Liddle, C., Clarke, C.L., Graham, J.D.: Binding sites analyser (BiSA): software for genomic binding sites archiving and overlap analysis. PLoS ONE 9(2), e87301 (2014)

    Article  Google Scholar 

  11. Lam, C., Yi, D., Guo, M., Lindsey, T.: Automated detection of diabetic retinopathy using deep learning. AMIA Summits Transl. Sci. Proc. 2018, 147 (2018)

    Google Scholar 

  12. Larsen, N., Godt, J., Grunkin, M., Lund-Andersen, H., Larsen, M.: Automated detection of diabetic retinopathy in a fundus photographic screening population. Invest. Ophthalmol. Vis. Sci. 44(2), 767–771 (2003)

    Article  Google Scholar 

  13. Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 730–734. IEEE (2015)

    Google Scholar 

  14. Naseem, U., Musial, K., Eklund, P., Prasad, M.: Biomedical named-entity recognition by hierarchically fusing BioBERT representations and deep contextual-level word-embedding. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, July 2020

    Google Scholar 

  15. Naseem, U., Razzak, I., Eklund, P., Musial, K.: Towards improved deep contextual embedding for the identification of irony and sarcasm. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, July 2020

    Google Scholar 

  16. Naseem, U., Razzak, I., Hameed, I.A.: Deep context-aware embedding for abusive and hate speech detection on Twitter. Aust. J. Intell. Inf. Process. Syst. 15(3), 69–76 (2019)

    Google Scholar 

  17. Naseem, U., Razzak, I., Musial, K., Imran, M.: Transformer based deep intelligent contextual embedding for Twitter sentiment analysis. Future Gener. Comput. Syst. 113, 58–69 (2020)

    Article  Google Scholar 

  18. Rehman, A., Naz, S., Naseem, U., Razzak, I., Hameed, I.A.: Deep autoencoder-decoder framework for semantic segmentation of brain tumor. Aust. J. Intell. Inf. Process. Syst. 15(3), 53–60 (2019)

    Google Scholar 

  19. Nguyen, Q.H., et al.: Diabetic retinopathy detection using deep learning. In: Proceedings of the 4th International Conference on Machine Learning and Soft Computing, ICMLSC 2020, pp. 103–107. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3380688.3380709

  20. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)

    Article  Google Scholar 

  21. Priya, R., Aruna, P.: SVM and neural network based diagnosis of diabetic retinopathy. Int. J. Comput. Appl. 41(1), 6–12 (2012)

    Google Scholar 

  22. Quellec, G., Russell, S.R., Abràmoff, M.D.: Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans. Med. Imaging 30(2), 523–533 (2010)

    Article  Google Scholar 

  23. Sakaguchi, A., Wu, R., Kamata, S.i.: Fundus image classification for diabetic retinopathy using disease severity grading. In: Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology, pp. 190–196 (2019)

    Google Scholar 

  24. Sathiya, G., Gayathri, P.: Automated detection of diabetic retinopathy using GLCM, January 2014

    Google Scholar 

  25. Sinthanayothin, C., Kongbunkiat, V., Phoojaruenchanachai, S., Singalavanija, A.: Automated screening system for diabetic retinopathy. In: 3rd International Symposium on Image and Signal Processing and Analysis 2003, Proceedings of the ISPA 2003, vol. 2, pp. 915–920. IEEE (2003)

    Google Scholar 

  26. Smailagic, A., et al.: O-MedAL: online active deep learning for medical image analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(4), e1353 (2020)

    Article  Google Scholar 

  27. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  28. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  30. Wan, S., Liang, Y., Zhang, Y.: Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput. Electr. Eng. 72, 274–282 (2018)

    Article  Google Scholar 

  31. Wang, Z., Yang, J.: Diabetic retinopathy detection via deep convolutional networks for discriminative localization and visual explanation. In: Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  32. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Naseem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naseem, U. et al. (2020). Diabetic Retinopathy Detection Using Multi-layer Neural Networks and Split Attention with Focal Loss. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics