
ForecastNet: A Time-Variant Deep Feed-Forward Neural Network
Architecture for Multi-Step-Ahead Time-Series Forecasting

Joel Janek Dabrowski 1 YiFan Zhang 2 Ashfaqur Rahman 3

Abstract
Recurrent and convolutional neural networks are
the most common architectures used for time se-
ries forecasting in deep learning literature. These
networks use parameter sharing by repeating a set
of fixed architectures with fixed parameters over
time or space. The result is that the overall ar-
chitecture is time-invariant (shift-invariant in the
spatial domain) or stationary. We argue that time-
invariance can reduce the capacity to perform
multi-step-ahead forecasting, where modelling
the dynamics at a range of scales and resolutions
is required. We propose ForecastNet which uses a
deep feed-forward architecture to provide a time-
variant model. An additional novelty of Forecast-
Net is interleaved outputs, which we show assist
in mitigating vanishing gradients. ForecastNet is
demonstrated to outperform statistical and deep
learning benchmark models on several datasets.

1. Introduction
Multi-step-ahead forecasting involves the prediction of
some variable several time-steps into the future, given past
and present data. Over the set of time-steps, various time-
series components such as complex trends, seasonality, and
noise may be observed at a range of scales or resolutions.
Increasing the number of steps ahead that are forecast in-
creases the range of scales that are required to be modelled.
An accurate forecasting method is required to model all
these components over the complete range of scales.

There is significant interest in the recurrent neural network
(RNN) and sequence-to-sequence models for forecasting
(Kuznetsov & Mariet, 2018). Several studies have shown
success with variants of these models (Zhu & Laptev, 2017;
Laptev et al., 2017; Wen et al., 2017; Maddix et al., 2018;
Salinas et al., 2019; Xing et al., 2019; Hewamalage et al.,
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2019; Nguyen et al., 2019; Du et al., 2020). The recurrence
in the RNN produces a set of cells, each with fixed architec-
ture, that are replicated over time. This replication results
in a time-invariant model. Similarly, parameter sharing and
convolution in the convolutional neural network (CNN) re-
sult in a shift-invariant model in the spatial domain; which is
equivalent to time-invariance in the time domain. Our con-
jecture is that time-invariance can reduce the capacity for the
model to learn various scales of dynamics across multiple
steps in time; especially in multi-step-ahead forecasts.

To address this, we propose ForecastNet, which is a deep
feed-forward architecture with interleaved outputs. Between
interleaved outputs are network structures that differ in ar-
chitecture and parameters over time. The result is a model
that varies across time. We demonstrate four variations of
ForecastNet to highlight its flexibility. These four variations
are compared with state-of-the-art benchmark models. We
show that ForecastNet is accurate and robust in terms of
performance variation.

The contributions of this study are: (1) ForecastNet: a model
for multi-step-ahead forecasting; (2) we address the time-
invariance problem which (to our knowledge) has not been
considered in deep learning time-series forecasting literature
before; and (3) provide a comparison of several state-of-the-
art models on seasonal time-series datasets.

2. Motivations and Related Work
2.1. Recurrent Neural Networks

The RNN comprises a set of cell structures with parameters
that are replicated over time. These replications (cells and
parameters) remain constant over time. The replication has
its benefits (such as parameter sharing) but it can reduce
capacity to model the complex dependencies over time. For
example, a model can adapt to long-term dynamics more
easily if its parameters are able to change over time.

Another challenge with RNNs is that learning long se-
quences can be difficult due to complex dependencies over
time and vanishing gradients (Chang et al., 2017). Vanish-
ing gradients in the RNN have been addressed in the LSTM
(Hochreiter & Schmidhuber, 1997; Gers et al., 1999) and
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the Gated Recurrent Unit (GRU) (Cho et al., 2014b;a), by
introducing gate-like structures. These LSTM and GRU cell
structures are however recurrent and are constant over time.

ForecastNet comprises a set of parameters and an architec-
ture that changes over the sequence of inputs and forecast
outputs. The result is that ForecastNet is not a time-invariant
model. Furthermore, ForecastNet mitigates vanishing gradi-
ent problems by using shortcut-connections and by interleav-
ing outputs between hidden cells. The shortcut-connection
approach was introduced in ResNet (He et al., 2015a) and
Highway Network (Srivastava et al., 2015). It has been
shown to be highly effective in addressing vanishing and
shattered gradient problems (Balduzzi et al., 2017). Ad-
ditionally, shortcut-connections allow for a much deeper
network (He et al., 2015a).

2.2. Sequence Models

State-of-the-art deep sequence models include multiple
RNNs linked in various configurations (Zhang et al., 2019).
A prominent configuration is the sequence-to-sequence
(encoder-decoder) model (Sutskever et al., 2014). The
sequence-to-sequence model sequentially links two RNNs
(an encoder and a decoder) through a fixed size vector, such
as the last encoder cell state. This can be limiting as it forms
a potential bottleneck between the encoder and decoder. Fur-
thermore, earlier inputs have to pass through several layers
to reach the decoder.

The attention model (Bahdanau et al., 2015) addresses the
sequence-to-sequence model problem by adding a network
structure from all the encoder cells to each decoder cell. This
structure, called an attention mechanism, ascribes relevance
to the particular encoder cell. The attention mechanism is
not necessarily time-invariant, so it may help reduce the
time-invariance properties of the overall model. However,
the time series dynamics are primarily modelled with the
RNN encoder and decoder, which are time invariant.

Unlike the sequence-to-sequence and attention models, Fore-
castNet does not have a separate encoder and decoder. Chal-
lenges with linking these entities are thus removed.

2.3. Convolutional Neural Networks

The convolutional neural network (CNN) has shown promis-
ing results in modelling sequential data (Binkowski et al.,
2018; Mehrkanoon, 2019; Sen et al., 2019). The CNN
uses convolution and parameter sharing to achieve shift-
invariance (or translation-invariance) (LeCun et al., 1995).
This is a key feature in image processing, however, in time-
series applications, it translates to time-invariance.

WaveNet (Oord et al., 2016) is a seminal CNN model
which uses multiple layers of dilated causal convolutions
for raw audio synthesis. This model has been generalised

for broader sequence modelling problems and this gener-
alisation is referred to as the Temporal Convolutional Net-
work (TCN) (Bai et al., 2018). We select this model as a
benchmark for comparing ForecastNet. Furthermore, we
demonstrate how ForecastNet is able to accommodate con-
volutional layers in hidden cells.

2.4. The Transformer and Self-Attention

A model that has successfully departed from the RNN and
CNN architectures is the transformer model (Vaswani et al.,
2017). This model comprises a sequence of encoders and
decoders. The encoders include a self-attention mechanism
and a position-wise feed-forward neural network. The de-
coder has the same architecture as the encoder, but with an
additional attention mechanism over the encoding.

Though the transformer has been highly successful in nat-
ural language processing, it has limitations in time series
analysis. The first limitation is that it does not assume any
sequential structure of the inputs (Vaswani et al., 2017).
Positional encoding in the form of a sinusoid is injected
into the inputs to provide information on the sequence order.
Temporal structure is key in time series modelling and is
what time-series models are usually designed to model. Li
et al. (2019) propose including causal convolution to model
local context. Convolutions are however time-invariant.

A second limitation of the transformer is that (to promote
parallelisation) a large portion of the processing operates
over the dimension of the input embedding rather than over
time. For example, the multiple attention heads and the
position-wise feed-forward neural networks operate over the
embedding dimension. The transformer is thus not designed
to operate on low dimensional time series signals such as
univariate time-series as considered in this study. Wu et al.
(2020) use a feed-forward neural network to increase the
dimensionality of the input space. We however did not find
such an approach effective on the datasets used in this study.

ForecastNet addresses both transformer model limitations.
It is specifically designed to model the temporal structure
of the inputs and it is not limited to multivariate time-series.

2.5. Uncertainty Representation

Realistically, forecasting methods should provide some
form of uncertainty or confidence interval around estimates
(Makridakis et al., 2018b). Neural networks do not nat-
urally provide this capability. Several approaches to in-
corporate uncertainty have however been proposed. These
include: empirical approaches (such as bootstrapped resid-
uals (Hyndman & Athanasopoulos, 2018), or Monte Carlo
dropout (Zhu & Laptev, 2017); ensembles (such as (Lak-
shminarayanan et al., 2017)); variational inference-based
models (such as (Bayer & Osendorfer, 2014; Krishnan et al.,
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Figure 1. General ForecastNet structure to provide a forecast
x̂t+1:t+4 given x = xt−nI+1:t as inputs (circles). A hidden cell
(squares) comprises some form of feed forward neural network
structure. Each hidden cell and output is illustrated with a different
shade to indicate heterogeneity over the sequence.
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Figure 2. An example of a simple form of ForecastNet with a single
densely connected hidden layer in the hidden cell (more complex
structures can be chosen for the hidden cell). Outputs take the
form of a normal or Gaussian distribution. Note that though the
architecture at each sequence step is identical, the weights will
differ (i.e. they are not recurrent).

2015; Chung et al., 2015; Fraccaro et al., 2016; Doerr et al.,
2018; Rangapuram et al., 2018)); or predictive distributions
(such as (Salinas et al., 2019)). The predictive distribution
approach (based on mixture density networks (Bishop, 1994;
Graves, 2013)) is effective as the distribution parameters are
learned directly through gradient descent. ForecastNet thus
adopts this mixture density approach.

3. ForecastNet Architecture
As illustrated in Figure 1, ForecastNet is a feed-forward
neural network comprising a set of nI inputs, a set of nO
outputs, and a set of sequentially connected hidden cells (a
term borrowed from RNN literature). A detailed diagram of
a simple form of ForecastNet is presented in Figure 2.

3.1. Inputs

ForecastNet’s inputs x = xt−nI+1:t are a set of lagged
values of the dependent variable. The dependent variable
can be univariate or multivariate. The set of inputs are
presented to every hidden cell in the network as illustrated
in Figure 1 and Figure 2.

3.2. Hidden Cells

A hidden cell represents some form of feed forward neural
network such as a multi-layered perceptron (MLP), a CNN,
or self-attention. Each hidden cell can be heterogeneous in
terms of architecture. As a feed-forward network, even if
the architecture of each hidden cell is identical (as used in
this study), each cell is provided with its own unique set of
parameters. This is in contrast to RNNs where the RNN cell
architecture and parameters are duplicated at each sequence
step. ForecastNet is thus sequential, but it is not recurrent.

The hidden cells are intended to model the time-series dy-
namics. Links between hidden cells model local dynamics
and cells together model longer-term dynamics.

3.3. Outputs

Each output in ForecastNet provides a forecast one-step into
the future. The deeper the network, the more outputs there
are. ForecastNet thus naturally scales in complexity with
increased forecast reach.

Using the idea of mixture density networks (Salinas et al.,
2019; Bishop, 1994), each output models a probability dis-
tribution. In this study the normal distribution is used as
illustrated in Figure 2. The mean and standard deviation of
the normal distribution at output layer l are given by

µ[l] = W [l]T
µ a[l−1] + b[l]

µ (1)

σ[l] = log(1 + exp(W [l]T
σ a[l−1] + b[l]

σ )), (2)

where a[l−1] are the outputs of the previous hidden cell,
W

[l]T
µ and b

[l]
µ are the weights and biases of the mean’s

layer, and W [l]T
σ and b

[l]
σ are the weights and biases of the

standard deviation’s layer.

The forecast associated with layer l is produced by sampling
from N(µ[l], σ[l]). During forecasting, the sampled forecast
is fed to the next layer. During training, the forecast is fully
observable through the training data. The network is trained
with gradient descent to optimise the normal distribution
log-likelihood function (Salinas et al., 2019).

The mixture density output can be replaced with a linear
output and the squared error loss function. No uncertainty
will be available in this form, however the model be required
to optimise over two parameters. This form is demonstrated
in this study as one of the variations of ForecastNet.

4. ForecastNet Properties
4.1. Time-Variance

A time-invariant system is defined as a system for which a
time shift of the input sequence causes a corresponding shift
in the output sequence (Oppenheim & Schafer, 2009).
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Theorem 1. ForecastNet with inputs xt, hidden states ht,
and outputs yt given by

yt = ft(ht) (3)
ht = gt(xt,ht−1,yt−1) (4)

is not time invariant.

Proof. Given two inputs, xt and x′t, two outputs yt and
y′t, and two hidden states ht and h′t. Let x′t be xt, shifted
by t0 such that x′t = xt−t0 . Similarly, let h′t = ht−t0 .
Time-invariance requires that yt−t0 = y′t. From (3) and
(4), yt−t0 is given by

yt−t0 = ft−t0(gt−t0(xt−t0 ,ht−t0−1,yt−t0−1))

and y′t is given by

y′t = ft(gt(x
′
t,h
′
t−1,y

′
t−1))

= ft(gt(xt−t0 ,ht−t0−1,y
′
t−1)).

Thus, yt−t0 6= y′t and ForecastNet is not time-invariant.

ForecastNet is not time-invariant as its parameters (and
optionally architecture) vary in time (over the sequence of
inputs and outputs). This is compared with the RNN that has
fixed parameters which are reused each time step, resulting
in a time-invariant model.
Theorem 2. A RNN with inputs xt, hidden states ht, and
outputs yt given by

yt = f(ht) (5)
ht = g(xt,ht−1) (6)

is time-invariant when ht is initialised to some initial value
h0 immediately before the first input is received.

Proof. Given two inputs, xt and x′t, two outputs yt and
y′t, and two hidden states ht and h′t. Let x′t be xt, shifted
by t0 such that x′t = xt−t0 . Similarly, let h′t = ht−t0 .
Time-invariance requires that yt−t0 = y′t. From (5) and
(6), yt−t0 is given by

yt−t0 = f(g(xt−t0 ,ht−t0−1))

and y′t is given by

y′t = f(g(x′t,h
′
t−1))

= f(g(xt−t0 ,ht−t0−1)).

Thus yt−t0 = y′t and the RNN is time-invariant.

Note that a requirement for time-invariance in the RNN is
that ht is initialised to h0 before the first input is received.
If ht were initialised several time-steps before the first input
was received, a set of zeros (padding) would have to be
provided as inputs until the first xt were received. This
could result in h′t 6= ht−t0 .

· · ·

· · ·

z[l]

∣∣∣∣a[l]

z[l+1]

∣∣∣∣a[l+1]

z[l+2]

∣∣∣∣a[l+2]

z[l+3]

∣∣∣∣a[l+3]

z[l+4]

∣∣∣∣a[l+4]

z[l+5]

∣∣∣∣a[l+5]

· · ·

Figure 3. Figure for the derivation of equation (7). The top row of
nodes are hidden neurons. The bottom row of nodes are output
neurons. Inputs are not shown.

4.2. Interleaved Outputs

The vanishing/exploding gradient problem has been referred
to as “deep learning’s fundamental problem” (Schmidhuber,
2015). The problem stems from the repeated application of
the chain rule of calculus in computing the gradient (Caterini
& Chang, 2018). The chain rule produces a chain of factors.
Especially long chains associated with deep networks can
either vanish to zero or diverge (explode). By interleaving
outputs between hidden layers in ForecastNet, the chain is
broken into a sum of terms. This sum of terms is more stable
than a product of factors. The intuition is that interleaved
outputs provide localised information to inner hidden layers
of the network during training. This decreases the effective
depth of the network.

To show this, consider an L-layered ForecastNet with a sin-
gle hidden neuron and a single output neuron. A summation
results when the output of hidden layer is split between the
next hidden layer and the next output. The repeated applica-
tion of the chain rule results in the following expression

∂L

∂W [l]
=

L−1−l
2∑

k=0

∂L

∂z[l+2k+1]

∂z[l+2k+1]

∂a[l+2k]
Ψk

∂a[l]

∂W [l]
(7)

where

Ψk =


1 k = 0
k∏
j=1

∂z[l+2j]

∂a[l+2(j−1)] k > 0
(8)

Proof. Consider an L-layered ForecastNet with a single
hidden neuron in the hidden cell and a single linear output
neuron as illustrated in Figure 3 (the inputs are not shown as
they do not contribute to the error backpropagated through
hidden cells). For some layer l in this network, W [l] is
the weight matrix, b̄[l] is the bias vector, a[l] is the output
vector, and z[l] = W [l]Ta[l−1] + b̄[l]. Using the chain rule of
calculus, the derivative of the loss function L with respect
to the weights W [l] at layer l is given by

∂L

∂W [l]
=

∂L

∂a[l]
∂a[l]

∂W [l]
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Hidden layer l links to layers l + 1 and l + 2. Thus, the
derivative with respect to a[l] is expanded as follows

∂L

∂W [l]
=

(
∂L

∂z[l+1]

∂z[l+1]

∂a[l]
+

∂L

∂z[l+2]

∂z[l+2]

∂a[l]

)
∂a[l]

∂W [l]

=
∂L

∂z[l+1]

∂z[l+1]

∂a[l]
∂a[l]

∂W [l]
+

∂L

∂z[l+2]

∂z[l+2]

∂a[l]
∂a[l]

∂W [l]

Layer l + 2 links to layers l + 3 and l + 4 and ∂L/∂a[l+2]

can be expanded in a similar manner to the above. This
expansion process is continued until the final output layer L
is reached, which produces (7).

Similarly, consider a chain of neurons in a standard L-
layered feed-forward neural network with loss function L.
Repeated application of the chain rule of calculus results in
the following product

∂L

∂W [l]
=
∂L

∂a[L]
∂a[L]

∂z[L]
∂z[L]

∂a[L−1]
∂a[L−1]

∂z[L−1]
· · ·

∂z[l+2]

∂a[l+1]

∂a[l+1]

∂z[l+1]

∂z[l+1]

∂a[l]
∂a[l]

∂z[l]
∂z[l]

∂W [l]
(9)

This equation can be expressed in the form λL (Caterini
& Chang, 2018; Goodfellow et al., 2016). If |λ| < 1, the
term vanishes towards 0 as L grows. If |λ| > 1, the term
explodes as L grows.

Equation (9) contains a product of factors whereas (7) con-
tains a sum of terms. A sum of terms with values less than
one does not tend to zero (vanish) as a product of factors
with values less than one would.

The interleaved outputs mitigate, but do not eliminate the
vanishing gradient problem. The term Ψk is a product of
derivatives formed by the chain rule of calculus. The number
of factors in this product grows proportional to k. For a
distant layer where k is large, Ψk will have many factors.
The result is that gradients back-propagated from distant
layers are still susceptible to vanishing gradient problems.
However, for nearby outputs where k is small, Ψk will have
few factors and so gradients from nearby outputs are less
likely to experience vanishing gradient problems. Thus,
nearby outputs can provide guidance to local parameters
during training, resulting in improved convergence as the
effective depth of the network is reduced.

5. Material and Methods
5.1. Datasets

A set of models are compared on a synthetic dataset and nine
real-world datasets sourced from various domains. These
include weather, environmental, energy, aquaculture, and
meteorological domains. Datasets with seasonal compo-
nents and complex trends are hand-picked to ensure that

they provide a sufficiently challenging problem. Properties
such as varying seasonal amplitude, varying seasonal shape,
and noise were sought. For example, the shape of the sea-
sonal cycle is non-stationary and changes over time in most
datasets. Additionally, properties such as seasonality assist
in demonstrating the ability for models to learn long-term
dependencies in the data.

The synthetic dataset is used to provide a baseline. The
data is generated according to xt = 2 sin (2πft) +
1/3 sin (2πft/5), where f is the frequency and t denotes
time. The low frequency sinusoid emulates a long-term
time-varying trend, whereas the high frequency sinusoid
emulates seasonality. Models are expected to perform well
on this dataset because it contains no noise. The properties
of all the datasets are summarised in Table 1. In figures and
tables the datasets are referred to by their abbreviations.

5.2. Models

Four deep-learning based benchmark models are compared
to four variations of ForecastNet. These models include
deepAR (Salinas et al., 2019), the TCN (Bai et al., 2018), the
sequence-to-sequence (encoder-decoder) model (Sutskever
et al., 2014), and the attention model (Bahdanau et al., 2015).
For completeness, a single layer MLP, a free-form seasonal
Dynamic Linear Model (DLM) (West & Harrison, 1997),
and a seasonal autoregressive moving average (SARIMA)
model are included in the comparison. The DLM (a state
space model) and the SARIMA model are well-known statis-
tical models that are used for time-series forecasting (Hynd-
man & Athanasopoulos, 2018).

Four variations of ForecastNet are tested1:

FN: Densely connected hidden layers in each hidden cell
and a Gaussian mixture density output layer.

cFN: CNNs in the hidden cell and a Gaussian mixture den-
sity output layer.

FN2: This is identical to FN, but with a linear output layer
instead of a mixture density output layer.

cFN2: This is identical to cFN, but with a linear output
layer instead of a mixture density output layer.

The set of models are tested on a datasets that have a sea-
sonal component with period denoted by τ . The number of
inputs in all models is set to 2τ and the number of outputs
(forecast-steps) is set to τ . Thus, the models are trained to
forecast one seasonal cycle ahead in time, given the two
previous cycles of data.

To avoid possible bias between the models, they are con-
figured to be as similar as possible. This is achieved by

1Note that we tested the use of self-attention mechanisms in
the hidden cells. We were unable to achieve any significant perfor-
mance improvement compared with FN.
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Table 1. Dataset properties.
Dataset Abbreviation Resolution Period Length Minimum Maximum Mean Std. Dev.

Synthetic Synth. - 20 4320 -2.33 2.33 -0.00 1.43
England temperature (Hyndman, 2014) Weath. Monthly 12 3261 0.10 18.80 9.27 4.75
River flow (Hyndman, 2014) River Monthly 12 1492 3290 66500 23157.60 13087.40
Electricity (AEMO, 2019) Elect. Hourly 24 19224 5514 14580 8709.79 1360.29
Traffic Volume (UCI, 2019) Traff. Hourly 24 8776 125 7217 3269.26 2021.57
Lake levels (Hyndman, 2014) Lake Monthly 12 648 10 20 15.08 2.00
Dissolved Oxygen (Dabrowski et al., 2018) DO Hourly 24 2422 5.66 7.94 6.50 0.53
pH (Dabrowski et al., 2018) pH Hourly 24 2422 8.07 11.15 8.56 0.21
Pond temperature (Dabrowski et al., 2018) Temp. Hourly 24 2422 24.38 31.97 27.74 1.85
Ozone (Hyndman, 2014) Ozone Monthly 12 516 266 430 338.00 38.30

limiting the number of neurons in the models to similar val-
ues. Configuration details are provided in Table 2. In figures
and tables, the sequence-to-sequence model is denoted by
‘seq2seq’ and the attention model is denoted by ‘Att’.

5.3. Training and Testing

The datasets are scaled to the range of [0, 1] for training.
Each dataset is split into a training and a test set, where the
last 10% of the data are used for the test set. The training
and test sets both comprise a long sequence of values. These
sequences are converted into a set of samples that the models
can process. A sample is extracted using a sliding window
of length 3τ . The first 2τ samples in this window form the
input sequence to the model. The last τ samples form the
forecast target values. The sliding window is slid across the
dataset sequence to produce a set of samples. The set of
training samples are shuffled prior to training.

The ADAM algorithm (Kingma & Ba, 2014) is used to
minimise the mean squared error in all machine learn-
ing models. The learning rate is searched over the range
10−i, i ∈ [2, . . . , 6]. Early stopping is used to address over-
fitting and defines the number of epochs. The Mean Abso-
lute Scaled Error (MASE) (Hyndman & Koehler, 2006) is
used to evaluate performance of the models. For complete-
ness, results with the Symmetric Mean Absolute Percentage
Error (SMAPE) (Hyndman & Athanasopoulos, 2018) are
additionally provided.

6. Results and Discussion
6.1. Time-Invariance Test

Before comparing models on the datasets, the difference
between time-invariant and time-variant models is demon-
strated using a variation of the synthetic dataset given by

xt =
1

2
sin

(
2πf

6
t

)(
3

5
sin (2πft) +

1

5
sin

(
2πf

5
t

))
The second and third sinusoids emulate a seasonal cycle
time-varying trend as previously presented. The first sinu-
soid is included to perform amplitude modulation.
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Figure 4. Synthetic dataset forecasts for for the seq2seq, Att., FN2,
and cFN2 models at starting time indices 0, 50, 150 and 200.

The amplitude modulation repeats every 6 cycles of the sea-
sonal period. A model is only presented with two seasonal
cycles as inputs. The model thus never observes a complete
pattern, which is the full cycle of the amplitude modulation.
A time-variant model’s parameters are able to change over
time, which enables the model to adapt to the variations
in amplitude. A time-invariant model is less agile and is
expected to struggle with large amplitude variations.

The seq2seq, attention, FN2, and cFN2 models are trained
on the dataset. Results of forecasts from inputs starting at
time indices 0, 50, 150 and 200 are presented in Figure 4.
As expected, the time-invariant seq2seq model struggles
maintaining accurate forecasts when there are large varia-
tions in the amplitude. The attention model performs better
due to the time-variant attention mechanism. However, the
time-variant ForecastNet models adapt well to the large vari-
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Table 2. Model configuration. τ is the seasonal period of the dataset and ReLU is the rectified linear unit.

Model Configuration

FN Each hidden cell comprises two densely connected hidden layers, each with 24 ReLU neurons. The rectified linear unit (ReLU) with He initialisation (He
et al., 2015b) is used as the activation function.

FN2 Identical to FN2 but with a linear output layer instead of a mixture density layer.
cFN Each hidden cell comprises a convolutional layer with 24 filters, each with a kernel size of 2, followed by a average pooling layer with a pool size of 2 and

stride of 1. The convolutional and pooling layers are duplicated and followed by a dense layer with 24 ReLU neurons.
cFN2 Identical to cFN2 but with a linear output layer instead of a mixture density layer.
DeepAR The sequence-to-sequence architecture with single layered LSTMs are used in the encoder and decoder. The mixture density output of the network is a

Gaussian (normal) distribution.
TCN The TCN contains a convolutional layer with 32 filters, each with a kernel size of 2 for the Synthetic, Weather, Elect., and River datasets. For the remaining

datasets, the TCN contains a convolutional layer with 64 filters, each with a kernel size of 3. The output contains a dense layer with τ linear units.
Attention Encoder has a bidirectional LSTM and the decoder has a single layered LSTM. The LSTM cells are configured with 24 ReLU units.
Seq2Seq Encoder and decoder use a single layered LSTM. The LSTM cells are configured with 24 RelU units.
MLP Feed forward MLP with a single hidden layer comprising 4τ ReLU hidden neurons. A set of 2τ inputs are provided and a set of τ linear outputs are used.
DLM The DLM used is the free-form seasonal model with a zero order trend component (West & Harrison, 1997). Model fitting is performed using a modified

Kalman filter (Wang, 2016)
SARIMA Standard form SARIMA(p,d,q)(P,D,Q)s with: Synthetic: SARIMA(1,1,1)(1,1,0)20, Weather: SARIMA(2,0,3)(0,1,0)12, Elect.: SARIMA(3,1,4)(0,1,0)24,

River: SARIMA(2,0,4)(0,1,0)12, Traff.: SARIMA(3,1,1)(0,1,0)24, Lake: SARIMA(2,0,8)(0,1,0)12, DO: SARIMA(2,0,6)(0,1,0)24, pH:
SARIMA(4,1,3)(0,1,0)24, Temp.: SARIMA(2,1,4)(0,1,0)24, and Ozone: SARIMA(3,0,4)(0,1,0)12,

ations in the signal amplitude. We argue that this is due to
the time-variant properties of ForecastNet.

6.2. Model Comparison Error Results

The average MASE and SMAPE over all forecasts on each
dataset’s test set is provided in Table 3. ForecastNet pro-
duces the best results on 8 of the 10 datasets. The cFN2
variation of ForecastNet achieves the best results on 4 of
these 8 datasets. This result is reinforced with Borda counts
provided in the last row. A Borda count ranks a set of M
models with integers (1, . . . ,M) such that the model with
the lowest MASE is assigned a value of M (a higher vote)
and the model with the highest MASE is assigned a value
of 1 (a lower vote). Borda counts thus provide a more ag-
gregated evaluation. FN2 and cFN2 are voted as the best
models with the highest Borda counts. These are followed
by cFN, FN and the attention models respectively.

The attention model produced the lowest error for the ozone
dataset. The attention model is a relatively complex model
and its attention mechanism assists in modelling long-term
dependencies. FN2 provides strong competition to the at-
tention model over the remaining datasets. This is despite
it having an arguably a simpler architecture with no gating
structures to reduce vanishing gradients. We argue that a
key reason why ForecastNet performs so well is that it is
not a time-invariant model.

Increasing the model complexity generally resulted in im-
proved forecast performance in this study. For example,
cFN generally outperforms FN. However, simpler models
do not fail on the datasets. For example, the MLP provided
comparably accurate forecasts despite its simplicity.

As expected, the DLM and SARIMA statistical models per-
formed well despite being linear models (Makridakis et al.,
2018a). For example, the SARIMA model achieved the

lowest error on the pond temperature dataset. This suggests
that the dynamics of this dataset are more linear. However,
with the non-linear trends, amplitudes, and cyclic shapes in
the other datasets, the DLM and SARIMA models did not
perform as well the non-linear neural network-based mod-
els. It has however been shown that such linear statistical
models can outperform complex machine learning models
when the sample size is small (Cerqueira et al., 2019).

Of the deep neural network-based models, the TCN per-
formed the worst on several datasets. Bai et al. (2018)
suggest that the model is in a simplified form and improved
results may be possible by using a more advanced architec-
ture. Furthermore, the TCN is designed to perform dilated
convolutions over many samples. Of the datasets used in
this study, the maximum number of input samples was 48
for datasets with a period of 24 hours. This may be too few
to demonstrate the effectiveness of the TCN.

Several MASE results are above unity. In multi-step-ahead
forecasting, this does not necessarily imply that a forecast-
ing model produces results worse than the Naive model. In
the MASE calculation, Naive is produces one-step-ahead
forecasts with in-sample data provided for each previous
step. The forecasting model is computed out-of-sample.
That is, Naive has access to the ground-truth data in the
MASE calculation, whereas the forecasting model does not.

6.3. Model Comparison Box-Whisker Plots

Box-whisker plots of the results over all the forecasts in
each dataset’s test set are provided in Figure 5. ForecastNet
consistently produced small boxes with low median values.
The small boxes indicate that there is little variation in the
accuracy over the set of forecasts. This indicates some form
of robustness in the ForecastNet model. The low median
values indicate a high level of accuracy.
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Table 3. Average MASE and SMAPE (in brackets) of the models results over the test datasets. The last row indicates the sum of Borda
counts of the models over the datasets (a higher value indicates more points in the voting score). Boldface numbers highlight top results.

FN cFN FN2 cFN2 deepAR Seq2Seq Attention TCN MLP DLM SARIMA

Synth. 0.00 (1.5) 0.01 (1.7) 0.00 (1.3) 0.00 (1.4) 0.03 (2.3) 0.01 (1.7) 0.04 (2.8) 0.05 (3.0) 0.01 (1.6) 0.64 (23.0) 0.29 (11.7)
Weath. 0.46 (17.1) 0.40 (15.3) 0.46 (16.7) 0.31 (12.3) 0.46 (17.3) 0.43 (16.0) 0.37 (14.3) 0.47 (17.3) 0.47 (17.1) 0.52 (18.9) 0.61 (22.0)
Elect. 1.12 (12.5) 1.04 (11.9) 0.89 (10.9) 0.54 (6.7) 1.77 (18.2) 1.00 (11.7) 1.39 (14.7) 1.09 (12.9) 1.34 (15.4) 1.73 (19.1) 1.26 (15.1)
River 0.71 (24.1) 0.66 (23.6) 0.66 (25.2) 0.39 (15.4) 0.86 (28.7) 0.57 (21.9) 0.53 (19.4) 0.85 (30.5) 0.85 (30.3) 0.77 (26.8) 0.87 (29.5)
Traff. 2.23 (46.0) 1.95 (40.3) 1.44 (32.5) 0.82 (21.2) 2.01 (40.3) 1.78 (36.6) 1.94 (39.3) 2.20 (44.4) 2.36 (47.8) 2.40 (43.5) 2.32 (42.9)
Lake 1.42 (10.1) 1.61 (12.0) 1.58 (12.3) 1.69 (13.0) 1.61 (12.3) 1.73 (13.4) 1.56 (11.2) 2.03 (13.8) 1.57 (12.1) 1.95 (15.5) 1.69 (12.1)
DO 0.54 (6.1) 0.62 (7.2) 0.62 (6.9) 0.54 (6.2) 0.71 (8.2) 0.73 (8.6) 2.11 (26.5) 0.78 (9.1) 0.77 (8.6) 0.77 (8.7) 0.64 (7.0)
pH 1.41 (13.6) 1.23 (12.0) 1.26 (12.4) 1.01 (9.6) 2.64 (25.1) 1.70 (16.6) 1.42 (14.4) 1.35 (13.1) 1.90 (18.3) 1.29 (12.7) 1.68 (16.5)
Temp. 1.90 (9.0) 1.90 (10.0) 1.66 (8.5) 2.00 (10.7) 1.95 (9.8) 2.13 (10.6) 2.23 (11.4) 3.18 (14.2) 2.10 (9.7) 3.67 (18.4) 1.64 (7.0)
Ozone 0.72 (33.9) 0.78 (36.2) 0.69 (33.9) 0.79 (36.0) 1.03 (44.7) 1.50 (61.8) 0.58 (28.6) 0.69 (33.5) 0.66 (32.5) 0.76 (30.6) 0.89 (36.5)

Borda Count 74 76 90 90 43 57 65 42 51 31 41
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Figure 5. Box plot of the MASE over the set of forecasts produced
for each training dataset. The DLM and SARIMA boxes are
outside of the plot range for the synthetic dataset.

There was significant variation over the different models
in the synthetic dataset box-whisker plots. For this dataset,
the densely connected networks such as FN, FN2 and MLP
have small boxes. DeepAR had a large box which indicates
higher variation in the forecasts. This indicates that DeepAR
is less robust for this dataset.

The models generally perform well on the weather dataset.
This may be due to a more consistent seasonal amplitude
in this dataset compared with the other real-world datasets.
The lake and pH datasets have varying trends, amplitudes,
and seasonal shape resulting in higher errors than other

datasets. ForecastNet and the attention model seem to model
these variations better given their lower errors.

In datasets such as electricity, traffic, and pH, ForecastNet
produced low errors with small boxes indicating reliable
and accurate forecasts. Especially in the electricity and
traffic datasets, it is evident that increased model complexity
and removing the mixture density output results in lower
errors and a more robust model. The mixture density outputs
can reduce accuracy because the learning algorithm seeks
to simultaneously minimise two variables in the normal
distribution’s log likelihood function. This is opposed to
minimising a single variable in mean squared error loss
function used for a linear output layer.

7. Summary and Conclusion
In this study, ForecastNet is proposed as novel deep neural
architecture for multi-step-ahead time series forecasting. Its
architecture breaks from convention of structuring a model
around the RNN or CNN. The result is a model that is
time-variant compared with the RNN and CNN, which are
time-invariant.

We provide comparison over seven state-of-the-art deep
learning and statistical models for forecasting seasonal time
series data. The comparison is performed on 10 seasonal
time-series datasets selected from various domains. We
demonstrate that ForecastNet is both accurate and robust on
all datasets. It outperforms other models in terms of MASE
and SMAPE on 8 of the 10 datasets and is ranked as the
best performing model overall with Borda counts.

In future work, shortcut-connections within and between
hidden cells could be investigated. Furthermore, more work
into integrating self-attention into the model will provide
benefits relating to model interpretability. Lastly, by avoid-
ing parameter sharing to achieve a time-variant model, Fore-
castNet can require more memory. An investigation into
using memory reduction techniques (such as quantization)
could be explored.
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A. Additional Results
A.1. Forecast Plots

To illustrate forecasting ability, a plot of the forecasts for
each model on the river flow dataset is presented in Figure 6.
The uncertainty (standard deviation) is plotted for the FN,
cFN, deepAR, DLM, and SARIMA models.

As illustrated in Figure 6, the river flow data has a varying
amplitude and an irregular seasonal curve. The first peak
has a lower amplitude than the second and third peak. Fur-
thermore, the shape of each the seasonal cycle is unique. An
accurate model is one that is able to adapt to these changes
by learning the underlying dynamics which generate these
changes.

Despite the variations over seasonal cycles, cFN2 provided
highly accurate forecasts, where fine intricacies in the data
were forecast. In this example, the attention model also
produces an accurate forecast, however cFN2 outperforms
the attention model on this dataset. The DeepAR and the
sequence-to-sequence models provided more smooth fore-
casts. DeepAR has the advantage of providing uncertainty
with the forecast.

The DLM and SARIMA models forecast a curve that is
similar in form to the curve from the previous cycle. This
is expected as both of these models consider one cycle of
data in the past to compute the forecast. Furthermore, these
statistical models assume a linear trend, whereas the actual
trend is nonlinear and appears more stochastic in nature.
The nonlinear models are more capable of modelling the
nonlinear dynamics.
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Figure 6. Plots of the forecasts for each model on the river flow
dataset. The grey curve plots the sensor data and the red curve
plots the forecasts. The standard deviation for the relevant models
is plotted as the red shaded region.

A.2. Computational Complexity

To demonstrate the computational complexity of the mod-
els, their training times were considered. Each model was
trained on each dataset for 10 epochs and these epoch times
were logged. The results are presented in Table 4. To pro-
vide some independence from the platform on which the
models were trained, the results are presented as an average
epoch time of the particular model divided by the average
epoch time of the MLP. The results are thus represented as
a multiple of the epoch duration of the MLP.

The MLP had the simplest architecture and thus provided
the shortest epoch times. Second to the MLP are the FN2
and the TCN. These models required 5 to 7 times the amount
of time to train an epoch compared to the MLP. Note that
FN2 is ranked as a top model and also has the second lowest
median computation time, resulting in a highly attractive
model.

Using a density mixture output on ForecastNet significantly
increased the epoch time. This is evident when the duration
of FN is compared to FN2 and the duration of cFN is com-
pared to cFN2. However, even with increased computational
complexity, the median duration of cFN and cFN2 was less
than the sequence-to-sequence, attention, and deepAR mod-
els. The attention model in particular had a high epoch
duration due to its complex architecture. The results pro-
vide empirical evidence that ForecastNet provided reduced
computational complexity compared with the benchmark
models.

A.3. Vanishing Gradients

To demonstrate that ForecastNet is able to mitigate vanish-
ing gradients, it was compared with a deep MLP on the
synthetic dataset. The deep MLP was selected for this pur-
pose as it has no guard against vanishing gradients. The
MLP was configured with 40 inputs, 20 hidden layers, and
20 outputs. Similarly, ForecastNet was configured with 20
linear outputs and a single hidden layer in each cell. This
results in a total of 20 hidden layers, 20 outputs, and 40
inputs as for the deep MLP. Thus, the primary difference
between the models was that ForecastNet uses interleaved
outputs, whereas the deep MLP’s outputs are all located at
the output layer. Both models used the sigmoid activation
function with Xavier normal initialisation in hidden layers.
The models were trained over 10 epochs with a learning rate
of 10−4.

The absolute mean value of the weights for the first and last
hidden layers are plotted in the top graph of Figure 7. The
training losses are plotted in the bottom graph of Figure 7.
The gradient in the first layer of the MLP remained close
to zero over all 10 epochs. This indicates a vanishing gra-
dient problem. Furthermore, as indicated in the loss plot,
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Table 4. Average epoch duration over 10 epochs. The times are represented as a multiple of the epoch duration of the MLP for each
respective dataset.

FN cFN FN2 cFN2 deepAR Seq2Seq Attention TCN MLP

Synth. 12.62 36.84 5.21 32.48 39.38 36.68 69.60 5.04 1.00
Weath. 6.55 18.88 3.38 18.22 23.39 22.14 36.93 2.28 1.00
Elect. 15.07 77.90 6.09 74.79 48.26 45.60 101.55 13.96 1.00
River 7.05 18.63 3.67 17.52 22.61 21.18 35.83 2.85 1.00
Traff. 14.06 60.68 5.56 56.94 44.38 41.54 86.20 15.86 1.00
Lake 7.52 18.41 3.68 16.42 23.65 22.52 37.64 2.62 1.00
DO 17.41 46.64 6.61 39.28 47.29 44.70 88.71 8.96 1.00
pH 17.44 45.24 6.69 42.48 46.21 44.79 89.40 9.08 1.00
Temp. 16.97 48.62 6.57 41.41 47.27 44.39 88.32 8.94 1.00
Ozone 7.89 17.45 3.91 15.68 23.50 21.93 36.53 2.87 1.00

Median 13.34 41.04 5.38 35.88 41.88 39.11 77.90 6.99 1.00
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Figure 7. Gradient and loss plots for ForecastNet and a deep MLP.
Layer 1 of the MLP experiences vanishing gradients. The gradient
plot is cut-off at 0.6× 10−4

the model did not converge to an optimal solution. In com-
parison, the gradients of both layers in ForecastNet were
non-zero. This indicates that ForecastNet had mitigated
vanishing gradients. Furthermore, ForecastNet converged to
a more optimal solution compared to the deep MLP model.

B. Additional Model Details
A more detailed diagram of FN and cFN are provided in
Figure 8 and Figure 9 respectively.
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Figure 8. ForecastNet with a densely connected hidden cell struc-
ture as used in FN and FN2. The number of hidden neurons in
each layer is denoted by h.

C. Detailed Derivation of Interleaved Output
Chain Rule in Equation (7)

The outputs in ForecastNet are interleaved between hidden
cells. Consider an L-layered ForecastNet with a single
hidden neuron in the hidden cell and a single linear output
neuron as illustrated in Figure 10. The inputs are not shown
as they do not contribute to the backpropagated error across
hidden cells. For some layer l in this network, W [l] is
the weight matrix, b̄[l] is the bias vector, a[l] is the output
vector, and z[l] = W [l]Ta[l−1] + b̄[l]. Using the chain rule of
calculus, the derivative of the loss function L with respect
to the weights W [l] at layer l is given by

∂L

∂W [l]
=

∂L

∂a[l]
∂a[l]

∂W [l]

Layer l links to layers l + 1 and l + 2. Thus, the derivative
with respect to a[l] is expanded as follows

∂L

∂W [l]
=

(
∂L

∂z[l+1]
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+
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The term ∂L/∂z[l+1] is computed with respect to a target
value as layer l+1 is an output layer. Layer l+2 is a hidden
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Figure 9. ForecastNet with a CNN hidden cell structure as used in
cFN and cFN2. The number of filters, kernel size, padding, strides,
and number of hidden neurons are denoted by f, k, p, s, and h
respectively.
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Figure 10. Figure for the derivation of equation (7). The top row of nodes are hidden neurons. The bottom row of nodes are output
neurons.

layer. The term ∂L/∂a[l+2] is thus expanded as follows.
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Which is expanded into the sum
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Similarly, layer l + 3 is an output layer and layer l + 4 is a
hidden layer. The term ∂L/∂a[l+4] is expanded as follows
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This expansion process is continued until the final output
layer L is reached. The final result is
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