Skip to main content

Clustering-Based Deep Autoencoders for Network Anomaly Detection

  • Conference paper
  • First Online:
Book cover Future Data and Security Engineering (FDSE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12466))

Included in the following conference series:

Abstract

A novel hybrid approach between clustering methods and autoencoders (AEs) is introduced for detecting network anomalies in a semi-supervised manner. A previous work has developed regularized AEs, namely Shrink AE (SAE) and Dirac Delta Variational AE (DVAE) that learn to represent normal data into a very small region being close to the origin in their middle hidden layers (latent representation). This work based on the assumption that normal data points may share some common characteristics, so they can be forced to distribute in a small single cluster. In some scenarios, however, normal network data may contain data from very different network services, which may result in a number of clusters in the normal data. Our proposed hybrid model attempts to automatically discover these clusters in the normal data in the latent representation of AEs. At each iteration, an AE learns to map normal data into the latent representation while a clustering method tries to discover clusters in the latent normal data and force them being close together. The co-training strategy can help to reveal true clusters in normal data. When a querying data point coming, it is first mapped into the latent representation of the AE, and its distance to the closest cluster center can be used as an anomaly score. The higher anomaly score a data point has, the more likely it is anomaly. The method is evaluated with four scenarios in the CTU13 dataset, and experiments illustrate that the proposed hybrid model often out-performs SAE on three out of four scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Outlier analysis. Data Mining, pp. 237–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8_8

    Chapter  Google Scholar 

  2. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 291–294 (1988). https://doi.org/10.1007/BF00332918

  3. Bui, T.C., Cao, V.L., Hoang, M., Nguyen, Q.U.: A clustering-based shrink autoencoder for detecting anomalies in intrusion detection systems. In: Proceedings of the KSE, pp. 1–5. IEEE (2019)

    Google Scholar 

  4. Cao, V.L., Nicolau, M., McDermott, J.: A hybrid autoencoder and density estimation model for anomaly detection. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 717–726. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_67

    Chapter  Google Scholar 

  5. Cao, V.L., Nicolau, M., McDermott, J.: Learning neural representations for network anomaly detection. IEEE Trans. Cybern. 49(8), 3074–3087 (2018)

    Article  Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  7. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  8. Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122, 13–23 (2013)

    Article  Google Scholar 

  9. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection methods. Comput. Secur. 45, 100–123 (2014)

    Article  Google Scholar 

  10. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46145-0_17

    Chapter  Google Scholar 

  11. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Advances in Neural Information Processing Systems, pp. 3–10 (1994)

    Google Scholar 

  12. Japkowicz, N., Myers, C., Gluck, M.: A novelty detection approach to classification. In: IJCAI, pp. 518–523 (1995)

    Google Scholar 

  13. Phoha, V.V.: Internet Security Dictionary. Springer, Heidelberg (2007)

    Google Scholar 

  14. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA, p. 4. ACM (2014)

    Google Scholar 

  15. Song, C., Liu, F., Huang, Y., Wang, L., Tan, T.: Auto-encoder based data clustering. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41822-8_15

    Chapter  Google Scholar 

  16. Vu, L., Cao, V.L., Nguyen, Q.U., Nguyen, D.N., Hoang, D.T., Dutkiewicz, E.: Learning latent distribution for distinguishing network traffic in intrusion detection system. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Loi Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, V.Q., Nguyen, V.H., Le-Khac, NA., Cao, V.L. (2020). Clustering-Based Deep Autoencoders for Network Anomaly Detection. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. FDSE 2020. Lecture Notes in Computer Science(), vol 12466. Springer, Cham. https://doi.org/10.1007/978-3-030-63924-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63924-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63923-5

  • Online ISBN: 978-3-030-63924-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics