Skip to main content

Combining Support Vector Machines for Classifying Fingerprint Images

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12466))

Included in the following conference series:

Abstract

We propose to combine support vector machine (SVM) models learned from different visual features for efficiently classifying fingerprint images. Real datasets of fingerprint images are collected from students at the Can Tho University. The SVM algorithm learns classification models from the handcrafted features such as the scale-invariant feature transform (SIFT) and the bag-of-words (BoW) model, the histogram of oriented gradients (HoG), the deep learning of invariant features Xception, extracted from fingerprint images. Followed which, we propose to train a neural network for combining SVM models trained on these different visual features, making improvements of the fingerprint image classification. The empirical test results show that combining SVM models is more accurate than SVM models trained on any single visual feature type. Combining SVM-SIFT-BoW, SVM-HoG, SVM-Xception improves 11.17%, 14.07%, 10.83% classification accuracy of SVM-SIFT-BoW, SVM-HoG and SVM-Xception, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. https://www.tensorflow.org/

  2. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_40

    Chapter  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)

    Article  Google Scholar 

  4. Chollet, F., et al.: Keras (2015). https://keras.io

  5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016)

    Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods. Cambridge University Press, New York (2000)

    Book  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE Computer Society (2005)

    Google Scholar 

  8. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_6

    Chapter  Google Scholar 

  9. Do, T.-N., Lenca, P., Lallich, S.: Classifying many-class high-dimensional fingerprint datasets using random forest of oblique decision trees. Vietnam J. Comput. Sci. 2(1), 3–12 (2014). https://doi.org/10.1007/s40595-014-0024-7

    Article  Google Scholar 

  10. Do, T.-N., Pham, T.-P., Pham, N.-K., Nguyen, H.-H., Tabia, K., Benferhat, S.: Stacking of SVMs for classifying intangible cultural heritage images. In: Le Thi, H.A., Le, H.M., Pham Dinh, T., Nguyen, N.T. (eds.) ICCSAMA 2019. AISC, vol. 1121, pp. 186–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38364-0_17

    Chapter  Google Scholar 

  11. Engelsma, J.J., Cao, K., Jain, A.K.: Fingerprints: Fixed length representation via deep networks and domain knowledge. CoRR abs/1904.01099 (2019)

    Google Scholar 

  12. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(4), 1871–1874 (2008)

    MATH  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  14. ItSeez: Open source computer vision library (2015). https://github.com/itseez/opencv

  15. Jain, A.K., Feng, J., Nandakumar, K.: Fingerprint matching. IEEE Comput. 43(2), 36–44 (2010)

    Article  Google Scholar 

  16. Jain, A.K., Nandakumar, K., Ross, A.: 50 years of biometric research: accomplishments, challenges, and opportunities. Pattern Recogn. Lett. 79, 80–105 (2016)

    Article  Google Scholar 

  17. Kreßel, U.H.G.: Pairwise classification and support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 255–268. MIT Press, Cambridge (1999)

    Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  19. Li, F., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 20–26 June 2005, San Diego, CA, USA, pp. 524–531 (2005)

    Google Scholar 

  20. Lin, C.: A practical guide to support vector classification (2003)

    Google Scholar 

  21. Lowe, D.: Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  22. Lowe, D.: Distinctive image features from scale invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  23. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  24. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition, 2nd edn. Springer, London (2009). https://doi.org/10.1007/978-1-84882-254-2

    Book  MATH  Google Scholar 

  25. Minaee, S., Azimi, E., Abdolrashidi, A.: FingerNet: Pushing the limits of fingerprint recognition using convolutional neural network. CoRR abs/1907.12956 (2019)

    Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Sharma, V., Gool, L.V.: Image-level classification in hyperspectral images using feature descriptors, with application to face recognition. CoRR abs/1605.03428 (2016)

    Google Scholar 

  28. Shrein, J.M.: Fingerprint classification using convolutional neural networks and ridge orientation images. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (November 2017)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  30. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: 9th IEEE International Conference on Computer Vision, ICCV 2003, Nice, France, 14–17 October 2003, pp. 1470–1477 (2003)

    Google Scholar 

  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR abs/1512.00567 (2015)

    Google Scholar 

  32. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0

    Book  MATH  Google Scholar 

  33. Wolpert, D.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work has received support from the College of Information Technology, Can Tho University. The authors would like to thank very much the Big Data and Mobile Computing Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Nghi Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, TP., Tran-Nguyen, MT., Tran, MT., Do, TN. (2020). Combining Support Vector Machines for Classifying Fingerprint Images. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. FDSE 2020. Lecture Notes in Computer Science(), vol 12466. Springer, Cham. https://doi.org/10.1007/978-3-030-63924-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63924-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63923-5

  • Online ISBN: 978-3-030-63924-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics