Skip to main content

Research on Simulation Method of 5G Location Based on Channel Modeling

  • Conference paper
  • First Online:
Book cover 6GN for Future Wireless Networks (6GN 2020)

Abstract

It is of great significance to study 5G positioning as the series of new technologies introduced by 5G not only meeting the needs of communication but also improve the positioning accuracy and help achieving indoor and outdoor seamless navigation and positioning. However, 5G base stations and devices are far from popular, and the standards of 5G positioning has not fully formed. Thus, simulation is the main research method for studying 5G positioning. Accordingly, we propose a 5G positioning simulation experiment scheme and give its flow chart. The implementation ideas and the specific processes of the three consisted parts of the simulation experiment including scene generation, signal propagation simulation and position estimation are introduced. Furthermore, we carry out some experiments to verify the 5G simulation environment established by the scheme and make a simple discussion about the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, P., Tao, Y.Z., Zhang, Z.: Survey of several key technologies for 5G. J. Commun. (2016)

    Google Scholar 

  2. Qian, Z., Wang, X.: Reviews of D2D technology for 5G communication net-works. J. Commun. 7, 1–14 (2016)

    Article  Google Scholar 

  3. Zhao, Y.D., Wei, Z.Q., Feng, Z.Y., et al.: Fusion architecture and key technologies of satellite navigation and 5G mobile communication. Telecom Eng. Tech. Stand. 30(1), 48–53 (2017)

    Google Scholar 

  4. Han, S., Gong, Z., Meng, W., et al.: Future alternative positioning, navigation, and timing techniques: a survey. IEEE Wirel. Commun., 2–9 (2016)

    Google Scholar 

  5. Guo, W., Song, W., Niu, X., et al.: Foundation and performance evaluation of real-time GNSS high-precision one-way timing system. GPS Solut. 23(1) (2019)

    Google Scholar 

  6. Wymeersch, H., Seco-Granados, G., Destino, G., et al.: 5G mmWave positioning for vehicular networks. IEEE Wirel. Commun. 24(6), 80–86 (2017)

    Article  Google Scholar 

  7. Del Peral-Rosado, J.A., Raulefs, R., Lopez-Salcedo, J.A., et al.: Survey of cellular mobile radio localization methods: from 1G to 5G. IEEE Commun. Surv. Tutor., 1 (2017)

    Google Scholar 

  8. Cui, X., Gulliver, T.A., Song, H., et al.: Real-time positioning based on millimeter wave device to device communications. IEEE Access (2016)

    Google Scholar 

  9. del Peral-Rosado, J.A., et al.: Whitepaper on new localization methods for 5G wireless systems and the Internet-of-Things, 1–27 (2018)

    Google Scholar 

  10. Shahmansoori, A., Seco-Granados, G., Wymeersch, H.: Survey on 5G positioning. In: Nurmi, J., Lohan, E.-S., Wymeersch, H., Seco-Granados, G., Nykänen, O. (eds.) Multi-Technology Positioning, pp. 165–196. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50427-8_9

    Chapter  Google Scholar 

  11. Werner, J.: Directional antenna system-based DoA/RSS estimation, localization and tracking in future wireless networks: algorithms and performance analysis. Tampere University of Technology. Publication, vol. 1350. Tampere University of Technology (2015)

    Google Scholar 

  12. Koivisto, M., Costa, M., Werner, J., et al.: Joint device positioning and clock synchronization in 5G Ultra-dense networks. IEEE Trans. Wirel. Commun. PP(99), 2866–2881 (2016)

    Google Scholar 

  13. Shahmansoori, A., Garcia, G.E., Destino, G., et al.: Position and orientation estimation through millimeter wave MIMO in 5G systems. IEEE Trans. Wirel. Commun. 17(3), 1822–1835 (2017)

    Article  Google Scholar 

  14. Shahmansoori, A., Garcia, G.E., Destino, G., et al.: 5G position and orientation estimation through millimeter wave MIMO (2017)

    Google Scholar 

  15. Dammann, A., Jost, T., Raulefs, R., et al.: Optimizing waveforms for positioning in 5G. In: IEEE International workshop on Signal Processing advances in Wireless Communications. IEEE (2016)

    Google Scholar 

  16. Abu-Shaban, Z., Zhou, X., Abhayapala, T., et al.: Error bounds for uplink and downlink 3D localization in 5G mmWave systems. IEEE Trans. Wirel. Commun., 1 (2018)

    Google Scholar 

  17. Li, H., Han, L., Duan, R., et al.: Analysis of the synchronization requirements of 5G and corresponding solutions. IEEE Commun. Stand. Mag. 1(1), 52–58 (2017)

    Article  Google Scholar 

  18. Begusic, S., et al.: Wireless indoor positioning relying on observations of received power and mean delay. In: 2013 IEEE International Conference on Communications Workshops (ICC), pp. 74–78, June 2013

    Google Scholar 

  19. Witrisal, K., Leitinger, E., Hinteregger, S., Meissner, P.: Bandwidth scaling and diversity gain for ranging and positioning in dense multipath channels. IEEE Wirel. Commun. Lett. 5(4), 396–399 (2016)

    Article  Google Scholar 

  20. METIS: D6.1 Simulation guidelines, October 2013. https://www.metis2020.com/wp-content/uploads/deliverables/METISD6.1v1.pdf

  21. Meinilä, J., Kyösti, P., Jämsä, T., et al.: WINNER II channel models. Radio Technologies and Concepts for IMT-Advanced (2008)

    Google Scholar 

  22. GPP TR 36.873: Study on 3D channel model for LTE (release 12) (2015). http://www.3gpp.org/dynareport/36873.htm

  23. Rappaport, T.S., Sun, S., Shafi, M.: Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications (2017)

    Google Scholar 

  24. Shu, S., Rappaport, T., Shafi, M., et al.: Propagation models and performance evaluation for 5G millimeter-wave bands. IEEE Trans. Veh. Technol. PP(99), 1 (2018)

    Google Scholar 

  25. Shu, S., Maccartney, G.R., Rappaport, T.S.: A novel millimeter-wave channel simulator and applications for 5G wireless communications (2017)

    Google Scholar 

  26. GPP TS 38.455: NG-RAN NR Positioning Protocol A (NRPPa)

    Google Scholar 

  27. GPP TS 38.305: NG Radio Access Network (NG-RAN); Stage 2 functional specification of User Equipment (UE) positioning in NG-RAN

    Google Scholar 

  28. METIS: D1.4 Channel models February 2015. https://www.metis2020.com/wp-content/uploads/METISD1.4v3.pdf

  29. Rappaport, T.S., Sun, S., Shafi, M.: Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5. IEEE (2017)

    Google Scholar 

  30. Samimi, M.K., Rappaport, T.S.: 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Trans. Microw. Theory Tech. 64(7), 2207–2225 (2016). http://ieeexplore.ieee.org/document/7501500/

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China (2018YFC0809804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-fei Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, C., Yu, J., Guo, Wf., Deng, Y., Liu, Jn. (2020). Research on Simulation Method of 5G Location Based on Channel Modeling. In: Wang, X., Leung, V.C.M., Li, K., Zhang, H., Hu, X., Liu, Q. (eds) 6GN for Future Wireless Networks. 6GN 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-030-63941-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63941-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63940-2

  • Online ISBN: 978-3-030-63941-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics