Skip to main content

Deep Point Cloud Odometry: A Deep Learning Based Odometry with 3D Laser Point Clouds

  • Conference paper
  • First Online:
  • 1325 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12557))

Abstract

Deep learning-based methods have attracted more attention to the pose estimation research that plays a crucial role in location and navigation. How to directly predict the pose from the point cloud in a data-driven way remains an open question. In this paper, we present a deep learning-based laser odometry system that consists of a network pose estimation and a local map pose optimization. The network consumes the original 3D point clouds directly and predicts the relative pose from consecutive laser scans. A scan-to-map optimization is utilized to enhance the robustness and accuracy of the poses predicted by the network. We evaluated our system on the KITTI odometry dataset and verified the effectiveness of the proposed system.

Y. Zhuang—This work was supported in part by the National Natural Science Foundation of China under grant 61973049 and U1913201.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  2. Cho, Y., Kim, G., Kim, A.: DeepLO: geometry-aware deep lidar odometry. arXiv preprint arXiv:1902.10562 (2019)

  3. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361. IEEE (2012)

    Google Scholar 

  5. Grupp, M.: EVO: Python package for the evaluation of odometry and SLAM (2017). https://github.com/MichaelGrupp/evo

  6. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6555–6564 (2017)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Li, J., Zhan, H., Chen, B.M., Reid, I., Lee, G.H.: Deep learning for 2D scan matching and loop closure. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 763–768. IEEE (2017)

    Google Scholar 

  9. Li, Q., Chen, S., Wang, C., Li, X., Wen, C., Cheng, M., Li, J.: LO-Net: deep real-time lidar odometry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8473–8482 (2019)

    Google Scholar 

  10. Li, R., Wang, S., Long, Z., Gu, D.: UnDeepVO: monocular visual odometry through unsupervised deep learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7286–7291. IEEE (2018)

    Google Scholar 

  11. Magnusson, M.: The three-dimensional normal-distributions transform: an efficient representation for registration, surface analysis, and loop detection. Ph.D. thesis, Örebro universitet (2009)

    Google Scholar 

  12. Nicolai, A., Skeele, R., Eriksen, C., Hollinger, G.A.: Deep learning for laser based odometry estimation. In: RSS workshop Limits and Potentials of Deep Learning in Robotics, vol. 184 (2016)

    Google Scholar 

  13. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  14. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)

    Google Scholar 

  15. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  16. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems, Seattle, WA , vol. 2, p. 435 (2009)

    Google Scholar 

  17. Serafin, J., Grisetti, G.: NICP: dense normal based point cloud registration. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 742–749. IEEE (2015)

    Google Scholar 

  18. Shan, T., Englot, B.: LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4758–4765. IEEE (2018)

    Google Scholar 

  19. Stoyanov, T., Magnusson, M., Andreasson, H., Lilienthal, A.J.: Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations. Int. J. Robot. Res. 31(12), 1377–1393 (2012)

    Article  Google Scholar 

  20. Velas, M., Spanel, M., Hradis, M., Herout, A.: CNN for IMU assisted odometry estimation using velodyne LiDAR. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 71–77. IEEE (2018)

    Google Scholar 

  21. Wang, S., Clark, R., Wen, H., Trigoni, N.: End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks. Int. J. Robot. Res. 37(4–5), 513–542 (2018)

    Article  Google Scholar 

  22. Wong, J.M., et al.: SegICP: integrated deep semantic segmentation and pose estimation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5784–5789. IEEE (2017)

    Google Scholar 

  23. Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47

    Chapter  Google Scholar 

  24. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1851–1858 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Liu, Y., Yan, F., Zhuang, Y. (2020). Deep Point Cloud Odometry: A Deep Learning Based Odometry with 3D Laser Point Clouds. In: Han, M., Qin, S., Zhang, N. (eds) Advances in Neural Networks – ISNN 2020. ISNN 2020. Lecture Notes in Computer Science(), vol 12557. Springer, Cham. https://doi.org/10.1007/978-3-030-64221-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64221-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64220-4

  • Online ISBN: 978-3-030-64221-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics