
ContourRend: A Segmentation Method for Improving
Contours by Rendering *

Junwen Chen1,2, Yi Lu1, Yaran Chen1, Dongbin Zhao1, and Zhonghua Pang2

1State Key Laboratory of Management and Control for Complex Systems
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 101408, China
2Key Laboratory of Fieldbus Technology and Automation of Beijing,

North China University of Technology, Beijing, 100144, China

Abstract. A good object segmentation should contain clear contours and com-
plete regions. However, mask-based segmentation can not handle contour fea-
tures well on a coarse prediction grid, thus causing problems of blurry edges.
While contour-based segmentation provides contours directly, but misses con-
tours' details. In order to obtain fine contours, we propose a segmentation meth-
od named ContourRend which adopts a contour renderer to refine segmentation
contours. And we implement our method on a segmentation model based on
graph convolutional network (GCN). For the single object segmentation task on
cityscapes dataset, the GCN-based segmentation contour is used to generate a
contour of a single object, then our contour renderer focuses on the pixels
around the contour and predicts the category at high resolution. By rendering
the contour result, our method reaches 72.41% mean intersection over union
(IoU) and surpasses baseline Polygon-GCN by 1.22%.

Keywords: Image segmentation, Convolution neural networks, Contour ren-
derer, Graph convolutional network

1 Introduction

Convolutional neural network (CNN) methods bring various breakthroughs to the
field of computer vision, improve the accuracy in the tasks of image classification
[1][2], image classification and location [3], object detection [4], image segmentation
[5], and even surpass the human performance. More and more image processing tasks
begin to rely on the rich features provided by CNN.

In image segmentation task, semantic segmentation predicts the label of every pix-
el. And CNN can also easily provide the encoding of segmentation information for
kinds of usages. Full convolution network (FCN) [6] uses a fully convolutional struc-

* This work is supported partly by National Key Research and Development Plan under Grant

No.2017YFC1700106, and National Natural Science Foundation of China under Grant
61673023, Beijing University High-Level Talent Cross-Training Project (Practical Training
Plan)

ture for segmentation and builds a skip architecture to connect semantic information
in different depth of the convolution layers. In FCN, the features 8×, 16×, 32× smaller
than the input are used by the transposed convolution to predict mask result. U-Net
[7] is also a fully convolutional network and has a symmetric architecture in encoding
and decoding feature maps. U-Net concatenates the feature maps with the same reso-
lution in the encoder and decoder and uses transposed convolution to restore these
features to output mask results at a higher resolution. In instance segmentation task,
segmentation focuses on distinguishing between pixel regions of different objects.
Mask R-CNN [8] as the baseline of this task, adds a CNN segmentation branch on
Faster R-CNN [9]. Faster R-CNN provides the feature map of the object in a 14×14
grid for the CNN branch, and the CNN branch predicts a 28×28 mask result.

Although these methods utilize the excellent feature extraction ability of the con-
volution operator, the feature maps with 8 times or 16 times smaller than the input are
too coarse for segmentation. While upsampling or resizing these coarse masks to the
results with the same size of the input images, there are blurry edges on the mask
results' contours which limits the segmentation performance. To reduce this limita-
tion, some methods focus on modifying the convolutional operator and pooling opera-
tor to lessen the down-sampling effect in the mask-based models. PSPNet [10] uses
pyramid pooling module to fuse the global context information and reduces false
positive results. DeepLab family [11][12][13] and DenseASPP [14] use dilated con-
volution to expand the size of receptive field and improves the resolution of segmen-
tation.

To avoid down-sampling effect in the mask-based models, some contour-based
segmentation models that distinguish the object by the contour formed by the contour
vertices are proposed. These models can obtain clear contours at the same resolution
as the input image by determining the coordinates of the contour vertices. PolarMask
[15] learns to predict dense distance regression of contour vertices from the object's
center position in a polar coordinate. Polygon-RNN [16] and Polygon-RNN++ [17]
utilize RNN to find contour vertices one by one. Curve-GCN [18] implements graph
convolutional network (GCN) to obtain the coordinates of the contour vertices by
regression. Curve-GCN can simultaneously adjust the coordinates of a fixed number
of vertices from the initial contour to the target.

Although the above contour-based segmentation methods avoid the effect by
down-sampling and directly restore the resolution, they are unable to provide complex
edges due to the limitation of the fixed number of contour vertices. To this end, we
propose a segmentation method to reconsider the segmentation process. We focus on
improve the contour-based segmentation models by adding a contour renderer, so we
call our method ContourRend. Rendering on the segmentation results has been
learned in the work PointRend [19], which using mask scores to select the unclear
points around the contour. Different from PointRend, the contour renderer of our
method directly obtains rendering points by offsetting the contour vertices from the
contour-based model, and directly renders on the mask with the same resolution as the
input image.

Our contributions in this paper are two folds,

1. We propose a segmentation method to improve the accuracy of contour-based
segmentation models by adding a contour renderer, named ContourRend.

2. The experimental results of ContourRend on the single object segmentation task
with cityscapes dataset show the improvement both in training and testing. Con-
tourRend reaches 72.41% mean IoU, and surpasses baseline Polygon-GCN by
1.22%.

2 Method

Our method ContourRend consists of a contour generator and a contour renderer,
completes the segmentation problem in two steps as shown in Fig.1. First, the contour
generator generates an initial contour prediction; then, the contour renderer optimizes
the contour prediction in pixel level. The contour generator is a contour-based seg-
mentation models which provides the backbone feature map and the initial contour
vertex for the contour renderer. The contour renderer optimizes the initial contour like
rendering and outputs the mask results with refined edges. Section 3.1 introduces the
architecture and the function of the generator, and section 3.2 details how the contour
render module refines the initial contour.

Backbone
feature map

Contour
results

Mask
results

Contour Renderer

Sampling points’
features

Sampling
points

MLP

Pasting

Refined
mask

(224, 224)

Contour
Generator

Rendering
points

Input image
(224, 224)

Fig. 1. Inference process of ContourRend. The contour generator provides contour results and
the backbone feature map for the contour renderer, and the contour renderer optimizes the

contour results by using a MLP to classify the sampled points around the contour.

2.1 Contour generator

Contour generator aims to generate the backbone feature map and contour vertices for
contour renderer. And we build our contour generator according to Tian's GCN-based
segmentation model [20] which is similar to Curve-GCN. Graph neural network
(GNN) is powerful at dealing with graph structure data and exploring the potential
relationship, and using GCN in the mask-based model could improve the features'
expression [21] and the result's accuracy [22]. Tian and Curve-GCN utilize GCN to
predict contour vertices, and Tian's model implements DeepLab-ResNet to provide
the backbone feature map. Tian uses the model on magnetic resonance images and
outperforms several state-of-the-art segmentation methods. Fig. 2. shows the architec-

ture of our contour generator. The DeepLab-ResNet provides a 512×28×28 backbone
feature map, and two branches of the networks consist of a 3×3 convolution layer and
a fully connected layer after the backbone, respectively. The two branches provide a
1×28×28 edge feature map and a 1×28×28 vertex feature map, and concatenate the
backbone feature map. Before the GCN modules, a 3×3 convolution layers processes
the 514×28×28 feature map provided by the backbone and the two branches, and
outputs the 320×28×28 feature map.

DeepLab-
ResNet

Input
(3, 224, 224)

(1, 28, 28)Edge
branch

Vertex
branch

(512, 28, 28)
3×3 Conv

Sampling
node features

(320, 28, 28)

Initial contour
(60, 2)

GCN
(60, 322) (60, 2) Adjusted

contour

Sampling
node features

Sampling
node features

GCN
Adjusted
contour

GCN
Contour
results

(514, 28, 28)

Backbone
feature maps

(1, 28, 28)

Fig. 2. Contour generator's architecture.

The GCN module use a fixed topology graph to represent the contour as same as the
Curve-GCN. The relationship between nodes and edges can be regarded as a ring
composed of nodes. Each node is connected to two adjacent nodes on the left side and
two on the right side. Fig. 3. illustrates the graph by an example with eight nodes.

Fig. 3. Example of GCN's fixed topology graph. Every node connects with other four adjacent
points.

Node features are composed of corresponding coordinate positions on the contour and
the contour vertex features extracted from the 320×28×28 feature map, the contour
vertex features are extracted by bilinear interpolation according to their 0~1 positions.
After GCN propagates and aggregates nodes' features on the graph, the output of the
nodes are offsets of the contour vertices. By scaling result points' coordinates from
0~1 to the input size, the contour generator simply obtains contour segmentation re-
sults with the same resolution as the input. And the contour generator is trained by
point matching loss (MLoss) according to Curve-GCN. During our training, we calcu-
late the L2 loss, and the predicted contour vertices and the target vertices are both
sampled to K points in a clockwise order. And the p and p' are the sets of K predicted

points and K target points represented by the x and y coordinates from 0 to 1. The loss
function is shown as:

 𝐿୫ୟ୲ୡ୦  ,p p =
 0, , 1
min

j K   

1

% 2
0

K

i j i K
i

p p





 (1)

where pi represents the i th predicted points, p(j+i)%K
ᇱ represents the matching point of

pi while the index offset is j , the % indicates modulus operation, and ቛpi −

p
(௝+i)%Kቛ

2
 indicates the L2 distance between pi and p(j+i)%K

ᇱ .

Finally, the contour generator provides 60 contour vertices and the 512×28×28
backbone feature map for the contour renderer.

2.2 Contour renderer

The contour renderer samples points based on the contour vertices provided by the
contour generator, extracts the points' features by bilinear interpolation according to
their positions, then predicts the category scores of these sampled points by a multi-
layer perceptron (MLP) consisted of a 1×1 convolution layer, and finally gets the
refine mask result by pasting the sample point categories to the initial contour.

For the process of sampling points, we develop two methods to select points for the
contour renderer during training and testing respectively. During the training, contour
vertices are used to represent segmentation results, as opposed to the case of mask
scores, we can naturally get random points around edges by offsetting the contour
results. The output of the contour generator is a fixed number of points in the range
0~1. We randomly offset the x and y coordinates by -0.09~0.09 to generate n offset
points for each output points. Then we sample the points' targets from the mask repre-
sented by contour results and use cross entropy loss as the loss of the renderer. The
contour generator and the contour renderer both use points' features, and the renderer
loss can be viewed as an auxiliary loss. Fig. 4. shows the process of the contour ren-
derer during the training. During the testing, there is no need to calculate the gradient,
so more points are used to obtain a dense prediction. For every contour vertex, an
N×N (N ≥ 1) grid is generated, and the contour vertex is located at the center of the
grid. N2 points evenly cover a s×s (s ∈ [0, 1]) square area with the gap of s (N − 1)⁄
in both x and y coordinates.

Sampling points’
features

1×1 Conv

Ground truth mask
(2, 224, 224)

Sampling
points (60×n, 2)

(60×n, 512)

Cross entropy
loss

Loss
(60×n, 2)

Contour results
(60, 2)

Backbone
feature map
(512, 28, 28)

Sampling points’
targets

Fig. 4. Contour renderer in training. The ground truth mask has two categories (background and
foreground).

Then, the renderer optimizes segmentation results by reclassifying single points
around the output contour vertices of the generator. Specifically, we input (60×N×N,
512) point features to the MLP, and MLP predicts the (60×N×N, 2) category scores
(background and foreground scores) of the corresponding points. We change the con-
tour result of the contour generator into a mask result with the same size as input, and
paste the contour renderer's generated points to the mask. Thus, we restore the high
resolution while retain the complex edge's details. Fig. 5. shows the process of the
contour renderer during the testing.

1×1 Conv

Mask
(224, 224)

Sampling
points

(60×N×N, 512)

Pasting
Refined

mask
(60×N×N, 2)

Contour results
(60, 2)

Backbone
feature map
(512, 28, 28)

Sampling points’
features

(60×N×N, 2)

Fig. 5. Contour renderer in testing.

3 Experiments

We conduct a contrast experiment and an ablation experiment to verify the ad-
vantages of our method and test the contour renderer's effect in single object segmen-
tation task on cityscapes dataset. In the contrast experiment, we train our Con-
tourRend and compare with other contour-based segmentation methods. Furthermore,
we train our contour generator separately as an ablation experiment to explore the
contour renderer's effect.

3.1 Dataset

For single object segmentation task, we use the cityscapes dataset and have the same
data preprocessing as Curve-GCN [18]. The input is a 224×224 single object image
with background, and the object is in the center of the image. The dataset is divided
into train set 45984 images, validation set 3936 images and test set 9784 images. And
our contour generator's goal is to match the target contour vertices of the single ob-
ject, our contour renderer's goal is to correctly classify the sampled points' categories
(background and foreground).

3.2 Implementation

For the contour renderer, we randomly sample 3 (n = 3) rendering points around
every vertex of the contour generator's result in training process, and use a 1×1 con-
volution layer to classify the 512 dimension features to 2 categories (background and
foreground). In testing process, we select 15×15 (N = 15) grid rendering points with
the size of 0.09×0.09 (s = 0.09), and if the foreground's scores of the renderer's result
points are higher than 0.3, the points are considered as the foreground points.

We train the entire network end-to-end on four GTX 1080 Ti GPUs with batch size
of 8, set the learning rate begin with 3e-4, and 0.1 learning rate decay every 10
epochs. And we use 1e-5 weight decay [23] instead of dropout to prevent overfitting.

3.3 Results

3.3.1 Contrast experiment
In the contrast experiment, we train our ContourRend and compare the IoU by cat-

egories and the mean IoU with other contour-based methods, Polygon-RNN++ and
Polygon-GCN. Table 1 shows the results. Lines 1, 2 refer to Polygon-RNN++ [17],
Line 3 refers to Curve-GCN's Polygon-GCN [18]. Our contour generator is similar to
Curve-GCN's Polygon-GCN, so we choose Polygon-GCN as our experiment's base-
line. From the results, our method surpasses the Polygon-GCN by 1.22%.

Table 1. Results of the contrast experiment.

Methods Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

Polygon-
RNN++[17]

57.38 75.99 68.45 59.65 76.31 58.26 75.68 65.65 67.17

Polygon-RNN
++(with BS)[17]

63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38

Polygon-GCN 18 63.68 81.42 72.25 61.45 79.88 60.86 79.84 70.17 71.19

CountourRend
(ours)

65.18 80.90 74.16 64.40 78.26 63.30 80.69 72.36 72.41

Fig. 6. shows some of the results to visualize the renderer's effect. The first column

is the 224×224 input image, the second column is the contour result of the contour
generator which is trained separately, the third column is the ground truth contour, the
fourth column is the contour result of the contour generator in ContourRend which is

trained with the contour renderer, the fifth column is the mask result predicted by the
contour renderer in ContourRend, the sixth column is the ground truth mask and
which we use to calculate IoU, the last column is a visualization of the contour
renderer's output. For the man in the first line's pictures, the separately trained contour
generator can not fit the man's feet and back well (column 2), and the contour
generator trained in ContourRend predicts a better contour result (column 4), then
after the contour renderer, the man's shoes can also be segmented (column 5).
Besides, ContourRend can also predict the women's bag in line 2 column 4, 5 and the
truck's tyre in line 3 column 4, 5. ContourRend improves the original contour
generator's performance and also refines the details by the contour renderer.

Input image
Contour generator’s

contour result
ContourRend’s
contour result

Ground truth
contour

Contour renderer’s
mask result

Ground truth
mask

Contour renderer’s
rendering points

Fig. 6. Contrast experiment results. Column 1: Input image, column 2: Contour generator's
contour result (trained separately), column 3: Ground truth contour, column 4: ContourRend's
contour result, column 5: Rendered mask, column 6: Ground truth mask, column 7: Contour

Renderer's point results. ContourRend improves the segmentation result by refining the details
around the contour.

3.3.2 Ablation experiment
In the ablation experiment, we train the contour generator separately and calculate

the IoU by converting the contour result to mask result, then split the contour genera-
tor in ContourRend which has been trained in the contrast experiment and also calcu-
late the IoU by it's contour result. Table 2. line 1 shows the result of the contour gen-
erator which is not trained with our contour renderer, and line 2 is the result of Con-
tourRend's contour generator which is trained with our contour renderer in the con-
trast experiment, line 3 is ContourRend's result after the contour renderer improves
the contour. From the results of line 1 and line 2, the contour renderer improves the
contour generator's mean IoU by 2.67% in the training, and compare with the line 1
and line 3, ContourRend makes 7.16% improvement on the mean IoU by improving
the contour in the testing. According to the ablation experiment, our method improves
both the contour-based model's accuracy in the training and testing.

Table 2. Results of the ablation experiment.

Methods Bicycle Bus Person Train Truck Motorcycle Car Rider Mean
Contour

Generator
57.74 73.71 66.76 56.52 71.70 56.14 75.42 64.02 65.25

ContourRend-
ablation

59.69 76.67 69.93 59.77 75.14 57.03 77.19 67.91 67.92

ContourRend 65.18 80.90 74.16 64.40 78.26 63.30 80.69 72.36 72.41

The contour renderer can improve the accuracy during training, because the
renderer resamples the segmented pixels and makes the model focus on the object's
contour. This phenomenon has also led to a conjecture that the evenly participation of
all pixels in the original image in the training may cause computational waste and
even lead to the decline of segmentation accuracy. The renderer loss reset the weights
of the pixels to participate the segmentation which improves the performance of the
baseline model. This can deduce that the pixels around contour play more important
role in segmentation than other pixels.

4 Conclusion

In order to tackle the problem of blurry edges in mask-based segmentation models'
results and improve the accuracy of contour-based segmentation models, we propose
a segmentation method by combining a contour-based segmentation model and a
contour renderer. In the single object segmentation task on cityscapes dataset, our
method reaches 72.41% mean IoU and surpasses Polygon-GCN by 1.22%. And the
proposed contour renderer enhanced contour-based segmentation mechanism is also
effective to improve the performance of other kinds of contour based segmentation
methods, as PolarMask and Curve-GCN.

References

1. Krizhevsky, Alex, et al. "ImageNet classification with deep convolutional neural net-
works." Advances in Neural Information Processing Systems. 2012.

2. Dongbin Zhao, et al. “Deep reinforcement learning with visual attention for vehicle classi-
fication,” IEEE Trans. Cognitive and Developmental Systems, 9(4): 356-367, 2017.

3. Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-
scale image recognition." International Conference on Learning Representations. 2015.

4. Yaran Chen, et al. “Multi-task learning for dangerous object detection in autonomous driv-
ing”, Information Sciences, 432: 559-571, 2018.

5. He, Kaiming, et al. "Deep residual learning for image recognition." IEEE Conference on
Computer Vision and Pattern Recognition. 2016.

6. Long, Jonathan, et al. "Fully convolutional networks for semantic segmentation." IEEE
Conference on Computer Vision and Pattern Recognition. 2015.

7. Ronneberger, et al. "U-net: Convolutional networks for biomedical image segmentation."
International Conference on Medical Image Computing and Computer-assisted Interven-
tion. Springer, Cham, 2015.

8. He, Kaiming, et al. "Mask R-CNN." IEEE International Conference on Computer Vision.
2017.

9. Ren, Shaoqing, et al. "Faster R-CNN: towards real-time object detection with region pro-
posal networks." Advances in Neural Information Processing Systems. 2015.

10. Zhao, Hengshuang, et al. "Pyramid scene parsing network." IEEE Conference on Comput-
er Vision and Pattern Recognition. 2017.

11. Chen, Liang-Chieh, et al. "Semantic image segmentation with deep convolutional nets and
fully connected CRFS." International Conference on Learning Representations. 2015.

12. Chen, Liang-Chieh, et al. "Rethinking Atrous convolution for semantic image segmenta-
tion." arXiv preprint arXiv:1706.05587. 2017.

13. Chen, Liang-Chieh, et al. "Encoder-decoder with Atrous separable convolution for seman-
tic image segmentation." European Conference on Computer Vision. 2018.

14. Yang, Maoke, et al. "DenseASPP for semantic segmentation in street scenes." IEEE Con-
ference on Computer Vision and Pattern Recognition. 2018.

15. Xie, Enze, et al. "Polarmask: single shot instance segmentation with polar representation."
IEEE Conference on Computer Vision and Pattern Recognition. 2020.

16. Castrejon, Lluis, et al. "Annotating object instances with a Polygon-RNN." IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2017.

17. Acuna, David, et al. "Efficient interactive annotation of segmentation datasets with Poly-
gon-RNN++." IEEE conference on Computer Vision and Pattern Recognition. 2018.

18. Ling, Huan, et al. "Fast interactive object annotation with Curve-GCN." IEEE Conference
on Computer Vision and Pattern Recognition. 2019.

19. Kirillov, Alexander, et al. "PointRend: image segmentation as rendering." IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2020.

20. Tian, Zhiqiang, et al. "Graph‐convolutional‐network‐based interactive prostate segmenta-
tion in MR images." Medical Physics. 2020.

21. Lu, Yi, et al. "CNN-G: convolutional neural network combined with graph for image seg-
mentation with theoretical analysis." IEEE Trans. Cognitive and Developmental Systems.
2020.

22. Lu, Yi, et al. "Graph-FCN for image semantic segmentation." International Symposium on
Neural Networks. Springer, Cham, 2019.

23. Loshchilov, Ilya, and Frank Hutter. "Decoupled weight decay regularization." Internation-
al Conference on Learning Representations. 2019.

