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Abstract. A good object segmentation should contain clear contours and com-
plete regions. However, mask-based segmentation can not handle contour fea-
tures well on a coarse prediction grid, thus causing problems of blurry edges. 
While contour-based segmentation provides contours directly, but misses con-
tours' details. In order to obtain fine contours, we propose a segmentation meth-
od named ContourRend which adopts a contour renderer to refine segmentation 
contours. And we implement our method on a segmentation model based on 
graph convolutional network (GCN). For the single object segmentation task on 
cityscapes dataset, the GCN-based segmentation contour is used to generate a 
contour of a single object, then our contour renderer focuses on the pixels 
around the contour and predicts the category at high resolution. By rendering 
the contour result, our method reaches 72.41% mean intersection over union 
(IoU) and surpasses baseline Polygon-GCN by 1.22%. 

Keywords: Image segmentation, Convolution neural networks, Contour ren-
derer, Graph convolutional network 

1 Introduction 

Convolutional neural network (CNN) methods bring various breakthroughs to the 
field of computer vision, improve the accuracy in the tasks of image classification 
[1][2], image classification and location [3], object detection [4], image segmentation 
[5], and even surpass the human performance. More and more image processing tasks 
begin to rely on the rich features provided by CNN. 

In image segmentation task, semantic segmentation predicts the label of every pix-
el. And CNN can also easily provide the encoding of segmentation information for 
kinds of usages. Full convolution network (FCN) [6] uses a fully convolutional struc-
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ture for segmentation and builds a skip architecture to connect semantic information 
in different depth of the convolution layers. In FCN, the features 8×, 16×, 32× smaller 
than the input are used by the transposed convolution to predict mask result. U-Net 
[7] is also a fully convolutional network and has a symmetric architecture in encoding 
and decoding feature maps. U-Net concatenates the feature maps with the same reso-
lution in the encoder and decoder and uses transposed convolution to restore these 
features to output mask results at a higher resolution. In instance segmentation task, 
segmentation focuses on distinguishing between pixel regions of different objects. 
Mask R-CNN [8] as the baseline of this task, adds a CNN segmentation branch on 
Faster R-CNN [9]. Faster R-CNN provides the feature map of the object in a 14×14 
grid for the CNN branch, and the CNN branch predicts a 28×28 mask result. 

Although these methods utilize the excellent feature extraction ability of the con-
volution operator, the feature maps with 8 times or 16 times smaller than the input are 
too coarse for segmentation. While upsampling or resizing these coarse masks to the 
results with the same size of the input images, there are blurry edges on the mask 
results' contours which limits the segmentation performance. To reduce this limita-
tion, some methods focus on modifying the convolutional operator and pooling opera-
tor to lessen the down-sampling effect in the mask-based models. PSPNet [10] uses 
pyramid pooling module to fuse the global context information and reduces false 
positive results. DeepLab family [11][12][13] and DenseASPP [14] use dilated con-
volution to expand the size of receptive field and improves the resolution of segmen-
tation. 

To avoid down-sampling effect in the mask-based models, some contour-based 
segmentation models that distinguish the object by the contour formed by the contour 
vertices are proposed. These models can obtain clear contours at the same resolution 
as the input image by determining the coordinates of the contour vertices. PolarMask 
[15] learns to predict dense distance regression of contour vertices from the object's 
center position in a polar coordinate. Polygon-RNN [16] and Polygon-RNN++ [17] 
utilize RNN to find contour vertices one by one. Curve-GCN [18] implements graph 
convolutional network (GCN) to obtain the coordinates of the contour vertices by 
regression. Curve-GCN can simultaneously adjust the coordinates of a fixed number 
of vertices from the initial contour to the target. 

Although the above contour-based segmentation methods avoid the effect by 
down-sampling and directly restore the resolution, they are unable to provide complex 
edges due to the limitation of the fixed number of contour vertices. To this end, we 
propose a segmentation method to reconsider the segmentation process. We focus on 
improve the contour-based segmentation models by adding a contour renderer, so we 
call our method ContourRend. Rendering on the segmentation results has been 
learned in the work PointRend [19], which using mask scores to select the unclear 
points around the contour. Different from PointRend, the contour renderer of our 
method directly obtains rendering points by offsetting the contour vertices from the 
contour-based model, and directly renders on the mask with the same resolution as the 
input image. 

Our contributions in this paper are two folds, 



1. We propose a segmentation method to improve the accuracy of contour-based 
segmentation models by adding a contour renderer, named ContourRend. 

2. The experimental results of ContourRend on the single object segmentation task 
with cityscapes dataset show the improvement both in training and testing. Con-
tourRend reaches 72.41% mean IoU, and surpasses baseline Polygon-GCN by 
1.22%. 

2 Method 

Our method ContourRend consists of a contour generator and a contour renderer, 
completes the segmentation problem in two steps as shown in Fig.1. First, the contour 
generator generates an initial contour prediction; then, the contour renderer optimizes 
the contour prediction in pixel level. The contour generator is a contour-based seg-
mentation models which provides the backbone feature map and the initial contour 
vertex for the contour renderer. The contour renderer optimizes the initial contour like 
rendering and outputs the mask results with refined edges. Section 3.1 introduces the 
architecture and the function of the generator, and section 3.2 details how the contour 
render module refines the initial contour. 
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Fig. 1. Inference process of ContourRend. The contour generator provides contour results and 
the backbone feature map for the contour renderer, and the contour renderer optimizes the 

contour results by using a MLP to classify the sampled points around the contour. 

2.1 Contour generator 

Contour generator aims to generate the backbone feature map and contour vertices for 
contour renderer. And we build our contour generator according to Tian's GCN-based 
segmentation model [20] which is similar to Curve-GCN. Graph neural network 
(GNN) is powerful at dealing with graph structure data and exploring the potential 
relationship, and using GCN in the mask-based model could improve the features' 
expression [21] and the result's accuracy [22]. Tian and Curve-GCN utilize GCN to 
predict contour vertices, and Tian's model implements DeepLab-ResNet to provide 
the backbone feature map. Tian uses the model on magnetic resonance images and 
outperforms several state-of-the-art segmentation methods. Fig. 2. shows the architec-



ture of our contour generator. The DeepLab-ResNet provides a 512×28×28 backbone 
feature map, and two branches of the networks consist of a 3×3 convolution layer and 
a fully connected layer after the backbone, respectively. The two branches provide a 
1×28×28 edge feature map and a 1×28×28 vertex feature map, and concatenate the 
backbone feature map. Before the GCN modules, a 3×3 convolution layers processes 
the 514×28×28 feature map provided by the backbone and the two branches, and 
outputs the 320×28×28 feature map. 
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Fig. 2. Contour generator's architecture. 

The GCN module use a fixed topology graph to represent the contour as same as the 
Curve-GCN. The relationship between nodes and edges can be regarded as a ring 
composed of nodes. Each node is connected to two adjacent nodes on the left side and 
two on the right side. Fig. 3. illustrates the graph by an example with eight nodes. 

 

Fig. 3. Example of GCN's fixed topology graph. Every node connects with other four adjacent 
points. 

Node features are composed of corresponding coordinate positions on the contour and 
the contour vertex features extracted from the 320×28×28 feature map, the contour 
vertex features are extracted by bilinear interpolation according to their 0~1 positions. 
After GCN propagates and aggregates nodes' features on the graph, the output of the 
nodes are offsets of the contour vertices. By scaling result points' coordinates from 
0~1 to the input size, the contour generator simply obtains contour segmentation re-
sults with the same resolution as the input. And the contour generator is trained by 
point matching loss (MLoss) according to Curve-GCN. During our training, we calcu-
late the L2 loss, and the predicted contour vertices and the target vertices are both 
sampled to K points in a clockwise order. And the p and p' are the sets of K predicted 



points and K target points represented by the x and y coordinates from 0 to 1. The loss 
function is shown as: 
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Finally, the contour generator provides 60 contour vertices and the 512×28×28 
backbone feature map for the contour renderer. 

2.2 Contour renderer 

The contour renderer samples points based on the contour vertices provided by the 
contour generator, extracts the points' features by bilinear interpolation according to 
their positions, then predicts the category scores of these sampled points by a multi-
layer perceptron (MLP) consisted of a 1×1 convolution layer, and finally gets the 
refine mask result by pasting the sample point categories to the initial contour. 

For the process of sampling points, we develop two methods to select points for the 
contour renderer during training and testing respectively. During the training, contour 
vertices are used to represent segmentation results, as opposed to the case of mask 
scores, we can naturally get random points around edges by offsetting the contour 
results. The output of the contour generator is a fixed number of points in the range 
0~1. We randomly offset the x and y coordinates by -0.09~0.09 to generate n offset 
points for each output points. Then we sample the points' targets from the mask repre-
sented by contour results and use cross entropy loss as the loss of the renderer. The 
contour generator and the contour renderer both use points' features, and the renderer 
loss can be viewed as an auxiliary loss. Fig. 4. shows the process of the contour ren-
derer during the training. During the testing, there is no need to calculate the gradient, 
so more points are used to obtain a dense prediction. For every contour vertex, an 
N×N (N ≥ 1) grid is generated, and the contour vertex is located at the center of the 
grid. N2 points evenly cover a s×s (s ∈ [0, 1]) square area with the gap of s (N − 1)⁄  
in both x and y coordinates. 
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Fig. 4. Contour renderer in training. The ground truth mask has two categories (background and 
foreground). 

Then, the renderer optimizes segmentation results by reclassifying single points 
around the output contour vertices of the generator. Specifically, we input (60×N×N, 
512) point features to the MLP, and MLP predicts the (60×N×N, 2) category scores 
(background and foreground scores) of the corresponding points. We change the con-
tour result of the contour generator into a mask result with the same size as input, and 
paste the contour renderer's generated points to the mask. Thus, we restore the high 
resolution while retain the complex edge's details. Fig. 5. shows the process of the 
contour renderer during the testing. 
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Fig. 5. Contour renderer in testing. 

3 Experiments 

We conduct a contrast experiment and an ablation experiment to verify the ad-
vantages of our method and test the contour renderer's effect in single object segmen-
tation task on cityscapes dataset. In the contrast experiment, we train our Con-
tourRend and compare with other contour-based segmentation methods. Furthermore, 
we train our contour generator separately as an ablation experiment to explore the 
contour renderer's effect. 



3.1 Dataset 

For single object segmentation task, we use the cityscapes dataset and have the same 
data preprocessing as Curve-GCN [18]. The input is a 224×224 single object image 
with background, and the object is in the center of the image. The dataset is divided 
into train set 45984 images, validation set 3936 images and test set 9784 images. And 
our contour generator's goal is to match the target contour vertices of the single ob-
ject, our contour renderer's goal is to correctly classify the sampled points' categories 
(background and foreground). 

3.2 Implementation 

For the contour renderer, we randomly sample 3 (n = 3) rendering points around 
every vertex of the contour generator's result in training process, and use a 1×1 con-
volution layer to classify the 512 dimension features to 2 categories (background and 
foreground). In testing process, we select 15×15 (N = 15) grid rendering points with 
the size of 0.09×0.09 (s = 0.09 ), and if the foreground's scores of the renderer's result 
points are higher than 0.3, the points are considered as the foreground points. 

We train the entire network end-to-end on four GTX 1080 Ti GPUs with batch size 
of 8, set the learning rate begin with 3e-4, and 0.1 learning rate decay every 10 
epochs. And we use 1e-5 weight decay [23] instead of dropout to prevent overfitting. 

3.3 Results 

3.3.1 Contrast experiment 
In the contrast experiment, we train our ContourRend and compare the IoU by cat-

egories and the mean IoU with other contour-based methods, Polygon-RNN++ and 
Polygon-GCN. Table 1 shows the results. Lines 1, 2 refer to Polygon-RNN++ [17], 
Line 3 refers to Curve-GCN's Polygon-GCN [18]. Our contour generator is similar to 
Curve-GCN's Polygon-GCN, so we choose Polygon-GCN as our experiment's base-
line. From the results, our method surpasses the Polygon-GCN by 1.22%. 

Table 1. Results of the contrast experiment. 

Methods Bicycle Bus Person Train Truck Motorcycle Car Rider Mean 

Polygon-
RNN++[17] 

57.38 75.99 68.45 59.65 76.31 58.26 75.68 65.65 67.17 

Polygon-RNN 
++(with BS)[17] 

63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38 

Polygon-GCN 18 63.68 81.42 72.25 61.45 79.88 60.86 79.84 70.17 71.19 

CountourRend 
(ours) 

65.18 80.90 74.16 64.40 78.26 63.30 80.69 72.36 72.41 

 
Fig. 6. shows some of the results to visualize the renderer's effect. The first column 

is the 224×224 input image, the second column is the contour result of the contour 
generator which is trained separately, the third column is the ground truth contour, the 
fourth column is the contour result of the contour generator in ContourRend which is 



trained with the contour renderer, the fifth column is the mask result predicted by the 
contour renderer in ContourRend, the sixth column is the ground truth mask and 
which we use to calculate IoU, the last column is a visualization of the contour 
renderer's output. For the man in the first line's pictures, the separately trained contour 
generator can not fit the man's feet and back well (column 2), and the contour 
generator trained in ContourRend predicts a better contour result (column 4), then 
after the contour renderer, the man's shoes can also be segmented (column 5). 
Besides, ContourRend can also predict the women's bag in line 2 column 4, 5 and the 
truck's tyre in line 3 column 4, 5. ContourRend improves the original contour 
generator's performance and also refines the details by the contour renderer. 
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Fig. 6. Contrast experiment results. Column 1: Input image, column 2: Contour generator's 
contour result (trained separately), column 3: Ground truth contour, column 4: ContourRend's 
contour result, column 5: Rendered mask, column 6: Ground truth mask, column 7: Contour 

Renderer's point results. ContourRend improves the segmentation result by refining the details 
around the contour. 

3.3.2 Ablation experiment 
In the ablation experiment, we train the contour generator separately and calculate 

the IoU by converting the contour result to mask result, then split the contour genera-
tor in ContourRend which has been trained in the contrast experiment and also calcu-
late the IoU by it's contour result. Table 2. line 1 shows the result of the contour gen-
erator which is not trained with our contour renderer, and line 2 is the result of Con-
tourRend's contour generator which is trained with our contour renderer in the con-
trast experiment, line 3 is ContourRend's result after the contour renderer improves 
the contour. From the results of line 1 and line 2, the contour renderer improves the 
contour generator's mean IoU by 2.67% in the training, and compare with the line 1 
and line 3, ContourRend makes 7.16% improvement on the mean IoU by improving 
the contour in the testing. According to the ablation experiment, our method improves 
both the contour-based model's accuracy in the training and testing. 



Table 2. Results of the ablation experiment. 

Methods Bicycle Bus Person Train Truck Motorcycle Car Rider Mean 
Contour 

Generator 
57.74 73.71 66.76 56.52 71.70 56.14 75.42 64.02 65.25 

ContourRend- 
ablation 

59.69 76.67 69.93 59.77 75.14 57.03 77.19 67.91 67.92 

ContourRend 65.18 80.90 74.16 64.40 78.26 63.30 80.69 72.36 72.41 

The contour renderer can improve the accuracy during training, because the 
renderer resamples the segmented pixels and makes the model focus on the object's 
contour. This phenomenon has also led to a conjecture that the evenly participation of 
all pixels in the original image in the training may cause computational waste and 
even lead to the decline of segmentation accuracy. The renderer loss reset the weights 
of the pixels to participate the segmentation which improves the performance of the 
baseline model. This can deduce that the pixels around contour play more important 
role in segmentation than other pixels. 

4 Conclusion 

In order to tackle the problem of blurry edges in mask-based segmentation models' 
results and improve the accuracy of contour-based segmentation models, we propose 
a segmentation method by combining a contour-based segmentation model and a 
contour renderer. In the single object segmentation task on cityscapes dataset, our 
method reaches 72.41% mean IoU and surpasses Polygon-GCN by 1.22%. And the 
proposed contour renderer enhanced contour-based segmentation mechanism is also 
effective to improve the performance of other kinds of contour based segmentation 
methods, as PolarMask and Curve-GCN. 
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