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Abstract. Software-intensive systems can have thousands of interde-
pendent configuration options across different subsystems. Feature mod-
els allow designers to organize the configuration space by describing con-
figuration options using interdependent features: a feature is a name
representing some functionality and each software variant is identified
by a set of features. Different representations of feature models have
been proposed in the literature. In this paper we focus on the proposi-
tional representation (which works well in practice) and the extensional
representation (which has been recently shown well suited for theoretical
investigations). We provide an algebraic and a propositional character-
ization of feature model operations and relations, and we formalize the
connection between the two characterizations as monomorphisms from
lattices of propositional feature models to lattices of extensional fea-
tures models. This formalization sheds new light on the correspondence
between the extensional and the propositional representations of feature
models. It aims to foster the development of a formal framework for
supporting practical exploitation of future theoretical developments on
feature models and software product lines.

1 Introduction

Software-intensive systems can have thousands of interdependent configuration
options across different subsystems. In the resulting configuration space, different
software variants can be obtained by selecting among these configuration options
and accordingly assembling the underlying subsystems. The interdependencies
between options are dictated by corresponding interdependencies between the
underlying subsysems [7].

Feature models [8] allow developers to organize the configuration space
and facilitate the construction of software variants by describing configuration
options using interdependent features [23]: a feature is a name representing some
functionality, a set of features is called a configuration, and each configuration
that fulfills the interdependencies expressed by the feature model, called a prod-
uct, identifies a software variant. Software-intensive systems can comprise thou-
sands of features and several subsystems [11,12,24,33]. The design, development
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and maintenance of feature models with thousands of features can be simplified
by representing large feature models as sets of smaller interdependent feature
models [11,29] that we call fragments. To this aim, several representations of
feature models have been proposed in the literature (see, e.g., Batory [8] and
Sect. 2.2 of Apel et al. [7]) and many approaches for composing feature models
from fragments have been investigated [3,6,13,28,32].

In this paper we focus on the propositional representation (which works
well in practice [10,27,34]) and the extensional representation (which has been
recently shown well suited for theoretical investigations [25,31]). We investi-
gate the correspondence between the formulation for these two representations
of feature model operators and relations. The starting point of this investiga-
tion is a novel partial order between feature models, that we call the feature
model fragment relation. It is induced by a notion of feature model composition
that has been used to model industrial-size configuration spaces [25,31], such as
the configuration space of the Gentoo source-based Linux distribution [20], that
consists of many configurable packages (the March 1st 2019 version of the Gen-
too distribution comprises 671617 features spread across 36197 feature models).
We exploit this partial order to provide an algebraic characterization of feature
model operations and relations. Then, we provide a propositional characteriza-
tions of them and formalize the connection between the two characterizations
as monomorphisms from lattices of propositional feature models to lattices of
extensional features models.

The remainder of this paper is organized as follows. In Sect. 2 we recollect
the necessary background and introduce the feature model fragment relation. In
Sect. 3 we present the algebraic characterization of feature model operations and
relations, and in Sect. 4 we present the propositional characterization of the oper-
ations and relations together with a formal account of the connection between
the two characterizations. We discuss related work in Sect. 5, and conclude the
paper in Sect. 6 by outlining planned future work.

2 Background and Concept

We first recall the propositional and the extensional representations of feature
models (in Sect. 2.1) together with the feature model composition operation (in
Sect. 2.2), then we formalize the notion of feature model fragment in terms of a
novel partial order relation on feature models (in Sect. 2.3).

2.1 Feature Model Representations

In this paper, we focus on the propositional and on the extensional representa-
tions of feature models (see, e.g., Batory [8] and Sect. 2.3 of Apel et al. [7] for a
discussion about other representations).

Definition 1 (Feature model, propositional representation). A proposi-
tional feature model Φ is a pair (F , φ) where F is a set of features and φ is a
propositional formula whose variables x are elements of F :
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φ = x | φ ∧ φ | φ ∨ φ | φ → φ | ¬φ | false | true

Its products are the set of features p ⊆ F such that φ is satisfied by assigning
value true to the variables x in p and false to the variables in F \ p.

Example 1 (A propositional representation of the glibc feature model). Gentoo
packages can be configured by selecting features (called use flags in Gentoo),
which may trigger dependencies or conflicts between packages. Version 2.29 of
the glibc library, that contains the core functionalities of most Linux systems, is
provided by the package sys-libs/glibc-2.29-r2 (abbreviated to glibc in the sequel).
This package has many dependencies, including (as expressed in Gentoo’s nota-
tion):

doc? ( sys−apps/texinfo )
vanilla?( !sys−libs/timezone−data )

This dependency expresses that glibc requires the texinfo documentation gen-
erator (provided by any version of the sys-apps/texinfo package) whenever the
feature doc is selected and if the feature vanilla is selected, then glibc con-
flicts with any version of the time zone database (as stated with the !sys-
libs/timezone-data constraint). These dependencies can be expressed by a feature
model (Fglibc, φglibc) where

Fglibc = {glibc, texinfo, tzdata, glibc:doc, glibc:v}
φglibc = glibc ∧ (glibc:doc → texinfo) ∧ (glibc:v → (¬tzdata))

Here, the feature glibc represents the glibc package; texinfo represents any sys-
apps/texinfo package; tzdata represents any version of the sys-libs/timezone-data
package; and glibc:doc (resp. glibc:v) represents the glibc’s doc (resp. vanilla) use
flag.

The propositional representation of feature models works well in prac-
tice [10,27,34]. Recently, Schröter et al. [31] pointed out that using an extensional
representation of feature models simplifies the presentation of feature model con-
cepts.

Definition 2 (Feature model, extensional representation). An exten-
sional feature model M is a pair (F ,P) where F is a set of features and P ⊆ 2F

a set of products.

Example 2 (An extensional representation of the glibc feature model). Let 2S

denote the powerset of S. The feature model of Example 1 can be given an
extensional representation Mglibc = (Fglibc,Pglibc) where Fglibc is the same as in
Example 1 and

Pglibc = {{glibc}, {glibc, texinfo}, {glibc, tzdata}, {glibc, texinfo, tzdata}} ∪
{{glibc, glibc:doc, texinfo}, {glibc, glibc:doc, texinfo, tz-data}} ∪
{{glibc, glibc:v}, {glibc, glibc:v, texinfo}} ∪
{{glibc, glibc:doc, glibc:v, texinfo}}
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In the description of Pglibc, the first line contains products with glibc but none of
its use flags are selected, so texinfo and tz-data can be freely installed; the second
line contains products with the use flag doc selected in glibc, so a package of sys-
apps/texinfo is always required; the third line contains products with the use
flag vanilla selected in glibc, so no package of sys-libs/timezone-data is allowed;
finally, the fourth line contains products with both glibc’s use flags selected, so
sys-apps/texinfo is mandatory and sys-libs/timezone-data forbidden.

The following definition introduces the extensional representation of the
empty feature model and of the void feature models.

Definition 3 (Empty feature model and void feature models). The
empty feature model, denoted M∅ = (∅, {∅}), has no features and has just the
empty product ∅. A void feature model is a feature model that has no products,
i.e., of the form (F , ∅) for some set of features F .

2.2 Feature Model Composition

Complex software systems, like the Gentoo source-based Linux distribution [20],
often consist of many interdependent configurable packages [24–26]. The configu-
ration options of each package can be represented by a feature model. Therefore,
configuring two packages in such a way that they can be installed together cor-
responds to finding a product in the composition of their associated feature
models. As pointed out by Lienhardt et al. [25], in the propositional representa-
tion of feature models this composition corresponds to logical conjunction: the
composition of two feature models (F1, φ1) and (F2, φ2) is the feature model
(F1 ∪ F2, φ1 ∧ φ2). Lienhardt et al. [25] also claimed that in the extensional
representation of feature models this composition corresponds to the binary oper-
ator • of Schröter et al. [31], which combines the products sets in way similar to
the join operator from relational algebra [14].

Definition 4 (Feature model composition). The composition of two feature
models M1 = (F1,P1) and M2 = (F2,P2), denoted M1 • M2, is the feature
model (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈ P2, p ∩ F2 = q ∩ F1}).

As proved in [16,17], the composition operator • is associative and com-
mutative, with M∅ as identity element (i.e., M • M∅ = M). Note that
(F1,P1) • (F2, ∅) = (F1 ∪ F2, ∅).
Example 3 (Composing glibc and gnome-shell feature models). Let us consider
another important package of the Gentoo distribution: gnome-shell, a core com-
ponent of the Gnome Desktop environment. Version 3.30.2 of gnome-shell is pro-
vided by the package gnome-base/gnome-shell-3.30.2-r2 (abbreviated to g-shell in
the sequel), and its dependencies include the following statement:

networkmanager?( sys−libs/timezone−data )
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This dependency expresses that g-shell requires any version of the time zone
database when the feature networkmanager (abbreviated to g-shell:nm in the
sequel) is selected.

The propositional representation of this dependency can be captured by the
feature model (Fg-shell, φg-shell), where

Fg-shell = {g-shell, tzdata, g-shell:nm} φg-shell = g-shell ∧ (g-shell:nm → tzdata)

The corresponding extensional representation of this feature model is Mg-shell =
(Fg-shell, Pg-shell), where:

Pg-shell ={{g-shell}, {g-shell, tzdata}} ∪ {{g-shell, tzdata, g-shell:nm}}

Here, the first line contains products with g-shell but none of its use flags are
selected: tzdata can be freely selected; and the second line is the product where
g-shell:nm is also selected and tzdata becomes mandatory.

The propositional representation of the composition is the feature model
(Ffull, φfull), where

Ffull = Fglibc ∪ Fg-shell = {glibc, texinfo, tzdata, g-shell, glibc:doc, glibc:v, g-shell:nm}
φfull = φglibc ∧ φg-shell = (glibc ∧ ((glibc:doc → texinfo) ∧ (glibc:v → (¬tz-data)))

∧ (g-shell ∧ (g-shell:nm → tzdata))

The extensional representation of the composition is the feature model Mfull = Mglibc •
Mg-shell = (Ffull, Pfull) where

Pfull = {{glibc, g-shell} ∪ p | p ∈ 2{texinfo, tzdata}} ∪
{{glibc, glibc:doc, texinfo, g-shell} ∪ p | p ∈ 2{tzdata}} ∪
{{glibc, glibc:v, g-shell} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, g-shell, g-shell:nm, tzdata} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, glibc:doc, glibc:v, texinfo, g-shell}} ∪
{{glibc, glibc:doc, texinfo, g-shell, g-shell:nm, tzdata}}

Here, the first line contains the products where both glibc and g-shell are
installed, but without use flags selected, so all optional package can be freely
selected; the second line contains the products with the glibc’s use flag doc
selected, so sys-apps/texinfo becomes mandatory; the third line contains the
products with the glibc’s use flag vanilla selected, so sys-libs/timezone-data is
forbidden; the fourth line contains the products with the g-shell’s use flag net-
workmanager, so sys-libs/timezone-data is mandatory; the fifth line contains the
product with glibc’s both use flags selected and the sixth line contains the prod-
uct with glibc’s use flag doc and g-shell’s use flag networkmanager are selected.

2.3 The Feature Model Fragment Relation

The notion of feature model composition induces the definition of the notion of
feature model fragment as a binary relation between feature models.
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Definition 5 (Feature model fragment relation). A feature model M0 is
a fragment of a feature model M, denoted as M0 ≤ M1, whenever there exists
a feature model M′ such that M0 • M′ = M1.

For instance, we have (by definition) that Mg-shell ≤ (Mg-shell • Mglibc). It is
worth observing that, as illustrated by the following example, some combination
of features that are allowed in the members of the composition might be no
longer available in the result of the composition.

Example 4 (Composing glibc and libical feature models). Consider for instance
the version 3.0.8 of the library libical in Gentoo. Its feature model contains the
following constraint (as expressed in Gentoo notation):
berkdb? ( sys−libs/db ) sys−libs/timezone−data

This dependency expresses that libical requires the db library whenever the
feature berkdb is selected and requires the package sys-libs/timezone-data to be
installed. These dependencies can be extensionally expressed by a feature model
Mlibical = (Flibical,Plibical) where

Flibical = {libical, berkdb, sys-libs/db, tzdata}
Plibical = {{libical, tzdata}, {libical, tzdata, berkdb, sys-libs/db}}

Composing the feature model of glibc and libical gives the feature model Mc =
(Fc,Pc) where Fc = Fglibc ∪ Flibical and:

Pc = {{glibc, libical, tzdata} ∪ p | p ∈ 2{texinfo, sys-libs/db}} ∪
{{glibc, glibc:doc, texinfo, libical, tzdata} ∪ p | p ∈ 2{sys-libs/db}} ∪
{{glibc, libical, berkdb, sys-libs/db, tzdata} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, glibc:doc, texinfo, libical, berkdb, sys-libs/db, tzdata}}

Here, the first line contains the products where both glibc and libical are installed,
but without use flags selected, so only the annex package timezone-data is manda-
tory; the second line contains the products with the glibc’s use flag doc selected,
so sys-apps/texinfo becomes mandatory; the third line contains the products
with the libical’s use flag berkdb, so sys-libs/db becomes mandatory; finally, the
fourth line contains the product with all optional features of both glibc and libical
selected.

It is easy to see from the constraint, and also from the extensional repre-
sentation, that combining glibc and libical makes the feature glibc:v dead (i.e.,
not selectable): when composed, the feature models interact and not all com-
binations of products are available. Feature incompatibilities such as this are a
normal occurrence in many product lines (such as the linux kernel) but have
two negative properties: first, it means that some features that are stated to be
optional (i.e., can be freely selected or not by the user) actually are not optional
in some cases, depending on some other packages being selected or not; second, it
means that some packages cannot be installed at the same time because of their
dependencies: consider for instance a package that requires the feature glibc:v
being selected, that package is not compatible with libical.
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3 Algebraic Characterization of Feature Models

In Sect. 3.1, we recall some relevant algebraic notions. In Sect. 3.2, we show that
the feature model fragment relation induces a lattice of feature models where
the join operation is feature model composition. Then, in Sect. 3.3, we show
that the feature model fragment relation generalizes the feature model interface
relation [31] and we provide some more algebraic properties.

3.1 A Recollection of Algebraic Notions

In this section we briefly recall the notions of lattice, bounded lattice and Boolean
algebra (see, e.g., Davey and Priestley [18] for a detailed presentation). An
ordered lattice is a partially ordered set (P,�) such that, for every x, y ∈ P , both
the least upper bound (lub) of {x, y}, denoted sup{x, y} = min{a | x, y ≤ a}, and
the greatest lower bound (glb) of {x, y}, denoted inf{x, y} = max{a | a ≤ x, y},
are always defined.

An algebraic lattice is an algebraic structure (L,�,) where L is non-empty
set equipped with two binary operations � (called join) and  (called meet)
which satisfy the following.

– Associative laws: x � (y � z) = (x � y) � z, x  (y  z) = (x  y)  z.
– Commutative laws: x � y = y � x, x  y = y  x.
– Absorption laws: x � (x  y) = x, x  (x � y) = x.
– Idempotency laws: x � x = x, x � x = x.

As known, the two notions of lattice are equivalent (Theorem 2.9 and 2.10
of [18]). In particular, given an ordered lattice (P,�) with the operations
x � y = sup{x, y} and x  y = inf{x, y}, the following three statements are
equivalent (Theorem 2.8 of [18]):

x � y, x � y = y, x  y = x.

A bounded lattice is a lattice that contains two elements ⊥ (the lattice’s
bottom) and � (the lattice’s top) which satisfy the following law: ⊥ � x � �.
Let L be a bounded lattice, y ∈ L is a complement of x ∈ L if x  y = ⊥ and
x � y = �. If x has a unique complement, we denote this complement by x̄.

A distributive lattice is a lattice which satisfies the following distributive law:
x  (y � z) = (x  y)� (x  z). In a bounded distributive lattice the complement
(whenever it exists) is unique (see [18, Section 4.13]).

A Boolean lattice (a.k.a. Boolean algebra) L is a bounded distributive lattice
such that each x ∈ L has a (necessarily unique) complement x̄ ∈ L.

3.2 Lattices of Feature Models

Although (to the best of our knowledge) only finite feature models are relevant in
practice, in our theoretical development (in order to enable a better understand-
ing of the relation between the extensional and the propositional representations)
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we consider also feature models with infinitely many features and products. The
following definition introduces a notation for three different sets of extensional
feature models (see Definition 2) over a given set of features.

Definition 6 (Sets of extensional feature models over a set of features).
Let X be a set of features. We denote:

– E(X) the set of the extensional feature models (F ,P) such that F ⊆ X;
– Efin(X) the subset of the finite elements of E(X), i.e., (F ,P) such that F ⊆fin

X; and
– Eeql(X) the subset of elements of E(X) that have exactly the features X, i.e.,

(F ,P) such that F = X.

Note that, if X has infinitely many elements then Efin(X) has infinitely many
elements too. Instead, if X is finite then E(X) and Efin(X) coincide and have a
finite number of elements.

In order to simplify the presentation, P |Y is used to denote {p ∩ Y | p ∈ P}
where P is a set of products and Y is a set of features.

Lemma 1 (Two criteria for the feature model fragment relation). Given
a set X, for all M1 = (F1,P1) and M2 = (F2,P2) in E(X), the following
statements are equivalent:

i) M1 ≤ M2

ii) M1 • M2 = M2

iii) F1 ⊆ F2 and P1 ⊇ P2 |F1

Proof i) ⇒ ii). It is straightforward to check that M • M = M, for all M. Then,
by definition of ≤ (Definition 5) there is M′ ∈ E(X) such that M2 = M1 • M′.
Thus,

M1 • M2 = M1 • (M1 • M′) = (M1 • M1) • M′ = M1 • M′ = M2.

ii) ⇒ iii). By definition of • (Definition 4), it is clear from the hypothesis
that F1 ⊆ F2. Moreover, P2 = {p ∪ q | p ∈ P1, q ∈ P2, p ∩ F2 = q ∩ F1}
immediately implies that P2 = {q | p ∈ P1, q ∈ P2, p = q ∩ F1}, which in turn
implies P2 |F1⊆ P1.
iii) ⇒ i). By using the hypothesis, we have (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈
P2, p ∩ F2 = q ∩ F1}) = (F2,P2), i.e. M1 • M2 = M2. This implies, by
definition of ≤, that M1 ≤ M2. �
Lemma 2 (The operator • on Eeql(X)). Given two feature models M1 =
(X,P1) and M2 = (X,P2) in Eeql(X), we have that: M1 • M2 = (X,P1 ∩ P2).

Proof According to the definition of • we have:
M1 • M2 = (X, {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 = p2}) = (X,P1 ∩ P2). �
Theorem 1 (Lattices of feature models over a set of features). Given a
set X and two feature models M1 = (F1,P1),M2 = (F2,P2) ∈ E(X), we define:
M1 � M2 = (F1 ∩ F2, P1 |F2 ∪ P2 |F1), and M1 = (F1, 2F1 \ P1). Then:
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1. (E(X),≤) is a bounded lattice with join •, meet �, bottom M∅ = (∅, {∅}) and
top (X, ∅).

2. If X is an infinite set then Efin(X) is a sublattice of E(X) with the same
bottom and no top.

3. Eeql(X) is a sublattice of E(X) and it is a Boolean lattice with bottom (X, 2X),
same top of E(X), and complement .̄

Proof. Let first prove that ≤ is a partial order. Let M1 ≤ M2 ≤ M3.

– Reflexivity. In E(X) and Efin(X) holds, because M1 • M∅ = M1. In Eeql(X)
holds, because M1 • (X, 2X) = M1. Clearly, M∅ belongs to Eeql(X) only
when X = ∅ (in this case, (X, 2X) is M∅).

– Antisymmetry. Suppose additionally M2 ≤ M1, so by hypothesis there are
M,M′ such that M2 = M1 • M′ and M1 = M2 • M. Clearly,

M1 = M2 • M = M1 • M′ • M′ • M = M1 • M′ • M′ • M
= M2 • M′ • M = M2 • M • M′ = M1 • M′ = M2 .

The proof is the same for E(X), Efin(X), Eeql(X).
– Transitivity. Let M,M′ such that M3 = M2 • M and M2 = M1 • M′.

Clearly, M3 = M2 • M = (M1 • M′) • M = M1 • (M′ • M) which
ensures that M1 ≤ M3. The proof is the same for E(X), Efin(X), Eeql(X).

Part 1: (E(X),≤) is a lattice with M∅ as bottom and (X, ∅) as top. Let
↑ M be the set of upper bounds of M w.r.t. ≤, viz. {M′ | M ≤ M′}; and, let
↓ M be the set of lower bounds of M w.r.t. ≤, viz. {M′ | M′ ≤ M}.

– If i = 1, 2 then Mi ≤ M1 • M2 by definition of ≤, thus M1 • M2 ∈ (↑
M1) ∩ (↑ M2). Moreover, for all common upper bounds M ∈ (↑ M1) ∩ (↑
M2), we have (cf. Lemma 1)

M = M1 • M = M1 • (M2 • M) = (M1 • M2) • M

And so we have that M1 • M2 is the join M1 � M2.
– Let M = (F ,P) = (F1 ∩ F2,P1 |F2 ∪ P2 |F1). We have {p ∩ F | p ∈ Pi} ⊆ P

and F ⊆ Fi for i ∈ {1, 2}: we thus have M ∈ (↓ M1) ∩ (↓ M2). Moreover,
for all (F ′,P ′) ∈ (↓ M1) ∩ (↓ M2), it is easy to see that F ′ ⊆ F1 ∩ F2 ⊆ F
and P |F ′⊆ P ′ by Lemma 1. And so, again by Lemma 1, M is the meet.

– For all M ∈ E(X), we have M • M∅ = M which implies by definition
that M∅ ≤ M. Similarily, it is easy to see that for all M ∈ E(X), we have
M • (X, ∅) = (X, ∅) which implies by definition that M ≤ (X, ∅).

Part 2: Efin(X), is a sublattice of E(X) with the same bottom and
no top. It is clear that for every M1 ∈ Efin(X) and M2 ∈ E(X) such that
M2 ≤ M1, we have that M2 ∈ Efin(X). It follows that Efin(X) is a sublattice
of E(X) with M∅ as bottom. Moreover, if follows from the definition of • that
if Efin(X) with X infinite would have a top (F ,P), we would have S ⊆ F for all
S ⊆fin X. This means that F should be equal to X, which is not possible.
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Part 3: Eeql(X) is a bounded sublattice of E(X) and a Boolean lat-
tice, with the same top and (X, 2X) as bottom. It is clear that for every
M1,M2 ∈ Eeql(X) we have that M1 • M2 ∈ Eeql(X) and M1 � M2 ∈ Eeql(X).
It follows that Efin(X) is a sublattice of E(X) with (X, ∅) as top. Moreover,
it is easy to see that (X, 2X) ∈ Eeql(X) and that for all M1 ∈ Eeql(X), we
have (X, 2X) • M = M. Let now prove the distributive law. Let us consider
M1 = (X,P1), M2 = (X,P2), M3 = (X,P3) ∈ Eeql(X), we have:

M1  (M2 � M3) = (X,P1 ∪ (P2 ∩ P3))
= (X, (P1 ∪ P2) ∩ (P1 ∪ P3)) = (M1  M2) � (M1  M3)

Finally, it is easy to see that M1  M1 = (X, 2X) and M1 � M1 = (X, ∅). �

3.3 On Fragments and Interfaces

Feature model slices were defined by Acher et al. [4] as a unary operator ΠY

that restricts a feature model to the set Y of features.

Definition 7 (Feature model slice operator). Let M = (F ,P) be a feature
model. The slice operator ΠY on feature models, where Y is a set of features, is
defined by: ΠY (M) = (F ∩ Y,P |Y ).

More recently, Schröter et al. [31] introduced the following notion of feature
model interface.

Definition 8 (Feature model interface relation). A feature model M1 =
(F1, P1) is an interface of feature model M2 = (F2,P2), denoted as M1 � M2,
whenever both F1 ⊆ F2 and P1 = P2 |F1 hold.

Remark 1 (On feature model interfaces and slices). As pointed out in [31], fea-
ture model slices and interfaces are closely related. Namely: M1 � M2 holds if
and only if there exists a set of features Y such that M1 = ΠY (M2).

Example 5 (A slice of the glibc feature model). Applying the operator
Π{glibc, glibc:v} to the feature model Mglibc of Example 2 yields the feature model

F = {glibc, glibc:v} P = {∅, {glibc}, {glibc, glibc:v}},

which (according to Remark 1) is an interface for Mglibc.

The following theorem points out the relationship between the feature model
interface relation (designed to abstract away a set of features from a feature
model) and the feature model fragment relation (designed to support feature
model decomposition).

Theorem 2 (Interfaces are fragments). If M1 � M2 then M1 ≤ M2.

Proof. Immediate by Definition 8 and Lemma 1. �
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We conclude this section by providing some algebraic properties that relate
the slice operator and the interface an fragment relations.

Lemma 3 (Monotonocity properties of the feature model slice opera-
tor). For all F ,F1,F2 ⊆ X and M,M1,M2 ∈ E(X)

1. If F1 ⊆ F2 then ΠF1(M) � ΠF2(M).
2. If F1 ⊆ F2 then ΠF1(M) ≤ ΠF2(M).
3. If M1 � M2 then ΠF (M1) � ΠF (M2).
4. If M1 ≤ M2 then ΠF (M1) ≤ ΠF (M2).

Proof 1. Clearly ΠF1(M) • ΠF2(M) = ΠF2(M). Thus the proof follows by
Definition 8.

2. Immediate by Lemma 3.1 and Theorem 2.
3. By Definition 8, we have that F1 ⊆ F2 and P1 = P2 |F1 . Consequently,

for all F ⊆ X, we have (F1 ∩ F) ⊆ (F2 ∩ F) and P1 |F = P2 |F1 |F . Still,
ΠF (M1) � ΠF (M2) by Definition 8.

4. By Lemma 1, we have that F1 ⊆ F2 and P1 ⊇ P2 |F1 . Consequently, for
all F ⊆ X, we have (F1 ∩ F) ⊆ (F2 ∩ F) and P1 |F ⊇ P2 |F1 |F . Still,
ΠF (M1) ≤ ΠF (M2) by Lemma 1.

We remark that Lemma 3.3 and Theorem 2 do not imply Lemma 3.4.

Theorem 3 (Algebraic properties of the feature model slice operator).
For all M1, M2, M3 ∈ E(X) and F4,F5 ⊆ X, we have

≤-Monotonicity. If M1 ≤ M2 and F4 ⊆ F5, then ΠF4(M1) ≤ ΠF5(M2).
�-Monotonicity. If M1 � M2 and F4 ⊆ F5, then ΠF4(M1) � ΠF5(M2).
Commutativity. ΠF4(ΠF5(M3)) = ΠF5(ΠF4(M3)).

Proof. ≤-Monotonicity. Straightforward by Lemma 3.2 and Lemma 3.4.
�-Monotonicity. Straightforward by Lemma 3.1 and Lemma 3.3.
Commutativity. In accordance with Definition 8, it is sufficient to observe
that ΠF4(ΠF5(M3)) = ΠF4∪F5(M3) = ΠF5(ΠF4(M)) holds. �

4 Propositional Characterization of Feature Models
Operations and Relations

In Sect. 4.1 we introduce a mapping that associates each propositional feature
model to its corresponding extensional representation (cf. Sect. 2.1). Then, in
Sect. 4.2, we provide a propositional characterization for the fragment relation
(≤), for the composition (•) and the meet (�) operations; for the the bottom of
the Boolean lattice Eeql(X) (the feature model MX = (X, 2X)), for the bottom
of the bounded lattice E(X) (the feature model M∅ = (∅, {∅})) and for the
top of bounded the lattice E(X)) (the feature model MX = (X, ∅)); and for
the complement operation (̄ ). Finally, in Sect. 4.3, we provide a propositional
characterization for the slice operator (ΠY ) and for the interface relation (�).
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4.1 Relating Extensional and Propositional Feature Models

As stated at the beginning of Sect. 3.2, in our theoretical development we con-
sider also feature models with infinitely many features and products, where each
product may have infinitely many features. The following definition introduces a
notion for three different sets of propositional feature models (see Definition 1)
over a set of features (cf. Definition 6).

Definition 9 (Sets of propositional feature models over a set of fea-
tures). Let X be a set of features. We denote:

– P(X) the set of the propositional feature models (F , φ) such that F ⊆ X;
– Pfin(X) the subset of the finite elements of P(X), i.e., (F , φ) such that F ⊆fin

X; and
– Peql(X) the subset of elements of P(X) that have exactly the features X, i.e.,

(F , φ) such that F = X.

We denote by ftrs(φ) the (finite) set of features occurring in a propositional
formula φ, and as usual we say that φ is ground whenever ftrs(φ) is empty. We
recall that an interpretation (a.k.a. truth assignment or valuation) I is a function
which maps propositional logic variables to true or false [7,9]. As usual, dom(I )
denotes the domain of an interpretation I and we write I |= φ to mean that the
propositional formula φ is true under the interpretation I (i.e., ftrs(φ) ⊆ dom(I )
and the ground formula obtained from φ by replacing each feature x occurring
in φ by I (x) evaluates to true). We write |= φ to mean that φ is valid (i.e., it
evaluates to true under all the interpretations I such that ftrs(φ) ⊆ dom(I )).
We write φ1 |= φ2 to mean that φ2 is a logical consequence of φ1 (i.e., for all
interpretations I with ftrs(φ1) ∪ ftrs(φ2) ⊆ dom(I ), if I |= φ1 then I |= φ2),
and we write φ1 ≡ φ2 to mean that φ1 and φ2 are logically equivalent (i.e.,
they are satisfied by exactly the same interpretations with domain including
ftrs(φ1) ∪ ftrs(φ2)). We recall that: (i) I1 is included in I2, denoted I1 ⊆ I2,
whenever dom(I1) ⊆ dom(I2) and I1(x) = I2(x), for all x ∈ dom(I1); (ii) I1

and I2 are compatible whenever I1(x) = I2(x), for all x ∈ dom(I1) ∩ dom(I2);
and (iii) if I1 |= φ then its restriction I0 to ftrs(φ) is such that I0 |= φ and, for
all interpretations I2 such that I0 ⊆ I2, it holds that I2 |= φ.

The following definition gives a name to the interpretations that represent
the products of the feature models with a given set of features.

Definition 10 (Interpretation representing a product). Let (F ,P) be an
extensional feature model and p ∈ P. The interpretation that represents the
product p, denoted by IF

p , is the interpretation with domain F such that: IF
p (x) =

true if x ∈ p; and IF
p (x) = false if x ∈ F \ p.

The following definition gives a name to the mapping that associates each
propositional feature model to its corresponding extensional representation.

Definition 11 (The ext mapping). Let (F , φ) ∈ P(X). We denote by
ext((F , φ)) (or ext(F , φ), for short) the extensional feature model (F ,P) ∈
E(X) such that P = {p | p ⊆ F and IF

p |= φ} . In particular, ext maps Pfin(X)
to Efin(X), and maps Peql(X) to Eeql(X).
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We denote by ≡ the equivalence relation over feature models defined by:
(F1, φ1) ≡ (F2, φ2) if and only if both F1 = F2 and φ1 ≡ φ2. We write [P(X)],
[Pfin(X)] and [Peql(X)] as short for the quotient sets P(X)/≡, Pfin(X)/≡ and
Peql(X)/≡, respectively.

Note that, if X has infinitely many elements and (F , φ) ∈ P(X), then F may
contain infinite many features, while the propositional formula φ is syntactically
finite (cf. Definition 1). Moreover, Pfin(X) has infinitely many elements (even
when X is finite). It is also worth observing that, if X is finite, then P(X)
and Pfin(X) coincide and the quotient set [Pfin(X)] is finite. Moreover, for all
Φ1, Φ2 ∈ P(X), we have that: ext(Φ1) = ext(Φ2) if and only if Φ1 ≡ Φ2.

All the finite feature models have a propositional representation, i.e., if
(F ,P) ∈ Efin(X), then there exists (F , φ) ∈ Pfin(X) such that ext(F , φ) =
(F ,P). Take, for instance, the formula in disjunctive normal form φ =∨

p∈P
(
(∧f∈pf) ∧ (∧f∈F\p¬f)

)
. Given [Φ] ∈ [P(X)], we define (with an abuse

of notation) ext([Φ]) = ext(Φ). Then, we have that ext is an injection from
[P(X)] to E(X), an injection from [Peql(X)] to Eeql(X), and a bijection from
[Pfin(X)] to Efin(X).

As shown by the following example, if X has infinitely many elements, then
there are feature models in E(X)\Efin(X) that have no propositional represen-
tation.

Example 6 (Extensional feature models without a propositional representation).
Consider the natural numbers as features. Then the extensional feature models
(N, {{3}}), (N, {{n | n is even}}) (which has a single product with infinitely
many features) and (N, {{n} | n is even}) (which has infinitely many products
with one feature each) have no propositional representation.

Remark 2 (On Pfin(X)and P(X)). It is worth observing that, since ext(F , φ) =
ext(ftrs(φ), φ) • (F \ ftrs(φ), 2F\ftrs(φ)) and the set ftrs(φ) is finite, then any
infinite propositional feature model (i.e., in P(X)\Pfin(X) with X infinite) is
decomposable into a finite one (i.e., in Pfin(X)) and a “free” one (i.e., one where
all the features are optional). Therefore, if X has infinitely many elements, then
there are infinitely many elements of E(X)\Efin(X) that do not have a proposi-
tional representation.

4.2 Propositional Characterization of the Lattices of Feature
Models

The following theorem states that the feature model fragment relation ≤ corre-
sponds to (the converse of) logical consequence.

Theorem 4 (Propositional characterization of the relation ≤). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we write Φ1 ≤ Φ2 to mean that both
F1 ⊆ F2 and φ2 |= φ1 hold. Then: ext(Φ1) ≤ ext(Φ2) holds if and only Φ1 ≤ Φ2

holds.
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Proof. We have: (F1,P1) = ext(Φ1) ≤ ext(Φ2) = (F2,P2)
iff F1 ⊆ F2 and P1 ⊇ P2 |F1 (by Lemma 1)
iff F1 ⊆ F2 and {p1 | IF1

p1
|= φ1} ⊇ {p2 ∩ F1 | IF2

p2
|= φ2}

iff F1 ⊆ F2 and, for all p ∈ P2, IF2
p |= φ2 implies IF2

p |= φ1

iff F1 ⊆ F2 and φ2 |= φ1

iff Φ1 ≤ Φ2. �
The following theorem shows that the feature model composition operator •

corresponds to propositional conjunction (cf. Sect. 2.2).

Theorem 5 (Propositional characterization of the operator •). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we define: Φ1 • Φ2 = (F1 ∪ F2, φ1 ∧
φ2). Then: ext(Φ1) • ext(Φ2) = ext(Φ1 • Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi), for i = 1, 2.
ext(Φ1) • ext(Φ2) = (F3, P3)

iff F3 = F1 ∪ F2 and iff P3 = {p1 ∪ p2 | IF1
p1 |= φ1, IF2

p2 |= φ1, p1 ∩ F2 = p2 ∩ F1}
iff F3 = F1 ∪ F2 and P3 = {p | p1 ∪ p2 ⊆ p and IX

p |= φ1, IX
p |= φ2}

iff F3 = F1 ∪ F2 and P3 = {p | IF3
p |= φ1 ∧ φ2}

iff (F3, P3) = ext(Φ1 • Φ2). �	
In order to provide a propositional characterization of the meet operator

� (introduced in Theorem 1), we introduce an auxiliary notation expressing
a propositional encoding of the existentially quantified formula ∃x1. · · · ∃xn.φ,
where φ is a propositional formula. Given Y = {x1, ..., xn}, we define:

(∨∨∨
Y
φ) =

{
φ if Y = ∅,
( ∨∨∨
Y −{x}

(φ[x := true]) ∨ (φ[x := false])) otherwise.

Theorem 6 (Propositional characterization of the operator �). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we define:

Φ1 � Φ2 =
(F1 ∩ F2, ( ∨∨∨

ftrs(φ1)\F2

φ1) ∨ ( ∨∨∨
ftrs(φ2)\F1

φ2)
)
.

Then: ext(Φ1) � ext(Φ2) = ext(Φ1 � Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi) for i = 1, 2.
Since ext(F1, φ1) � ext(F2, φ2) = (F1 ∩ F2,P1 |F2 ∪ P2 |F1), we have that:
ext(Φ1) � ext(Φ2) = (F3,P3)
iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F2 | IF1

p1
|= φ1} ∪ {p2 ∩ F1 | IF2

p2
|= φ2}

iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F3 | IF1
p1

|= φ1} ∪ {p2 ∩ F3 | IF2
p2

|= φ2}
iff F3 = F1 ∩ F2 and P3 = P1 |F3 ∪ P2 |F3

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either ∃p1 s.t. p = p1 ∩ F3 and IF1

p1
|= φ1 or ∃p2 s.t. p = p2 ∩ F3 and IF2

p2
|= φ2

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either IF3

p |= ( ∨∨∨
ftrs(φ1)\F2

φ1) or IF3
p |= ( ∨∨∨

ftrs(φ2)\F1

φ2)

iff F3 = F1 ∩ F2 and, p ∈ P3 implies IF3
p |= ( ∨∨∨

ftrs(φ1)\F2

φ1) ∨ ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff (F3,P3) = ext(Φ1 � Φ2). �
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The following theorem states that the feature models of the form MF =
(F , 2F ) and MF = (F , ∅) correspond to true and false, respectively—recall that
(see Theorem 1) M∅ is the bottom of the lattices (E(X),≤) and (Efin(X),≤),
while MX is the bottom of the Boolean lattice (Eeql(X),≤), and MX is the
top of the lattice (E(X),≤) and of the Boolean lattice (Eeql(X),≤) and, if X is
finite, of the lattice (Efin(X),≤).

Theorem 7 (Propositional characterization of the feature models MF
and MF). Let (F , φ) ∈ P(X).

1. ext(F , φ) = MF = (F , 2F ) if and only if φ ≡ true.
2. ext(F , φ) = MF = (F , ∅) if and only if φ ≡ false.

Proof 1. Immediate, because true is satisfied by all interpretations. 2. Immediate,
because no interpretation satisfies false. �

The following theorem shows that the feature model complement operator ¯
(introduced in Theorem 1) corresponds to logical negation.

Theorem 8 (Propositional characterization of the operator ¯). Given
Φ = (F , φ) in P(X), we define: Φ = (F ,¬φ). Then ext(Φ) = ext(Φ).

Proof. Straightforward. �
Lemma 4 below provides a representation of logical disjunction in terms of

a novel feature model operator, that we denote by +. Then, Lemma 5 sheds
some light on the Boolean lattice Eeql(X), by showing that on Eeql(X) the meet
operator � and the operator + coincide.

Lemma 4 (The operator + and its propositional characterization).
Given two sets of sets Y and Z, we define: Y �Z = {y∪z | y ∈ Y, z ∈ Z}. Given
two feature models M1 = (F1,P1) and M2 = (F2,P2) in E(X), we define:
M1 + M2 = (F1 ∪ F2, (P1 � 2(F2\F1)) ∪ (P2 � 2(F1\F2))). Given Φ1 = (F1, φ1)
and Φ2 = (F2, φ2) in P(X), we define: Φ1 + Φ2 = (F1 ∪ F2, φ1 ∨ φ2). Then:
ext(Φ1) + ext(Φ2) = ext(Φ1 + Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi) for i = 1, 2. We have that
ext(Φ1) + ext(Φ2) = (F3, P3)

iff P3 = F1 ∪ F2 and P3 = {p1 � 2(F2\F1)) | IF1
p1 |= φ1} ∪ {p2 � 2(F1\F2) | IF2

p2 |= φ2}
iff P3 = F1 ∪ F2 and, p ∈ P3 implies

either p ∈ {p1 � 2(F2\F1)) | IF1
p1 |= φ1} or p ∈ {p2 � 2(F1\F2) | IF2

p2 |= φ2}
iff P3 = F1 ∪ F2 and, p ∈ P3 implies either IF3

p |= φ1 or IF3
p |= φ2

iff P3 = F1 ∪ F2 and, p ∈ P3 implies IF3
p∩F1

|= φ1 ∨ φ2

iff (F3, P3) = ext(Φ1 + Φ2). �	

Lemma 5 (The operators � and + on Eeql(X)). Given two feature models
M1 = (X,P1) and M2 = (X,P2) in Eeql(X), we have that: M1 � M2 =
M1 + M2 = (X,P1 ∪ P2).

Proof. Straightforward from the definitions of � and +. �
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Given [Φ1], [Φ2] ∈ [P(X)], we define (with an abuse of notation): [Φ1] ≤ [Φ2]
as Φ1 ≤ Φ2, [Φ1] • [Φ2] = [Φ1 • Φ2], [Φ1] � [Φ2] = [Φ1 � Φ2], [Φ1] + [Φ2] = [Φ1 +
Φ2], and [Φ1] = [Φ1]. Recall that a homomorphism is a structure-preserving map
between two algebraic structures of the same type (e.g.., between two lattices), a
monomorphism is an injective homomorphism, and an isomorphism is a bijective
homomorphism.

Theorem 9 (ext is a lattice monomorphism). Given a set X of features:

1. ([P(X)], ≤) is a bounded lattice with join •, meet �, bottom [(∅, true)] and
top [(X, false)]. Moreover, ext is a bounded lattice monomorphism from
([P(X)], ≤) to (E(X), ≤).

2. If X has infinitely many elements, then [Pfin(X)] is a sublattice of [P(X)]
with the same bottom and no top. Moreover, ext is a lattice isomorphism
from [Pfin(X)] to Efin(X).

3. [Peql(X)] is a sublattice of [P(X)] and it is a Boolean lattice with bottom
[(X, true)], same top of [P(X)], complement ,̄ and where the meet behaves
like +. Moreover, ext is a Boolean lattice monomorphism from [Peql(X)] to
Eeql(X) and it is an isomorphism whenever X is finite.

Proof. Straightforward from Theorems 1, 4–8 and Lemmas 2, 4 and 5. �

4.3 Propositional Characterization of Slices and Interfaces

The following theorem provides a propositional characterization of the slice oper-
ator.

Theorem 10 (Propositional characterization of the operator ΠY ).
Let Φ = (F , φ) be in P(X). We define: ΠY (Φ) = (Y ∩ F , ( ∨∨∨

ftrs(φ)\Y
φ)). Then:

ΠY (ext(Φ)) = ext(ΠY (Φ)).

Proof. We have: ΠY (ext(Φ)) = (F0,P0)
iff F0 = F ∩ Y and P0 = {p | IF

p |= φ}|Y
iff F0 = F ∩ Y and P0 = {p ∩ Y | IF

p |= φ}
iff F0 = F ∩ Y and P0 = {p ∩ Y | IF∩Y

p |= φ}
iff F0 = F ∩ Y and, p0 ∈ P0 implies IF∩Y

p0
|= ( ∨∨∨

ftrs(φ)\Y
φ)

iff (F0,P0) = ext(ΠY (Φ)). �
The following corollary provides a propositional characterization of the inter-

face relation M1 � M2 which is the same as the interpretation of the slice
operator M1 = ΠY (M2) when Y are the features of M1 (cf. Theorem 10 and
Remark 1).

Corollary 1 (Propositional characterization of the relation �). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we write Φ1 � Φ2 to mean that both
F1 ⊆ F2 and φ1 ≡ ( ∨∨∨

ftrs(φ2)\F1

φ2) hold. Then: ext(Φ1) � ext(Φ2) holds if and

only Φ1 � Φ2 holds.
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Proof. We have:
(F1,P1) = ext(Φ1) � ext(Φ2) = (F2,P2)
iff F1 ⊆ F2 and P1 = P2 |F1 (by Definition 8)
iff F1 ⊆ F2 and {p1 | IF1

p1
|= φ1} = {p2 ∩ F1 | IF2

p2
|= φ2}

iff F1 ⊆ F2 and, for all p ∈ P2, both φ2 |= φ1 and φ1 |= ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff F1 ⊆ F2 and φ1 ≡ ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff Φ1 � Φ2. �

5 Related Work

Although the propositional representation of feature models is well known in the
literature (see, e.g., Sect. 2.3 of Apel et al. [7]), we are not aware of any work that
(as done in the present paper) provides a formal account of the correspondence
between the algebraic and the propositional characterizations of feature model
operators and relations, and encompasses the general case of feature models with
infinitely many features. The investigation presented in this paper started from
the feature model composition operator • and the induced fragment partial order
relation ≤. In the following we briefly discuss relevant related work on feature
model composition operators and on feature model relations.

Feature-model composition operators are often investigated in connection
with multi software product lines, which are sets of interdependent product
lines [22]. Eichelberger and Schmid [19] present an overview of textual-modeling
languages which support variability-model composition (like FAMILIAR [5],
VELVET [29], TVL [13], VSL [1]) and discuss their support for composition,
modularity, and evolution. Acher et al. [6] consider different feature-model com-
position operators together with possible implementations and discuss advan-
tages and drawbacks.

The feature-model fragment relation introduced in this paper generalizes the
feature-model interface relation introduced by Schröter et al. [31], which (see
Remark 1) is closely related to the feature model slice operator introduced by
Acher et al. [4]. The work of Acher et al. [4] focuses on feature model decompo-
sition. In subsequent work [2], Acher et al. use the slice operator in combination
with a merge operator to address evolutionary changes for extracted variability
models, focusing on detecting differences between feature-model versions dur-
ing evolution. Analyzing fragmented feature models usually requires to compose
the fragments in order to apply existing techniques [21,34]. Schröter et al. [31]
proposed feature model interfaces to support evolution of large feature models
composed by several feature models fragments. Namely, they propose to analyze
a fragmented feature model where some fragments have been replaced by care-
fully chosen feature model interface to obtain results that hold for the original
feature model and for all its evolution where the evolved version of the frag-
ments replaced by the interfaces are still compatible with the interfaces. More
recently, Lienhardt et al. [25] strengthen feature model interfaces to support
efficient automated product discovery in fragmented feature models.
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6 Conclusion and Future Work

The formalization presented in this paper sheds new light on the correspondence
between the algebraic and propositional characterizations of feature model oper-
ations and relations. It aims to foster the development of a formal framework
for supporting practical exploitation of future theoretical developments on fea-
ture models and software product lines. For instance, recent works [25,31] which
introduced novel feature model relations by relying on the extensional represen-
tation for theory and on the propositional representation for experiments, do
not show the propositional representation of the relations.

In future work we would like to extend this picture by considering other
feature model representations [7,8], operators [6] and relations [25]. Moreover,
we would like to investigate whether there are classes of infinite feature mod-
els without a propositional representation (see Remark 2) that have practical
relevance—such feature models might admit convenient representations (e.g., by
first order logic). We are also planning to extend out formalization to encompass
cardinality-based feature models, which can also enable infinitely many products,
without necessarily requiring infinitely many features [15]. Moreover, we want
to investigate more in detail the feature model fragment relation and how it can
be used to decompose large feature models in manageable parts. Recently [17],
we have introduced the notion of software product signature in order to express
dependencies between different product lines, and we have lifted to software
product lines the notions of feature model composition and interface. In future
work we would like to lift to software product lines other feature model operations
and relations and to provide a formal account of the connection between different
software product line implementation approaches [7,30,34]. This formalization
would enable formal reasoning on multi software product lines comprising soft-
ware product lines implemented according to different approaches.
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