Skip to main content

Haptic Object Identification for Advanced Manipulation Skills

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12413))

Abstract

In order to identify the characteristics of unknown objects, humans - in contrast to robotic systems - are experts in exploiting their sensory and motoric abilities to refine visual information via haptic perception. While recent research has focused on either estimating the geometry or material properties, this work strives to combine these aspects by outlining a probabilistic framework that efficiently refines initial knowledge from visual sensors by generating a belief state over the object shape while simultaneously learn material parameters. Specifically, we present a grid-based and a shape-based exploration strategy, that both apply the concepts of Bayesian-Filter theory in order to decrease the uncertainty. Furthermore, the presented framework is able to learn about the geometry as well as to distinguish areas of different material types by applying unsupervised machine learning methods. The experimental results from a virtual exploration task highlight the potential of the presented methods towards enabling robots to autonomously explore unknown objects, yielding information about shape and structure of the underlying object and thus, opening doors to robotic applications where environmental knowledge is limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The framework outlined in this work is not restricted to the presented identification method. Nonetheless, this specific example serves as a proof of concept.

  2. 2.

    We refer to [20] for detailed information.

References

  1. Allen, P., Roberts, K.: Haptic object recognition using a multi-fingered dextrous hand. In: Proceedings of the 1989 IEEE International Conference on Robotics and Automation, pp. 342–347. IEEE Computer Society Press (1989)

    Google Scholar 

  2. Behbahani, F.: Reverse-Engineering The Visual and Haptic Perceptual Algorithms in The Brain. Doctor of philosophy, Imperial College London (2016)

    Google Scholar 

  3. Behbahani, F., Taunton, R., Thomik, A., Faisal, A.: Haptic SLAM for context-aware robotic hand prosthetics - simultaneous inference of hand pose and object shape using particle filters. In: International IEEE/EMBS Conference on Neural Engineering, NER, vol. 1229297, 719–722 (2015)

    Google Scholar 

  4. Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., Durrant-Whyte, H.: Information based adaptive robotic exploration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2002, pp. 540–545 (2002)

    Google Scholar 

  5. Decherchi, S., Gastaldo, P., Dahiya, R., Valle, M., Zunino, R.: Tactile-data classification of contact materials using computational intelligence. IEEE Trans. Rob. 3, 635–639 (2011)

    Article  Google Scholar 

  6. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–108 (2006)

    Article  Google Scholar 

  7. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  8. Elfes, A.: Robot navigation: integrating perception, environmental constraints and task execution within a probabilistic framework. In: Dorst, L., van Lambalgen, M., Voorbraak, F. (eds.) RUR 1995. LNCS, vol. 1093, pp. 91–130. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0013955

    Chapter  Google Scholar 

  9. Fishel, J., Loeb, G.: Bayesian exploration for intelligent identification of textures. Front. Neurorobot. 1–20, (2012)

    Google Scholar 

  10. Friedl, K.E., Voelker, A.R., Peer, A., Eliasmith, C.: Human-inspired neurorobotic system for classifying surface textures by touch. IEEE Robot. Autom. Lett. 1, 516–523 (2016)

    Article  Google Scholar 

  11. Hegazy, D., Denzler, J.: Combining appearance and range based information for multi-class generic object recognition. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 741–748. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10268-4_87

    Chapter  Google Scholar 

  12. Julian, B., Angermann, M., Schwager, M., Rus, D.: Distributed robotic sensor networks: an information-theoretic approach. Int. J. Robot. Res. 10, 1134–1154 (2012)

    Article  Google Scholar 

  13. Luo, S., Bimbo, J., Dahiya, R., Liu, H.: Robotic tactile perception of object properties: a review. Mechatronics 18, 54–67 (2017)

    Article  Google Scholar 

  14. Martinez-Hernandez, U., Metta, G., Dodd, T., Prescott, T., Natale, L., Lepora, N.: Active contour following to explore object shape with robot touch. In: 2013 World Haptics Conference, WHC 2013, pp. 341–346 (2013)

    Google Scholar 

  15. Montemerlo, M., Thrun, S., Koller, D., Webreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: AAAI/IAAI, pp. 593–598 (2002)

    Google Scholar 

  16. Navarro, S., Gorges, N., Wörn, H., Schill, J., Asfour, T., Dillmann, R.: Haptic object recognition for multi-fingered robot hands. In: 2012 IEEE Haptics Symposium, HAPTICS 2012, pp. 497–502. IEEE (2012)

    Google Scholar 

  17. Pezzementi, Z., Plaku, E., Reyda, C., Hager, G.: Tactile-object recognition from appearance information. IEEE Trans. Rob. 3, 473–487 (2011)

    Article  Google Scholar 

  18. Schaeffer, M., Okamura, A.: Methods for intelligent localization and mapping during haptic exploration. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 3438–3445. IEEE (2003)

    Google Scholar 

  19. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  20. Todorov, E.: MuJoCo: Modeling, Simulation and Visualization of Multi-Joint Dynamics with Contact (2018). http://www.mujoco.org/book/index.html

  21. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: IROS, pp. 5026–5033. IEEE (2012)

    Google Scholar 

  22. Xu, D., Loeb, G., Fishel, J.: Tactile identification of objects using Bayesian exploration. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation, pp. 3056–3061 (2013)

    Google Scholar 

Download references

Acknowledgement

The research leading to these results has received funding from the Horizon 2020 research and innovation programme under grant agreement №820742 of the project “HR-Recycler - Hybrid Human-Robot RECYcling plant for electriCal and eLEctRonic equipment”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Gabler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gabler, V., Maier, K., Endo, S., Wollherr, D. (2020). Haptic Object Identification for Advanced Manipulation Skills. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64313-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64312-6

  • Online ISBN: 978-3-030-64313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics