
A Secret-Sharing Based MPC Protocol for
Boolean Circuits with Good Amortized

Complexity

Ignacio Cascudo1 and Jaron Skovsted Gundersen2??

1 IMDEA Software Institute, Madrid, Spain, ignacio.cascudo@imdea.org
2 Aalborg University, Aalborg, Denmark, jaron@math.aau.dk

Abstract We present a new secure multiparty computation protocol in
the preprocessing model that allows for the evaluation of a number of
instances of a boolean circuit in parallel, with a small online communica-
tion complexity per instance of 10 bits per party and multiplication gate.
Our protocol is secure against an active dishonest majority, and can also
be transformed, via existing techniques, into a protocol for the evalu-
ation of a single “well-formed” boolean circuit with the same complexity
per multiplication gate at the cost of some overhead that depends on the
topology of the circuit.
Our protocol uses an approach introduced recently in the setting of hon-
est majority and information-theoretical security which, using an alge-
braic notion called reverse multiplication friendly embeddings, essentially
transforms a batch of evaluations of an arithmetic circuit over a small
field into one evaluation of another arithmetic circuit over a larger field.
To obtain security against a dishonest majority we combine this approach
with the well-known SPDZ protocol that operates over a large field.
Structurally our protocol is most similar to MiniMAC, a protocol which
bases its security on the use of error-correcting codes, but our protocol
has a communication complexity which is half of that of MiniMAC when
the best available binary codes are used. With respect to certain variant
of MiniMAC that utilizes codes over larger fields, our communication
complexity is slightly worse; however, that variant of MiniMAC needs
a much larger preprocessing than ours. We also show that our protocol
also has smaller amortized communication complexity than Committed
MPC, a protocol for general fields based on homomorphic commitments,
if we use the best available constructions for those commitments. Fi-
nally, we construct a preprocessing phase from oblivious transfer based
on ideas from MASCOT and Committed MPC.

1 Introduction

The area of secure multiparty computation (MPC) studies how to design proto-
cols that allow for a number of parties to jointly perform computations on private
?? Jaron Skovsted Gundersen wants to acknowledge the SECURE project at Aalborg

University. Furthermore, he wants to thank IMDEA Software Institute for hosting
a visit to Ignacio Cascudo in connection to this paper.

2 I. Cascudo and J. S. Gundersen

inputs in such a way that each party learns a private output, but nothing else
than that. In the last decade efficient MPC protocols have been developed that
can be used in practical applications.

In this work we focus on secret-sharing based MPC protocols, which are
among the most used in practice. In secret-sharing based MPC, the target com-
putation is represented as an arithmetic circuit consisting of sum and multiplic-
ation gates over some algebraic ring; each party initially shares her input among
the set of parties, and the protocol proceeds gate by gate, where at every gate
a sharing of the output of the gate is created; in this manner eventually parties
obtain shares of the output of the computation, which can then be reconstructed.

A common practice is to use the preprocessing model, where the computation
is divided in two stages: a preprocessing phase, that is completely independent
from the inputs and whose purpose is to distribute some correlated randomness
among the parties; and an online phase, where the actual computation is per-
formed with the help of the preprocessing data. This approach allows for pushing
much of the complexity of the protocol into the preprocessing phase and having
very efficient online computations in return.

Some secret sharing based MPC protocols obtain security against any static
adversary which actively corrupts all but one of the parties in the computation,
assuming that the adversary is computationally bounded. Since in the active
setting corrupted parties can arbitrarily deviate from the protocol, some kind of
mechanism is needed to detect such malicious behaviour, and one possibility is
the use of information-theoretic MACs to authenticate the secret shared data,
which is used in protocols such as BeDOZa [3] and SPDZ [13].

In SPDZ this works as follows: the computation to be performed is given
by an arithmetic circuit over a large finite field F. There is a global key α ∈ F
which is secret shared among the parties. Then for every value x ∈ F in the
computation, parties obtain not only additive shares for that value, but also for
the product α · x which acts as a MAC for x. The idea is that if a set of corrupt
parties change their shares and pretend that this value is x+e, for some nonzero
error e, then they would also need to guess the correction value α · e for the
MAC, which amounts to guessing α since F is a field. In turn this happens with
probability 1/|F| which is small when the field is large.

The problem is that over small fields the cheating success probability 1/|F|
is large. While one can take a large enough extension field L of F (e.g. if F = F2,
then L could be the field of 2s elements) and embed the whole computation into
L, this looks wasteful as communication is blown up by a factor of s.

An alternative was proposed in MiniMAC [14]. MiniMAC uses a batch au-
thentication idea: if we are willing to simultaneously compute k instances of the
same arithmetic circuit over a small field at once, we can bundle these computa-
tions together and see them as a computation of an arithmetic circuit over the
ring Fk, where the sum and multiplication operations are considered coordinate-
wise. Note the same authentication technique as in SPDZ does not directly work
over this ring (if |F| is small): if we define the MAC of a data vector x in Fk to
be α ∗ x where the key α is now also a vector in Fk and ∗ is the coordinate-

Title Suppressed Due to Excessive Length 3

wise product, the adversary can introduce an error in a single coordinate with
probability 1/|F|. Instead, MiniMAC first encodes every vector x as a larger
vector C(x) by means of a linear error-correcting code C with large minimum
distance d, and then defines the MAC as α ∗ C(x). Now introducing an error
requires to change at least d coordinates of C(x) and the MAC can be fooled
with probability only 1/|F|d. However, when processing multiplication gates, the
minimum distance d∗ of the so-called Schur square code C∗ also needs to be
large. These requirements on the minimum distance of these two codes have an
effect on the communication overhead of the protocol, because the larger d and
d∗ are, the worse the relation between the length of messages and the length of
the encoding.

This same article shows how to adapt this technique for computing a single
boolean “well-formed” circuit while retaining the efficiency advantages of the
batch simultaneous computation of k circuits. The idea is that if the target
boolean circuit is structured into layers of addition and multiplication gates,
where each layer has a large number of gates and its inputs are outputs of
previous layers, then we can organize them into blocks of k gates of the same type,
which can be computed using the above method. We then need an additional
step that directs each block of outputs of a layer into the right block of inputs of
next layers; this uses some additional preprocessed random sharings, and some
openings, which slightly increases the communication complexity of the protocol.

In this paper, we explore an alternative to the error-correcting codes ap-
proach from MiniMAC, using an idea recently introduced in the honest major-
ity, information-theoretically secure setting [8]. The point is that we can embed
the ring Fkq in some extension field of Fq in such a way that we can make the
operations of both algebraic structures, and in particular the products (in one
case the coordinatewise product, in the other the product in the extension field),
“somewhat compatible”: i.e., we map Fkq into a slightly larger field Fqm with some
dedicated linear “embedding” map φ, that satisfies that for any two vectors x,y
in Fkq the field product φ(x) · φ(y) contains all information about x ∗ y, in fact
there exists a “recovery” linear map ψ such that x ∗ y = ψ(φ(x) · φ(y)). The
pair (φ, ψ) is called a (k,m)-reverse multiplication friendly embedding (RMFE)
and was introduced in [5,8]. With such tool, [8] embeds k evaluations of a circuit
over Fq (i.e. an evaluation of an arithmetic circuit over Fkq with coordinatewise
operations) into one evaluation of a related circuit over Fqm , which is securely
computed via an information-theoretically secure MPC protocol for arithmetic
circuits over that larger field (more precisely the Beerliova-Hirt protocol [2]).
The use of that MPC protocol over Fqm is not black-box, however, as there are a
number of modifications that need to be done at multiplication and input gates,
for which certain additional correlated information has to be created in the pre-
processing phase. Note that the reason for introducing this technique was that
Beerliova-Hirt uses Shamir secret sharing schemes and hyperinvertible matrices,
two tools that are only available over large finite fields (larger than the number
of parties in the protocol).

4 I. Cascudo and J. S. Gundersen

1.1 Our contributions

In this paper we construct a new secure computation protocol in the dishonest
majority setting that allows to compute several instances of a boolean circuit
at an amortized cost.3 We do this by combining the embedding techniques from
[8] with the SPDZ methodology. As opposed to [8], where one of the points of
the embedding was precisely to use Shamir secret sharing, in our construction
vectors x ∈ Fk2 are still additively shared in Fk2 , and it is only the MACs which
are constructed and shared in the field F2m : the MAC of x will be α ·φ(x) where
φ is the embedding map from the RMFE. Only when processing a multiplication
gate, authenticated sharings where the data are shared as elements in F2m are
temporarily used. MACs are checked in a batched fashion at the output gate, at
which point the protocol aborts if discrepancies are found.

By this method we obtain a very efficient online phase where processing mul-
tiplication gates need each party to communicate around 10 bits4 per evaluation
of the circuit, for statistical security parameters like s = 64, 128 (meaning the
adversary can successfully cheat with probability at most 2−s, for which in our
protocols we need to set m ≥ s).

Our protocol can also be adapted to evaluating a single instance of a boolean
circuit by quite directly adapting the ideas in MiniMAC that we mentioned
above, based on organizing the circuit in layers, partitioning the layers in blocks
of gates and adding some preprocessing that allows to map each block into the
appropriate one in the next layer. The reason is that the maps used between
layers of gates are F2-linear, and essentially all we need to use is the F2-linearity
of the map φ from the RMFE. The actual complexity added by this transform-
ation is quite dependent on the topology of the circuit. Under some general
assumptions one can expect to add 2 bits of communication per gate.

Our online phase follows a similar pattern to MiniMAC in the sense that,
up to the output phase, every partial opening of a value in Fk2 takes place when
a partial opening of a C-encoding occurs in MiniMAC. Respectively, we need
to open values in F2m whenever MiniMAC opens C∗-encodings. At every multi-
plication gate, both protocols need to apply “re-encoding functions” to convert
encodings back to the base authentication scheme, which requires a preprocessed
pair of authenticated sharings of random correlated elements.

However, the encoding via RMFE we are using is more compact than the one
in MiniMAC; the comparison boils down to comparing the “expansion factor”
m/k of RMFEs with the ratio k∗/k between the dimensions of C∗ and C for
the best binary codes with good distances of C∗ [7]. We cut the communication
cost of multiplication gates by about half with respect to MiniMAC where those
binary codes are used. We achieve even better savings in the case of the output
gates since in this case MiniMAC needs to communicate full vectors of the same
length as the code, while the input and addition gates have the same cost.
3 Our ideas can be extended to arithmetic circuits over other small fields.
4 Here we assume that broadcasting messages of M bits requires to send M bits to
every other player, which one can achieve with small overhead that vanishes for large
messages [13, full version]

Title Suppressed Due to Excessive Length 5

We also compare the results with a modified version of MiniMAC proposed
by Damgård, Lauritsen and Toft [12], that allows to save communication cost
of multiplication gates, by essentially using MiniMAC over the field of 256 ele-
ments, at the cost of a much larger amount of preprocessing that essentially
provides authenticated sharings of bit decompositions of the F256-coordinates of
the elements in a triple, so that parties can compute bitwise operations. This
version achieves a communication complexity that is around 80% of that of our
protocol, due to the fact that this construction can make use of Reed-Solomon
codes. However, it requires to have created authenticated sharings of 19 ele-
ments, while ours need 5 and as far as we know there is no explicit preprocessing
protocol that has been proposed for this version of MiniMAC.

Finally we compare the results with Committed MPC [15], a secret-sharing
based protocol which uses (UC-secure) homomorphic commitments for authen-
tication, rather than information-theoretical MACs. In particular, this protocol
can also be used for boolean circuits, given that efficient constructions of ho-
momorphic commitments [16,10,9] over F2 have been proposed. These construc-
tions of homomorphic commitments also use error-correcting codes. We find that,
again, the smaller expansion m/k of RMFE compared to the relations between
the parameters for binary error-correcting codes provides an improvement in the
communication complexity of a factor ∼ 3 for security parameters s = 64, 128.

We also provide a preprocessing phase producing all authenticated sharings
of random correlated data that we need. The preprocessing follows the steps of
MASCOT [19] (see also [17]) based on OT extension, with some modifications
due to the slightly different authentication mechanisms we have and the different
format of our preprocessing. All these modifications are easily to carry out based
on the fact that φ and ψ are linear maps over F2. Nevertheless, using the “triple
sacrificing steps” from MASCOT that assure that preprocessed triples are not
malformed presents problems in our case for technical reasons. Instead, we use
the techniques from Committed MPC [15] in that part of the triple generation.

1.2 Related Work

The use of information-theoretical MACs in secret-sharing based multiparty
computation dates back to BeDOZa (Bendlin et al., [3]), where such MACs where
established between every pair of players. Later SPDZ (Damgård et al., [13]) in-
troduced the strategy consisting of a global MAC for every element of which
every party has a share, and whose key is likewise shared among parties. Tiny
OT (Nielsen et al., [21]), a 2-party protocol for binary circuits, introduced the
idea of using OT extension in the preprocessing phase. Larraia et al., [20] ex-
tended these ideas to a multi-party protocol by using the SPDZ global shared
MAC approach. MiniMAC (Damgård and Zakarias, [14]), as explained above,
used error-correcting codes in order to authenticate vectors of bits, allowing for
efficient parallel computation of several evaluations of the same binary circuits
on possibly different inputs. Damgård et al., [12] proposed several improvements
for the implementation of MiniMAC, among them the use of an error correcting

6 I. Cascudo and J. S. Gundersen

code over an extension field, trading smaller communication complexity for a lar-
ger amount of preprocessing. Frederiksen et al., [17] gave new protocols for the
construction of preprocessed multiplication triples in fields of characteristic two,
based on OT extension, and in particular provided the first preprocessing phase
for MiniMAC. MASCOT (Keller et al., [19]) built on some of these ideas to cre-
ate preprocessing protocols for SPDZ based on OT extension. Committed MPC
(Frederiksen et al., [15]) is a secret-sharing based secure computation protocol
that relies on UC-secure homomorphic commitments instead of homomorphic
MACs for authentication, but other than that, it follows a similar pattern to
the protocols above. Efficient constructions of UC-secure homomorphic commit-
ments from OT have been proposed by Frederiksen et al., [16] and Cascudo et
al., [10] based on error correcting codes. Later, in [9] a modified construction
from extractable commitments, still using error-correcting codes, was proposed
that presents an important advantage for its use in Committed MPC, namely
the commitment schemes are multi-verifier.

The notion of reverse multiplication friendly embedding was first explicitly
defined and studied in the context of secure computation by Cascudo et al. in
[8] and independently by Block et al. in [5]. The former work is in the context
of information-theoretically secure protocols, while the latter studied 2-party
protocols over small fields where the assumed resource is OLE over an extension
field. This is partially based on a previous work also by Block et al., [4] where
(asymptotically less efficient) constructions of RMFEs were implicitly used.

2 Preliminaries

Let Fq denote a finite fields with q elements. Vectors are denoted with bold letters
as x = (x1, x2, . . . , xn) and componentwise products of two vectors are denoted
by x∗y = (x1 ·y1, x2 ·y2, . . . , xn ·yn). Fixing an irreducible polynomial f of degree
m in Fq[X], elements in the field Fqm with qm elements can be represented as
polynomials in Fq[X] with degreem−1, i.e α = α0+α1 ·X+· · ·+αm−1 ·Xm−1 ∈
Fqm , where αi ∈ Fq. The sums and products of elements are defined modulo f .

In our protocols we will assume a network of n parties who communicate by
secure point-to-point channels, and an static adversary who can actively corrupt
up to n − 1 of these parties. Our proofs will be in the universal composable
security model [6] (see Appendix C for a brief description of that model).

We recall the notion of reverse multiplication friendly embeddings from [8].

Definition 1. Let k,m ∈ Z+. A pair of Fq-linear maps (φ, ψ), where φ : Fkq →
Fqm and ψ : Fqm → Fkq is called a (k,m)q-reverse multiplication friendly embed-
ding (RMFE) if for all x,y ∈ Fkq

x ∗ y = ψ(φ(x) · φ(y))

In other words, this tool allows to multiply coordinatewise two vectors over Fq
by first embedding them in a larger field with φ, multiplying the resulting images
and mapping the result back to a vector over Fq with the other map ψ.

Title Suppressed Due to Excessive Length 7

Several results about the existence of such pairs can be found in [8], both in
the asymptotic and concrete settings. For our results we will only need the fol-
lowing construction, which can be obtained via simple interpolation techniques:

Theorem 1 ([8]). For all r ≤ 33, there exists a (3r, 10r − 5)2-RMFE.

For completion we describe how to construct these RMFE in Appendix B.1.
However, we remark that for implementations, it might be more useful to

consider the following constructions of RMFEs which can also be deduced from
the general framework in [8] (also based on polynomial interpolation). They have
worse rate k/m than those in Theorem 1, but they have the advantage that their
image can be in a field of degree a power of two, e.g. Fqm = F264 or F2128 .

Theorem 2. For any r ≤ 16, there exists a (2r, 8r)2-RMFE.5

For our numerical comparisons we will mainly consider the constructions with
better rate in Theorem 1 and point out that, should one want to use Theorem 2
instead, then some small overhead in communication is introduced.

It is important to understand some properties and limitations of the RMFEs.
Because φ and ψ are Fq-linear then

φ(x+ y) = φ(x) + φ(y), ψ(x+ y) = ψ(x) + ψ(y)

holds for all x,y ∈ Fkq and x, y ∈ Fqm . However, for example

φ(x ∗ y) 6= φ(x) · φ(y)

in general. Likewise we will need to take into account that the composition
φ ◦ ψ : Fqm → Fqm is a linear map over Fq but not over Fqm . Therefore

(φ ◦ ψ)(x+ y) = (φ ◦ ψ)(x) + (φ ◦ ψ)(y) for all x, y ∈ Fqm , but
(φ ◦ ψ)(α · x) 6= α · (φ ◦ ψ)(x)

for α, x ∈ Fqm in general (it does hold when α ∈ Fq, but this is not too relevant).
These limitations on the algebra of φ and ψ posed certain obstacles in the

information-theoretical setting [8], since processing multiplication gates required
to compute gates given by the map φ◦ψ, and this cannot be treated as a simple
linear gate over Fqm . The additivity of φ ◦ ψ combined with certain involved
preprocessing techniques saved the day there. For completion (and comparison
to our paper) we sum up some of the main details of [8] in Appendix B.2. In our
case, we will again encounter problems caused by these limitations as we explain
next, but can solve them in a different way.

5 Specifically the result is obtained by noticing that the proof of Lemma 4 in [8] can
also be used to show the existence of (k, 2k)q-RMFE for any q ≤ k + 1, and then
composing (2, 4)2 and (r, 2r)16-RMFEs in the manner of Lemma 5 in the same paper.

8 I. Cascudo and J. S. Gundersen

3 The online phase

In this section we present our protocol for computing simultaneously k instances
of a boolean circuit in parallel, which we can see as computing one instance of
an arithmetic circuit over the ring Fk2 of length k boolean vectors with coordin-
atewise sum and product.

Our strategy is to have mixed authenticated sharings: inputs and the rest of
values in the computation x are additively shared as vectors over Fk2 (we refer to
this as data shares), but their MACs are elements α ·φ(x) in the larger field F2m ,
where α ∈ F2m is (as in SPDZ) a global key that is additively shared among
the parties from the beginning (with α(i) denoting the share for party Pi), and
parties hold additive shares of α · φ(x) also in the field F2m (the MAC shares).
We will denote the authentication of x by 〈x〉. That is

〈x〉 =
(
(x(1),x(2), . . . ,x(n)), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)
where each party Pi holds an additive share x(i) ∈ Fk2 and a MAC sharem(i)(x) ∈
F2m , such that

∑n
i=1m

(i)(x) = α ·
∑n
i=1 φ(x

(i)) = α · φ(x).
The additivity of φ guarantees that additions can still be computed locally,

and we can define 〈x〉 + 〈y〉 = 〈x + y〉 where every party just adds up their
shares for both values. Moreover, given a public vector a and 〈x〉, parties can
also locally compute an authenticated sharing of a+ x as

a+〈x〉 =
(
(x(1)+a,x(2),. ..,x(n)),(α(1) ·φ(a)+m(1)(x),. ..,α(n) ·φ(a)+m(n)(x))

)
This allows to easily process addition with constants. Moreover, this also allows
us to explain how inputs are shared in the first place. In the preprocessing phase
parties have created for each input gate an authenticated random values 〈r〉
where r is known to the party that will provide the input x at that gate. This
party can just broadcast the difference ε = x − r, and then parties simply add
ε+ 〈r〉 = 〈x〉 by the rule above.

As in SPDZ, parties in our protocol do not need to open any MAC until
the output gate. At the output gate, the parties check MACs on random linear
combinations of all values partially opened during the protocol, ensuring that
parties have not cheated except with probability at most 2−m (we need that
m ≥ s if s is the statistical security parameter); then, they open the result of
the computation and also check that the MAC of the result is correct.

A harder question, as usual, is how to process multiplication gates; given 〈x〉,
〈y〉 parties need to compute 〈x∗y〉 which implies not only obtaining an additive
sharing of x ∗ y but also of its MAC α · φ(x ∗ y). If we try to apply directly the
well-known Beaver’s technique [1] we encounter the following problem. Suppose
we have obtained a random triple 〈a〉,〈b〉,〈a ∗ b〉 from the preprocessing phase
and, proceeding as usual, parties partially open the values ε = x−a, δ = y−b (a
partially opening is an opening of the shares but not the MAC shares). From here,
computing data shares for x ∗ y is easy; however, the obstacle lies in computing

Title Suppressed Due to Excessive Length 9

shares of α · φ(x ∗ y). Indeed

α · φ(x ∗ y) = α · φ(a ∗ b) + α · φ(a ∗ δ) + α · φ(ε ∗ b) + α · φ(ε ∗ δ),

and the two terms in the middle present a problem: for example for α · φ(a ∗ δ)
we have by the properties of the RMFE

α · φ(a ∗ δ) = α · φ(ψ(φ(a) · φ(δ))) = α · (φ ◦ ψ)(φ(a) · φ(δ))

However, φ ◦ψ is only F2-linear, and not F2m-linear, so we cannot just “take
α inside the argument” and use the additive sharing of α · φ(a) given in 〈a〉 to
compute a sharing of the expression above. Instead, we use a two-step process
to compute multiplication gates, for which we need to introduce regular SPDZ
sharings on elements x ∈ F2m . I.e. both x and its MAC α ·x are additively shared
in F2m . We denote these by [x], that is

[x] =
(
(x(1),x(2),. ..,x(n)),(m(1)(x),m(2)(x),. ..,m(n)(x))

)
,

where Pi will hold x(i) and m(i)(x) ∈ F2m with
∑n
i=1m

(i)(x) = α ·
∑n
i=1x

(i).
To carry out the multiplication we need to preprocess a triple (〈a〉,〈b〉,〈c〉)

where c = a ∗b, and a pair of the form (〈ψ(r)〉, [r]) where r is a random element
in F2m . In the first step of the multiplication we compute and partially open

[σ] = [φ(x) · φ(y)− φ(a) · φ(b)− r]. (1)

This can be computed from the ε and δ described above (details will be given
later). In the second step, we create 〈x ∗ y〉 from (1) by using the properties of
the RMFE; namely, x∗y = ψ(φ(x) ·φ(y)) and a∗b = ψ(φ(a) ·φ(b)), so applying
ψ on σ in (1) yields x ∗ y − a ∗ b− ψ(r) because of the additivity of ψ. Adding
〈a ∗ b〉+ 〈ψ(r)〉 (the yet unused preprocessed elements) gives 〈x ∗ y〉.

We still need to explain how to construct [σ]. For this we introduce some al-
gebraic operations on the two types of authenticated sharings and public values.
First given a public vector a and a shared vector x we define:

a ∗ 〈x〉 =
(
(φ(a) · φ(x(1)),. ..,φ(a) · φ(x(n))),(φ(a) ·m(1)(x),. ..,φ(a) ·m(n)(x))

)
Note that the data shares are shares of φ(a) · φ(x), which is an element of F2m ,
and the MAC shares also correspond to additive shares of α·φ(a)·φ(x). However,
the data shares are not distributed uniformly in F2m because φ is not surjective,
so one cannot say this equals [φ(a) · φ(x)]. Nevertheless, given another [z], with
z ∈ F2m , it is true that a ∗ 〈x〉+ [z] = [φ(a) ·φ(x)+ z] where the sum on the left
is defined by just local addition of the data and MAC shares. We also define

〈x〉+ [y] =
(
(φ(x(1)) + y(1),. ..,φ(x(n)) + y(n)),

(m(1)(x) +m(1)(y),. ..,m(n)(x) +m(n)(y))
)
= [φ(x) + y]

10 I. Cascudo and J. S. Gundersen

Now, given 〈x〉,〈y〉 and a triple 〈a〉,〈b〉,〈a ∗ b〉, parties can open ε = x − a,
δ = y − b and construct

ε ∗ 〈y〉+ δ ∗ 〈x〉 − φ(ε) · φ(δ)− [r] = [φ(ε) · φ(y) + φ(δ) · φ(x)− φ(ε) · φ(δ)− r]
= [φ(x) · φ(y)− φ(a) · φ(b)− r],

where the latter equality can be seen by developing the expressions for ε and δ,
and using the additivity of φ. The obtained sharing is the [σ] we needed above .
Summing up, the whole multiplication gate costs 2 openings of sharings of vectors
in Fk2 and one opening of a share of an element in F2m . Every multiplication gate
requires fresh preprocessed correlated authenticated sharings (〈a〉,〈b〉,〈a ∗ b〉)
and (〈ψ(r)〉, [r]) for random a,b,r.

We present formally the online protocol we just explained, the functionality it
implements, and the functionalities needed from preprocessing. The functionality
constructing the required preprocessed randomness is given in Figure 2, and
relies on the authentication functionality in Figure 1. The latter augments the
one in MASCOT [19] allowing to also authenticate vectors and to compute linear
combinations involving the two different types of authenticated values and which
can be realized by means of the [·]- and 〈·〉-sharings.

The functionality for our MPC protocol is in Figure 3 and the protocol im-
plementing the online phase is in Figure 4.

Theorem 3. ΠOnline securely implements FMPC in the FPrep-hybrid model.

Proof. The correctness follows from the explanation above. For more details we
refer Appendix A.1, but we also note that the online phase from this protocol
is similar to the online phases of protocols such as [13,14,15,19], except that in
every multiplication we additionally need to use the pair (〈ψ(r)〉, [r]) in order to
transform a [·]-sharing into 〈x ∗y〉. However, since r is uniformly random in the
field F2m , the opened value σ masks any information on x, y.

3.1 Comparison with MiniMAC and Committed MPC

We compare the communication complexity of our online phase with that of
MiniMAC [14] and Committed MPC [15], two secret-sharing based MPC proto-
cols which are well-suited for simultaneously evaluating k instances of the same
boolean circuit. We will count broadcasting a message of M bits as communic-
ating M(n − 1) bits (M bits to each other party). This can be achieved using
point-to-point channels as described in the full version of [13].

Communication complexity of our protocol. Partially opening a 〈·〉-au-
thenticated secret involves 2k(n − 1) bits of communication, since we have one
selected party receive the share of each other party and broadcast the recon-
structed value. Likewise, partially opening a [·]-authenticated value communi-
cates 2m(n − 1) bits. In our online phase, every input gate requires k(n − 1)

Title Suppressed Due to Excessive Length 11

Functionality FAuth

The functionality maintains two dictionaries Val and ValField, to keep track of au-
thenticated values. We remark that we can store elements from Fk2 in Val and elements
from F2m in ValField. Entries in the dictionaries cannot be changed.
1. Input: On input

(Input,(id1, id2, .. .ids),(id
′
1, id

′
2, .. .id

′
t),(x1,x2, .. . ,xs),(x1,x2, .. . ,xt),Pi)

from Pi and (Input,(id1, id2, .. .ids),(id
′
1, id

′
2, .. .id

′
t),Pi) from all other parties, set

Val[idj] = xj for j = 1,2, .. . ,s and ValField[id′j] = xj for j = 1,2, .. . ,t.
2. Add: On input (Add, īd, id,a)) from all parties. If a is an id store Val[īd] = Val[id]+

Val[a]. If a is a vector in Fk2 store Val[īd] = Val[id] + a.
3. LinComb: On input

(LinComb, īd,(id1, id2, .. .ids),(id
′
1,id

′
2, .. .id

′
t),a1,a2, .. . ,as+t,a)

from all parties, where aj is in F2m or Fk2 and t ≥ 1. Define ãj to be aj if aj ∈ F2m ,
and φ(aj) if aj ∈ Fk2 , and store ValField[īd] =

∑s
j=1 ãj · φ(Val[idj]) +

∑t
j=1 ãs+j ·

ValField[id′j] + ã.
4. Open: On input (Open,Dict,id,S) from all parties, where S is a non-empty subset

of parties. If Dict = Val and Val[id] 6= ⊥ wait for an x from the adversary and
send x to the honest parties in S. If Dict = ValField and ValField[id] 6= ⊥ wait for
an x from the adversary and send x to the parties in S.

5. Check: On input

(Check,(id1, id2, .. . ,ids),(id
′
1, id

′
2, .. . ,id

′
t),(x1,x2, .. . ,xs),(x1,x2, .. . ,xt))

from every party wait for an input from the adversary. If they input OK, Val[idj] =
xj for j = 1,2, .. . ,s and ValField[id′j] = xj for j = 1,2, .. . ,t return OK to all parties.
Otherwise abort.

Notation: We will use the notation 〈x〉 to refer to a value x ∈ Fk2 stored in Val,
and the notation [x] to refer to a value x ∈ F2m stored in ValField.

Figure 1. Functionality – Authentication

Functionality FPrep

This functionality has the same features as FAuth along with the following commands.
1. InputPair: On input (InputPair,id,Pi) from all parties let Pi choose r ∈ Fk2 at

random and call FAuth with input (Input, id,r,Pi) to obtain 〈r〉. Output 〈r〉 to all
parties and r to Pi.

2. ReEncodePair: On input (ReEncodePair, id1, id2) sample a random field element
r ∈ F2m and set Val[id1] = ψ(r) and ValField[id2] = r.

3. Triple: On input (Triple, ida, idb, idc) from all parties, sample two random vectors
a,b ∈ Fk2 and set (Val[ida],Val[idb],Val[idc]) = (a,b,a ∗ b).

Figure 2. Functionality – Preprocessing

12 I. Cascudo and J. S. Gundersen

Functionality FMPC

1. Initialize: On input Init from all players setup an empty dictionary Val.
2. Input: On input (Input, id,x,Pi) from Pi and (Input, id,Pi) from all other parties

where x ∈ Fk2 and Val[id] = ⊥ set Val[id] = x.
3. Add: On input (Add,id1, id2, id3) from all parties where Val[id1] 6= ⊥ and

Val[id2] 6= ⊥, set Val[id3] = Val[id1] + Val[id2].
4. Multiply: On input (Mult, id1,id2, id3) from all parties where Val[id1] 6= ⊥ and

Val[id2] 6= ⊥, set Val[id3] = Val[id1] ∗Val[id2].
5. Output: On input (Output,id) from all parties when Val[id] 6= ⊥ retrieve z =

Val[id] and send z to the adversary. Wait for an input from the adversary, if the
adversary inputs OK send z to the honest parties. Otherwise abort.

Figure 3. Functionality – MPC

Protocol ΠOnline

1. Initialize: The parties call the preprocessing functionality FPrep to obtain input
pairs (r,〈r〉) for each party, re-encode pairs (〈ψ(r)〉, [r]), and multiplication triples
(〈a〉,〈b〉,〈c〉).

2. Input: For an input gate for which Pi has input x ∈ Fk2 the parties do the following
(a) Pi takes a pair (r,〈r〉) and broadcasts ε = x− r.
(b) The parties compute 〈x〉 = ε + 〈r〉.

3. Add: To compute componentwise addition of 〈x〉 and 〈y〉 the parties locally com-
pute 〈x + y〉 = 〈x〉+ 〈y〉.

4. Multiply: To compute a componentwise multiplication of 〈x〉 and 〈y〉, take the
next available multiplication triple (〈a〉,〈b〉,〈c〉) and pair (〈ψ(r)〉, [r]).
(a) Set 〈ε〉 = 〈x〉 − 〈a〉 and 〈δ〉 = 〈y〉 − 〈b〉 and partially open ε and δ.
(b) Compute [σ] = ε∗〈y〉+δ ∗〈x〉−φ(ε) ·φ(δ)− [r] = [φ(x) ·φ(y)−φ(a) ·φ(b)−r]

and partially open σ.
(c) Compute ψ(σ) + 〈c〉+ 〈ψ(r)〉 = 〈x ∗ y〉 and output this value.

5. Output: This stage is entered when the players have an unopened sharing 〈z〉
which they want to output. Let x1,x2, .. . ,xs be all opened 〈·〉-sharings, i.e. xj ∈ Fk2
and let x1,x2, .. . ,xt be all opened [·]-sharings, i.e. xj ∈ F2m . The parties do the
following:
(a) Call FAuth.Check with inputs (x1,x2, .. . ,xs) and (x1,x2, .. . ,xt).
(b) If the check passes, partially open z.
(c) Call FAuth.Check with input z
(d) If the check passes, output z to all parties.

Figure 4. Online phase

bits of communication. Multiplication gates require the partial opening of two
〈·〉-authenticated values and one [·]-authenticated value, hence (4k+2m)(n− 1)
bits of communication. An output gate requires to do a MAC-check on (a linear
combination of) previously partially opened values, then partially opening the
output, and finally doing a MAC check on the output. A MAC check require
every party to communicate a MAC share in F2m , for a total of mn bits com-
municated. Hence output gates require 2k(n− 1) + 2mn bits of communication.

Title Suppressed Due to Excessive Length 13

MiniMAC. MiniMAC uses a linear error correcting code C with parameters
[`,k,d] (i.e., it allows for encoding of messages from Fk2 into F`2 and has minimum
distance d). Parties have additive shares of encodings C(x), where the shares
are also codewords, and shares of the MAC α ∗ C(x), which can be arbitrary
vectors in F`2. In addition, at multiplication gates C∗-encodings of information
are needed, where C∗ is the code C∗ = span{x ∗ y | x,y ∈ C}, the smallest
linear code containing the coordinatewise product of every pair of codewords
in C∗, with parameters [`,k∗,d∗]. We always have d ≥ d∗, and the cheating
success probability of the adversary in the protocol is 2−d

∗
, so we need d∗ ≥

s for the statistical parameter s. The online phase of MiniMAC has a very
similar communication pattern to ours: a multiplication requires to open two
elements encoded with C (coming from the use of Beaver’s technique) and one
encoded with C∗. Since shares of C-(resp C∗-)encodings are codewords in C
(resp C∗), and describing such codewords require k bits (resp. k∗ bits)6 the
total communication complexity is (4k + 2k∗)(n− 1), so the difference with our
protocol depends on the difference between the achievable parameters for their
k∗ and our m, compared below. Input gates require k(n− 1) bits, as in our case,
and for output gates, since MAC shares are arbitrary vectors in F`2, a total of
2k(n− 1) + 2`n bits are sent. See Appendix B.3 for more details on this.

Committed MPC. Committed MPC [15] is a secret-sharing based MPC pro-
tocol that relies on UC-secure additively homomorphic commitments for authen-
tication, rather than on MACs. Efficient commitments of this type have been
proposed in works such as [16,10,9] where the main ingredient7 is again a lin-
ear error correcting code C with parameters [`,k,d]. In committed MPC, for
every x ∈ Fk2 , each party Pi holds an additive share xi ∈ Fk2 to which she com-
mits towards every other party Pj (in the multi-receiver commitment from [9],
this can be accomplished by only one commitment). During most of the online
phase there are only partial openings of values and only at output gates the
commitments are checked. Multiplication is done through Beaver’s technique. In
this case only two values ε, δ are partially opened. In exchange, parties need
to communicate in order to compute commitments to δ ∗ a (resp. ε ∗ b) given
δ, and commitments to a (resp. ε and commitments to b) at least with cur-
rent constructions for UC-secure homomorphic commitments. [15, full version,
fig. 16] provides a protocol where each of these products with known constant
vectors requires to communicate one full vector of length ` and two vectors of k∗
components (again ` is the length of C and k∗ is the dimension of C∗). In total
the communication complexity of a multiplication is (4k + 2k∗ + `)(n− 1) bits.
Output gates require to open all the commitments to the shares of the output.
Since opening commitments in [16,10,9] requires to send two vectors of length

6 We observe that this is more lenient than the description of MiniMAC in [14,12]
where it is implied that ` bits need to be sent in order to do these openings.

7 The constructions rely also on OT (in the first two cases) and extractable commit-
ments (in the third) but these primitives are only used in a preprocessing phase.

14 I. Cascudo and J. S. Gundersen

` to every other party, which has a total complexity of 2`(n − 1)n. Input gates
have the same cost as the other two protocols.

Concrete parameters. Summing up we compare the communication costs of
multiplication and output gates in Table 1 since these are the gates where the
communication differs.

MiniMAC Committed MPC Our protocol
Multiply (4k + 2k∗)(n− 1) (4k + 2k∗ + `)(n− 1) (4k + 2m)(n− 1)
Output 2 · ` · n+ 2k(n− 1) 2 · ` · (n− 1)n 2 ·m · n+ 2k(n− 1)

Table 1. Total number of bits communicated in the different gates in the online phases,
when computing k instances of a boolean circuit in parallel. Communication per party
is obtained dividing by n.

The key quantities are the relation between m/k (in our case) and k∗/k and
`/k in the other two protocols. While the possible parameters `,k,d of linear
codes have been studied exhaustively in the theory of error-correcting codes,
relations between those parameters and k∗, d∗ are much less studied, at least in
the case of binary codes. As far as we know, the only concrete non-asymptotic
results are given in [7,11]. In particular, the parameters in Table 2 are achievable.

` k d ≥ k∗ d∗ ≥ k∗/k `/k
2047 210 463 1695 67 8.07 9.75
4095 338 927 3293 135 9.74 12.11

Table 2. Parameters for C and C∗2

from [7].

k m m/k
21 65 3.10
42 135 3.21

Table 3. Parameters for RMFE
from [8].

On the other hand, the parameters for our protocol depend on parameters
achievable by RMFEs. By Theorem 1 for all 1 ≤ r ≤ 33, there exists a RMFE
with k = 3r and m = 10r − 5. Some specific values are shown in Table 3.

This leads to the communication complexities per computed instance of the
boolean circuit for security parameters s = 64 and s = 128 given in Table 4.
For larger security parameter, the comparison becomes more favourable to our
technique, since the “expansion factor” m/k degrades less than the one for known
constructions of squares of error correcting codes.

If instead we want to use Theorem 2, so that we can define the MACs over
a field of degree a power of two, then the last column would have complexities
12 · (n− 1) and 8 · n+ 2(n− 1) in both the cases s = 64 and s = 128.

Comparison with an online communication-efficient version of Min-
iMAC. In [12], a version of MiniMAC is proposed which uses linear codes over

Title Suppressed Due to Excessive Length 15

Sec. par. Phase MiniMAC Committed MPC Our protocol

s = 64
Multiply 20.14 · (n− 1) 29.89 · (n− 1) 10.2 · (n− 1)
Output 19.5 · n+ 2(n− 1) 19.5 · (n− 1)n 6.2 · n+ 2(n− 1)

s = 128
Multiply 23.48 · (n− 1) 35.58 · (n− 1) 10.42 · (n− 1)
Output 24.22 · n+ 2(n− 1) 24.22 · (n− 1)n 6.42 · n+ 2(n− 1)

Table 4. Total number of bits sent per instance at multiplication and output gates

the extension field F256. The larger field enables to use a Reed-Solomon code, for
which k∗ = 2k − 1. However, because this only gives coordinatewise operations
in Fk256, the protocol needs to be modified in order to allow for bitwise oper-
ations instead. The modified version requires the opening of two C∗-encodings
at every multiplication gate and a more complicated and much larger prepro-
cessing, where in addition to creating certain type of multiplication triple, the
preprocessing phase needs to provide authenticated sharings of 16 other vectors
created from the bit decompositions of the coordinates of the two “factor” vec-
tors in the triple. As far as we know, no preprocessing phase that creates these
authenticated elements has been proposed.

The amortized communication complexity of that protocol is of 8(n− 1) bits
per multiplication gate, per instance of the circuit, which is slightly less than 80%
of ours. On the other hand, we estimate that the complexity of the preprocessing
would be at least 4 times as that of our protocol and possibly larger, based on
the number of preprocessed elements and their correlation.

Computation and storage. In terms of storage, each authenticated share of
a k-bit vector is m+ k bits, which is slightly over 4 bits per data bit. MiniMAC
and Committed MPC require a larger storage of ` + k bits because the MAC
shares/commitments are in F`2. In [12] shares are also 4 bits per data bit because
of using RS codes, but the amount of preprocessed data is much larger. In
terms of computation, while our protocol does slightly better for additions (again
because of the shorter shares, and since the addition in F2m is as in Fm2), and
the same happens with additions required by multiplication gates, computing
the terms ε ∗ 〈y〉, δ ∗ 〈x〉, φ(ε) · φ(δ) requires in total 5 multiplications in F2m

which, being field multiplications, are more expensive than the coordinatewise
ones required by MiniMAC, even if some of them are in a larger space F`2.

4 From batch computations to single circuit computations

We explain now how to adapt our protocol, which was presented as a protocol
for the simultaneous secure evaluation of k instances of the same boolean cir-
cuit, into a protocol that computes a single evaluation of a boolean circuit with
little overhead, as long as the circuit is sufficiently “well-formed”. This is a quite
straightforward adaptation of the ideas presented in [14]. The technique can be
used in general for any boolean circuit but it works better when the circuit
satisfies a number of features, which we can loosely sum up as follows:

16 I. Cascudo and J. S. Gundersen

– The circuit is organized in layers, each layer consisting of the same type of
gate (either additive or multiplicative). We number the layers in increasing
order from the input layer (layer 0) to the output layer.

– For most layers, the number of gates u is either a multiple of k or large
enough so that the overhead caused by the need to add u′ dummy gates to
obtain a multiple of k and compute the gates in batches of k is negligible.

– For most pairs of layers i and j, where i < j, the number of output bits from
layer i that are used as inputs in layer j is either 0 or sufficiently large so
that we do not incur in much overhead by adding dummy outputs or inputs
(again to achive blocks of size exactly k).

The idea from [14] is that given a layer of u gates, where we can assume u = t ·k
we organize the inputs of the layers in t blocks of k gates, and we will compute
each block by using the corresponding subroutine in our protocol.

For that we need to have authenticated shared blocks of inputs 〈x〉, 〈y〉
where the i-th coordinates xi,yi are the inputs of the i-th gate in the block.
This assumes gates are of fan-in 2. For the case of addition gates, we can also
support of course arbitrary fan-in gates, but then we want to have the same
fan-in in every gate in the same block, again to avoid overheads where we need
to introduce dummy 0 inputs. In any case at the end of the computation of this
layer we obtain t authenticated sharings 〈z〉.

The question is how to now transition to another layer j. Let us assume that
layer j takes inputs from l blocks 〈x1〉,. ..,〈xl〉 of k bits each coming from some
previous layer. Of course the issue is that we are not guaranteed that we can
use these as input blocks for the layer j. We will likely need to reorganize the
bits in blocks, we may need to use some of the bits more than once, and we
may not need to use some of the bits of some output blocks. At first sight this
reorganization may look challenging, because note that the bits of each xi can
be “quite intertwined” in the MAC α · φ(xi).

However in all generality, we can define l′ functions F1,. ..,Fl′ : Fkl2 → Fk2
such that if we write X = (x1,x2,. ..,xl) the concatenation of the output blocks,
then F1(X),. ..,Fl′(X) are the input blocks we need. These maps are F2-linear; in
fact, each of the coordinates of each Fi are either a projection to one coordinate
of the input or the 0-map. We assume that all these reorganizing functions can
be obtained from the description of the function and therefore they are known
and agreed upon by all parties.

Calling F = (F1,F2,. ..,Fl′), suppose we can obtain by preprocessing

((〈r1〉,〈r2〉,. ..,〈rl〉),(〈F1(R)〉,〈F2(R)〉,. ..,〈Fl′(R)〉),

where R = (r1,r2,. ..,rl) is again the concatenation in Fkl2 . To ease the notation
we will write (〈R〉,〈F (R)〉) and call this a reorganizing pair.

Then, reorganizing is done in the following way. The parties compute 〈xj〉 −
〈rj〉 and open these values for j = 1,2,. ..,l. Afterwards, they compute

Fj(x1 − r1,. ..,xl − rl) + 〈Fj(r1,. ..,rl)〉 = 〈Fj(x1,. ..,xl)〉

which holds by the linearity of Fj .

Title Suppressed Due to Excessive Length 17

We can add this property to our setup above by including the supplements
in Figure 5 to FPrep, FMPC, and ΠOnline. Apart from this we also need to point
out that at the input layer, a party may need to add dummy inputs so that her
input consists of a number of blocks of k bits.

Functionality FPrep (supplement)
4. ReOrgPair: On input (ReOrgPair,F,(id1, id2, .. . ,idl),(id

′
1, id

′
2, .. . ,id

′
l′)) where

F = (F1,F2, .. . ,Fl′), sample l random vectors r1,r2, .. . ,rl and set Val[idj],= rj
for j = 1,2, .. . ,l and Val[id′j],= Fj(r1,r2, .. . ,rl) for j = 1,2, .. . ,l′.

Functionality FMPC (supplement)
6. Reorganize: On input (ReOrg,F,(id1, id2, .. . ,idl),(id

′
1, id

′
2, .. . ,id

′
l′) compute

F (Val[id1],Val[id2], .. . ,Val[idl]) = (z1,z2, .. . ,zl′). Set Val[id′j] = zj for j =
1,2, .. . ,l′.

Protocol ΠOnline (supplement)
6. Reorganize: To reorganize between the layers, take a corresponding reorganizing

pair (〈R〉,〈F (R)〉).
(a) Compute 〈εj〉 = 〈xj〉 − 〈rj〉 and open εj for j = 1,2, .. . ,l.
(b) Compute Fj(ε1,ε2, .. . ,εl)+ 〈Fj(R)〉 = 〈Fj(x1,x2, .. . ,xl)〉 for j = 1,2, .. . ,l′ and

input these to the next layer.

Figure 5. Reorganizing supplement

Of course, it looks as though we have moved the problem to the preprocessing
phase, as we still need to construct the reorganizing random pairs (〈R〉,〈F (R)〉).
But this will be easy because of the F2-linearity of the maps φ and F .

The communication complexity of each reorganizing round is that of opening
l vectors in Fk2 , therefore 2lk(n − 1) bits of communication. Therefore, the effi-
ciency of this technique clearly depends much on the topology of the circuit. For
example if all the output bits of a given layer are used in the next layer and only
there, then we can say that this technique adds roughly 2 bits of communication
per party per gate.

5 Preprocessing

In this section, we present how to obtain the preprocessed correlated informa-
tion we need in our online protocols. The implementation of authentication and
construction of multiplication triples is adapted in a relatively straightforward
way from MASCOT. This is because MASCOT is based on bit-OT extension,
and working bit-by-bit is well suited for our situation because of the maps φ,ψ
being F2-linear. For the preprocessing of multiplication triples we do need to
introduce some auxiliary protocols with respect to MASCOT: one is the pre-
processing of reencoding pairs (〈ψ(r)〉,[r]) that we anyway need for the online

18 I. Cascudo and J. S. Gundersen

protocol; another one creates [r] for a random r in the kernel of ψ, which we need
in order to avoid some information leakage in the sacrifice step. Both types of
preprocessing can be easily constructed based on the F2-linearity of ψ. Finally,
we use the sacrifice step in Committed MPC, rather than the one in MASCOT,
because of some technical issues regarding the fact that the image of φ is not
the entire F2m which creates problems when opening certain sharings.

Prep

InputPair ReOrgPair ReEncodePair Triple

Auth

RanKer

Comm Rand COPEe ROT

Figure 6. Overview of dependency of the protocols needed for the preprocessing.

Aside from the aforementioned multiplication triples (〈a〉,〈b〉,〈c〉) where c =
a∗b, for the online phase we also need to generate input pairs (r,〈r〉), reencoding
pairs of the form (〈ψ(r)〉, [r]), and (in case we want to use the techniques in
Section 4) layer reorganizing pairs (〈R〉,〈F (R)〉).

To obtain an overview of the way the functionalities presented in this section
are dependent on each consider Figure 6. We use the following basic ideal func-
tionalities: parties can generate uniform random elements in a finite set using
the functionality FRand (for the sake of notational simplicity we omit referring
to FRand in protocols). Moreover, parties have access to a commitment function-
ality FComm, see Figure 7. We will also make use of a functionality Fn,kROT that
implements n 1-out-of-2 oblivious transfers of k-bit strings (Figure 8).

We adapt the correlated oblivious product evaluation functionality FCOPEe

defined in MASCOT [19]. We recall how this functionality works: we again see
the field F2m as F2[X]/(f) for some irreducible polynomial f ∈ F2[X]. Then
{1,X,X2,. ..,Xm−1} is a basis for F2m as a F2-vector space. The functionality
as described in [19] takes an input α ∈ F2m from one of the parties PB in the
initialization phase; then there is an arbitrary number of extend phases where
on input x ∈ F2m from PA, the functionality creates additive sharings of α · x
for the two parties. However, if PA is corrupted it may instead decide to input a
vector of elements (x0,x1,. ..,xm−1) ∈ (F2m)

m, and in that case the functionality
outputs a sharing of

∑m−1
i=0 xi · αi ·Xi (where αi are the coordinates of α in the

Title Suppressed Due to Excessive Length 19

Functionality FRand

1. Upon receiving (Rand,S) from all parties, where S is a finite set, choose a uniform
random number r ∈ S and send it to all parties.

Functionality FComm

1. Upon receiving (Comm,x,Pi) from Pi and (Comm,Pi) from all other parties the
functionality stores x. When receiving an opening command from all parties, the
functionality sends x to all parties.

Figure 7. Functionalities – Randomness generation and Commitment

Functionality Fn,kROT
1. Upon receiving (ROT,Pi,Pj) from party Pi and (ROT,Pi,Pj ,b) from party Pj ,

where b ∈ {0,1}n, the functionality chooses rl0,r
l
1 ∈ {0,1}k uniformly at random

and sends these to Pi, while it sends rlbl to Pj for l = 1,2, .. . ,n.

Figure 8. Functionality – Random OT

above basis). The honest case would correspond to all xi being equal to x. This
functionality from MASCOT corresponds to the steps Initialize and ExtendField
in our version Figure 10. We augment this by adding the step ExtendVector,
where party PA can input a vector x ∈ Fk2 and the functionality outputs an
additive sharing of α ·φ(x) ∈ F2m . If party PA is corrupted it may instead input
(x0,x1,. ..,xm−1) ∈ (Fk2)m. In that case the functionality outputs an additive
sharing of

∑m−1
i=0 φ(xi) · αi · Xi, and note that this is more restrictive for the

corrupted adversary than ExtendField since the values φ(xi) are not free in F2m

but confined to the image of φ. We define the functionality FCOPEe in Figure 9
and present a protocol implementing the functionality in Figure 10.

Proposition 1. ΠCOPEe securely implements FCOPEe in the Fm,λOT -hybrid model.

Proof. The commands Initialize and ExtendField are as in [19] (the latter being
called Extend there). The proof for our ExtendVector command is analogous to
the one for the ExtendField except, as explained, because the ideal functionality
restricts the choice by a corrupt PA of the element that is secret shared. We
briefly show the simulation of ExtendVector together with Initialize.

If PB is corrupted, the simulator receives (α0,. ..,αm−1) from the adversary,
and simulates the initialization phase by sampling the seeds at random, and send-
ing the corresponding one to the adversary. It simulates the ExtendVector phase
by choosing ui uniformly at random in the corresponding domain, computes q as
an honest PB would do and inputs this to the functionality. Indistinguishability
holds by the pseudorandomness of F , as shown in [19].

If PA is corrupted then the simulator receives the seeds from the adversary
in the Initialize phase, and from there it computes all the tib in the ExtendVector
phase. Then when the adversary sends ui, the simulators extract xi = ui−ti0+ti1
and inputs t = −

∑m−1
i=0 φ(ti0) · Xi and (x1,x2,. ..,xm) to FCOPEe. In this case

all outputs are computed as in the real world and indistinguishability follows.

20 I. Cascudo and J. S. Gundersen

Functionality FCOPEe

This functionality runs with two parties PA and PB and an adversary A. The Initialize
phase is run once first. The ExtendVector and ExtendField may be run an arbitrary
number of times, in arbitrary order.
1. Initialize: On input α ∈ F2m from PB the functionality stores this value. We

identify α by the vector (α0,α1, .. . ,αm−1) ∈ Fm2 , s.t. α =
∑m−1
i=0 αi ·Xi.

2. ExtendVector: PA inputs a vector x ∈ Fk2 .
(a) If PA is corrupt receive t ∈ F2m and (x0,x1, .. . ,xm−1) ∈ (Fk2)m from A, where

the numbers indicate that xi might be different from x. Then compute q such
that q + t =

∑m−1
i=0 φ(xi) · αi ·Xi.

(b) If both parties are honest sample t ∈ F2m at random and compute q such that
q + t = α · φ(x).

(c) If only PB is corrupt then receive q ∈ F2m from A and compute t such that
q + t = α · φ(x).

(d) Output t to PA and q to PB .
3. ExtendField: PA inputs a field element x ∈ F2m .

(a) If PA is corrupt receive t ∈ F2m and (x0,x1, .. . ,xm−1) ∈ (F2m)m from A, where
the numbers indicate that xi might be different from x. Then compute q such
that q + t =

∑m−1
i=0 xi · αi ·Xi.

(b) If both parties are honest sample t ∈ F2m at random and compute q such that
q + t = α · x.

(c) If only PB is corrupt then receive q ∈ F2m fromA and compute t s.t. q+t = α·x.
(d) Output t to PA and q to PB .

Figure 9. Functionality – Correlated oblivious product evaluation with errors.

5.1 Authentication

In protocol ΠAuth (Figures 11, 12, and 13), we use FCOPEe to implement FAuth.

In the initialize phase each pair of parties (Pi,Pj) call the initialize phase from
FCOPEe where Pi inputs a MAC key. Afterwards Pj can create authenticated
sharings to the desired values, both of boolean vectors and of elements in the
larger field: namely Pj constructs additive random sharings of the individual
values and uses the appropriate extend phase of FCOPEe to obtain additive
sharings of the MACs. At last, a random linear combination of the values chosen
by Pj is checked. Here privacy is achieved by letting Pj include a dummy input
xt+1 to mask the other inputs.

Proposition 2. ΠAuth securely implements FAuth in the
(FCOPEe,FRand,FComm)-hybrid model

Proof. Since the proof is similar to the proof of security for Π[[·]] in [19], we point
out the differences and argue why it does not have an impact on the security.

First of all note that our functionality, in contrary to Π[[·]], has an Add
command and a LinComb command. This is because we reserve the LinComb
command for linear combinations which output [·]-sharings, while Add outputs
a 〈·〉-sharing. In any case, the Add and LinComb command consist of local

Title Suppressed Due to Excessive Length 21

Protocol ΠCOPEe

The protocol is a two party protocol with parties PA and PB that uses PRFs
F : {0,1}λ × {0,1}λ → Fk2 and FField : {0,1}λ × {0,1}λ → F2m , has access to the
ideal functionality Fm,λROT, and maintains a global counter j := 0. The Initialize phase
is run once first, and then the ExtendVector and ExtendField may be run an arbitrary
number of times, in arbitrary order.
1. Initialize: On input α ∈ F2m from PB :

(a) The parties engage in Fm,λROT where PB inputs (α0,α1, .. . ,αm−1) ∈ Fm2 s.t.
α =

∑m−1
i=0 αi ·Xi ∈ F2m . PA receives

{
(ki0,k

i
1)
}m−1

i=0
and PB receives kiαi for

i = 0,1, .. . ,m− 1.
2. ExtendVector: On input x ∈ Fk2 from PA:

(a) For i = 0,1, .. . ,m− 1:
i. Define ti0 = F (ki0,j) ∈ Fk2 , ti1 = F (ki1,j) ∈ Fk2 so PA knows (ti0,t

i
1) and

PB knows tiαi .
ii. PA sends ui = ti0 − ti1 + x to PB .
iii. PB computes qi = αi · ui + tiαi = ti0 + αi · x ∈ Fk2 .

(b) j := j + 1
(c) PB outputs q =

∑m−1
i=0 φ(qi) ·Xi and PA outputs t = −

∑m−1
i=0 φ(ti0) ·Xi

3. ExtendField: On input x ∈ F2m from PA:
(a) For i = 0,1, .. . ,m− 1:

i. Define ti0 = FField(ki0,j) ∈ F2m ,t
i
1 = FField(ki1,j) ∈ F2m , so PA knows

(ti0,t
i
1) and PB knows tiαi .

ii. PA sends ui = ti0 − ti1 + x to PB .
iii. PB computes qi = αi · ui + tiαi .

(b) j := j + 1.
(c) PB outputs q =

∑m−1
i=0 qi ·Xi and PA outputs t = −

∑m−1
i=0 ti0 ·Xi.

Figure 10. Correlated oblivious product evaluation with errors.

computations so it is trivial to argue their security. The Initialize command only
invokes the Initialize command from the ideal functionality FCOPEe, which is
exactly the same as in [19]. Since the Open command lets the adversary choose
what to open to there is not much to discuss here either.

Therefore, what we need to discuss is the Input and Check commands. The
idea is that if the check in the input phase is passed and the adversary opens
to incorrect values later on, then the probability to pass a check later on will
be negligible. In comparison to [19], we have both values in F2m and vectors
in Fk2 , but we can still use the same arguments there, because the check in the
Input phase and all further checks are in F2m and therefore the simulation and
indistinguishability is following by the exact same arguments as in [19].

5.2 Input, reencoding, and reorganizing pairs

The two functionalities FCOPEe and FAuth are the building blocks for the pre-
processing. They are very similar in shape to the MASCOT functionalities but
with some few corrections to include that sharings can be of vectors instead of
field elements in F2m . With these building blocks we can produce the randomness

22 I. Cascudo and J. S. Gundersen

Protocol ΠAuth – Part 1
This protocol additively shares and authenticates elements in Fk2 or F2m , and allows
linear operations and openings to be carried out on these shares. Note that the Ini-
tialize procedure only needs to be called once, to set up the MAC key. We assume
access to the ideal functionalities FRand, FComm, and FCOPEe.
1. Initialize: Each party Pi samples a MAC key share α(i) ∈ F2m . Each pair of

parties (Pi,Pj) for i 6= j calls FCOPEe.Initialize where Pi inputs α(i).
2. Input: On input x1,x2, .. . ,xs ∈ Fk2 and x1,x2, .. . ,xt ∈ F2m from Pj the parties do

the following:
(a) Pj samples random element xt+1 ∈ F2m .
(b) For h = 1,2, .. . ,s, Pj generates additive sharing

∑n
i=1x

(i)
h = xh and sends x(i)

h

to Pi. Similarly, for l = 1,2, .. . ,t+1, Pj generates additive sharing
∑n
i=1x

(i)
l =

xl and sends x(i)l to Pi.
(c) For every i 6= j, Pi and Pj call FCOPEe.ExtendVector s times where Pj inputs

x1,x2, .. . ,xs and FCOPEe.ExtendField t+ 1 times with inputs x1,x2, .. . ,xt+1.
(d) Pi receives q(i,j)h ∈ F2m and Pj receives t(j,i)h ∈ F2m such that

q
(i,j)
h + t

(j,i)
h = α(i) · φ(xh), for h = 1,2, .. . ,s

q
(i,j)
l+s + t

(j,i)
l+s = α(i) · xl, for l = 1,2, .. . ,t+ 1

(e) Each Pi, i 6= j defines the MAC shares m(i)(xh) = q
(i,j)
h for h = 1,2, .. . ,s and

m(i)(xl) = q
(i,j)
l+s for l = 1,2, .. . ,t+ 1. Pj computes MAC share

m(j)(xh) = α(j) · φ(xh) +
∑
i 6=j

t
(j,i)
h for h = 1,2, .. . ,s

m(j)(xl) = α(j) · xl +
∑
i 6=j

t
(j,i)
l+s for l = 1,2, .. . ,t+ 1

This implies that we have 〈xh〉 for h = 1,2, .. . ,s and [xl] for l = 1,2, .. . ,t+ 1
(f) The parties call FRand(Fs+t+1

2m) to obtain (r1, .. . ,rs+t+1).
(g) Compute [y] =

∑s
h=1 rh · 〈xh〉 +

∑t+1
l=1 rs+l · [xl] by calling ΠAuth.LinComb and

open y by calling ΠAuth.Open.
(h) Call ΠAuth.Check on y. If the check succeeds output 〈xh〉 for h = 1,2, .. . ,s, and

[xl] for l = 1,2, .. . ,t.

Figure 11. Authenticated shares – Part 1.

needed for the online phase. First of all, we produce input pairs with protocol
ΠInputPair in Figure 14. Proposition 3 is straightforward.

Proposition 3. ΠInputPair securely implements FPrep.InputPair in the FAuth-hybrid
model.

We also need to construct pairs to re-encode [·]-sharings to 〈·〉-sharings after
a multiplication. A protocol ΠReEncodePair for producing the pairs (〈ψ(r)〉, [r])
for random r ∈ F2m is shown in Figure 15.

Title Suppressed Due to Excessive Length 23

Protocol ΠAuth – Part 2
3. Add: On input (Add, īd, id,a) the parties do the following. If a is an index of Val

they retrieve shares and MAC shares x(i),y(i),m(i)(x),m(i)(y) where x corresponds
to id and y corresponds to the index a in Val. Pi computes

x(i) + y(i) and m(i)(x) +m(i)(y)

and stores these under īd. If a is a vector, i.e. a = a, they retrieve the share and
MAC share x(i),m(i)(x) where x corresponds to id in Val. Pi computes

x(i) +

{
a if i = 1

0 if i 6= 1
and m(i)(x) + α(i) · φ(a).

and stores these under Val[īd].
4. LinComb: On input (LinComb, īd,(id1, id2, .. .ids),(id

′
1,id

′
2, .. .id

′
t),c1,c2, .. . ,cs+t,c)

where t ≥ 1, the Pi retrieves its shares and MAC shares
{
x
(i)
j ,m(i)(xj)

}
j=1,2,...,s

corresponding to idj in Val and
{
x
(i)
j ,m(i)(xj)

}
j=1,2,...,t

corresponding to id′j in

ValField. Pi computes

y(i) =

s∑
j=1

cj · φ(x
(i)
j) +

t∑
j=1

cs+j · x(i)j +

{
c if i = 1

0 if i 6= 1

m(i)(y) =

s∑
j=1

cj ·m(i)(xj) +

t∑
j=1

cs+j ·m(i)(xj) + c · α(i)

and stores these under īd in ValField.

Figure 12. Authenticated shares – Part 2.

Proposition 4. ΠReEncodePair securely implements FPrep.ReEncodePair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

Proof. First notice that at least one of the parties is honest and hence rj =∑n
i=1r

(i)
j is random because one of the terms is. Suppose that at the end of the

Combine phase parties have created (〈sj〉, [rj]), where possibly sj 6= ψ(rj).
Let εj = sj − ψ(rj) for all j. By F2-linearity of ψ, bi − ψ(bi) =

∑t+s
j=1aijεj .

Hence if all εj = 0, the check passes for all i. While if there is some εj 6= 0,
j = 1,. ..,t, then for every i the probability that

∑t+s
j=1aijεj = 0 is at most 1/2.

Since the checks are independent we obtain that if some εj 6= 0, j = 1,. ..,t
then the protocol will abort except with probability at most 2−s. Note also that
bi = rt+i+

∑t
j=1aijrj , so opening the bi reveals no information about the output

values r1,. ..,rt.

Finally, a protocol for producing reorganizing pairs is given in Figure 16.

Proposition 5. ΠReOrgPair securely implements FPrep.ReOrgPair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

24 I. Cascudo and J. S. Gundersen

Protocol ΠAuth – Part 3
5. Open: On input (Open,Dict,id,S) party Pi retrieves the share corresponding to

the dictionary and index, sends the share to Pj (the party with lowest index in S)
who sums the shares and sends the sum back to the other parties in S.

6. Check:
(a) On input

(Check,(id1,id2, .. . ,ids),(id
′
1, id

′
2, .. . ,id

′
t),(x1,x2, .. . ,xs),(x1,x2, .. . ,xt))

parties sample a random vector (r1,r2, .. . ,rs+t) ∈ Fs+t2m . Pi retrieves its MAC
shares m(i)(xj) for j = 1,2, .. . ,s corresponding to idj in Val and m(i)(xj) for
j = 1,2, .. . ,t corresponding to id′j in ValField. Define

y =

s∑
j=1

rj · φ(xj) +

t∑
j=1

rs+j · xj

and let Pi compute

m(i)(y) =

s∑
j=1

rj ·m(i)(xj) +

t∑
j=1

rs+j ·m(i)(xj)

(b) Pi calls FComm to commit to σ(i) = m(i)(y)− α(i) · y and afterwards open the
commitment.

(c) The parties check if σ(1) + σ(2) + · ··+ σ(n) = 0 and abort otherwise.

Figure 13. Authenticated shares – Part 3.

Protocol ΠInputPair

The protocol generates (r,〈r〉) where r ∈ Fk2 is chosen randomly by Pi, the party calling
the protocol.
1. Construct:

(a) Pi chooses r ∈ Fk2 uniformly at random.
(b) Pi calls FAuth.Input to obtain 〈r〉 and output this authenticated share.

Figure 14. Creating input pairs.

The proof of this proposition is similar to that of Proposition 4.

5.3 Multiplication triples

Our protocol ΠTriple for constructing triples is given in Figure 18. We note that
c = a ∗ b =

∑
i,j a

(i) ∗ b(j) and hence sharings of c can be obtained by adding
sharings of the summands, where each of the summands only require two parties
Pi and Pj to interact. Again, the construction step is much like the construction
step from the protocol ΠTriple in [19]. where we have modified the protocol such
that it produces triples (〈a〉,〈b〉,〈c〉) instead of ([a], [b], [c]).

Title Suppressed Due to Excessive Length 25

Protocol ΠReEncodePair

The protocol generates (〈ψ(rj)〉, [rj]) for j = 1,2, .. . ,t, where rj is random in F2m and
unknown to all parties. We assume access to the functionalities FRand and FAuth.
1. Construct:

(a) Pi chooses r(i)j for j = 1,2, .. . ,t+ s uniformly at random in F2m .
(b) Pi calls FAuth.Input to obtain [r

(i)
j] and 〈ψ(r

(i)
j)〉.

(c) Compute [rj] =
∑n
i=1[r

(i)
j] and 〈ψ(rj)〉 =

∑n
i=1〈ψ(r

(i)
j)〉 for j = 1,2, .. . ,t+ s.

2. Sacrifice:
(a) Call FRand(Ft2) to obtain a′i for i = 1,2, .. . ,s and define ai = (a′i,ei) ∈ Ft+s2

where ei is the i’th canonical basis vector of length s.
(b) Compute [bi] =

∑t+s
j=1aij [rj] and 〈bi〉 =

∑t+s
j=1aij〈ψ(rj)〉, where aij is the j’th

entry of ai, and partially open bi and bi.
(c) If ψ(bi) 6= bi for some i ∈ {1,2, .. . ,s} then abort.
(d) Call FAuth.Check on the opened values bi and bi.

3. Output: Output (〈ψ(rj)〉, [rj]) for j = 1,2, .. . ,t.

Figure 15. Re-encode pairs.

Protocol ΠReOrgPair

The protocol generates (〈Rh〉,〈F (Rh)〉) where Rh = (rh,1, .. . ,rh,l) and F =

(F1, .. . ,Fl′) is a linear function F : Fkl2 → Fkl
′

2 for h = 1,2, .. . ,t. Furthermore, rh,j
is random in Fk2 and unknown to all parties. We assume access to the functionalities
FRand and FAuth.
1. Construct:

(a) Pi chooses r
(i)
h,j for j = 1,2, .. . ,l and h = 1,2, .. .t + s uniformly at random in

Fk2 .
(b) Pi calls FAuth.Input to obtain 〈r(i)h,j〉 and 〈Fj′(r

(i)
h,1, .. . ,r

(i)
h,l)〉 for j = 1,2, .. . ,l,

j′ = 1,2, .. . ,l′ and h = 1,2, .. . ,t+ s.
(c) The parties compute 〈rh,j〉 =

∑n
i=1〈r

(i)
h,j〉 and 〈Fj′(rh,1, .. .rh,l)〉 =∑n

i=1〈Fj′(r
(i)
h,1, .. .r

(i)
h,l)〉. Thus we have (〈Rh〉,〈F (Rh)〉) for h = 1,2, .. . ,t+ s.

2. Sacrifice:
(a) Call FRand(Ft2) to obtain a′i for i = 1,2, .. . ,s and define ai = (a′i,ei) ∈ Ft+s2

where ei is the i’th canonical basis vector of length s.
(b) Compute 〈Bi〉 =

∑t+s
h=1aih〈Rh〉 and 〈Di〉 =

∑t+s
h=1aih〈F (Rh)〉, where aih is

the h’th entry of ai, and partially open Bi and Di.
(c) If F (Bi) 6= Di for some i ∈ {1,2, .. . ,s} then abort.
(d) Call FAuth.Check on the opened values Bi and Di.

3. Output: Output (〈Rh〉,〈F (Rh)〉 for h = 1,2, .. . ,t.

Figure 16. Re-organize pairs.

However, after authentication, we use techniques from Committed MPC [15]
to check correctness and avoid leakage on the produced triples. Indeed using
the combine and sacrifice steps in MASCOT presents some problems in our
case: in the sacrificing step in MASCOT parties take two triples ([a],[b],[c]) and
([â], [b], [ĉ]) and start by opening a random combination s · [a]− [â] to some value

26 I. Cascudo and J. S. Gundersen

Protocol ΠTripleConstruct

The protocol produces N multiplication triples.
1. Construction:

(a) Pi samples a(i)
l ,b

(i)
l ∈ Fk2 for l = 1,2, .. . ,N . Denote by a(i)h,l, b

(i)
h,l the h’th entry

of a(i)
l , b(i)

l , respectively.
(b) For l = 1,2, .. . ,N every ordered pair (Pi,Pj) does the following:

i. The pair call Fk,1ROT where Pi inputs a(i)h,l for the h’th instance.
ii. Pj receives t(j,i)0,h,l,t

(j,i)
1,h,l ∈ F2 and Pi receives t(j,i)

a
(i)
h,l
,h,l

for h = 1,2, .. . ,k.

Denote by t
(j,i)
l the vector having t

(j,i)
0,h,l as entries and t

(j,i)
1,l the vector

having t
(j,i)
1,h,l as entries for h = 1,2, .. . ,k. Similarly, denote by t

(j,i)

a
(i)
l

the

vector having t(j,i)
a
(i)
h,l
,h,l

as entries.

iii. Pj sends u(j,i)
l = t

(j,i)
l − t

(j,i)
1,l + b

(j)
l .

iv. Pi sets q(j,i)
l = a

(i)
l ∗ u

(j,i)
l + t

(j,i)

a
(i)
l

= t
(j,i)
l + a

(i)
l · b

(j)
l .

v. Pi sets c(i)i,j,l = q
(j,i)
l and Pj sets c(j)i,j,l = −t(j,i)l

(c) Each party Pi computes c(i)l = a
(i)
l ∗ b

(i)
l +

∑
j 6=ic

(i)
i,j,l + c

(i)
j,i,l

Now we have cl =
∑n
i=1c

(i)
l =

∑n
i=1a

(i)
l ∗

∑n
i=1b

(i)
l = al ∗bl for l = 1,2, .. . ,N

2. Authenticate:
(a) Pi calls FAuth.Input to obtain 〈a(i)

l 〉, 〈b
(i)
l 〉, and 〈c

(i)
l 〉.

(b) Parties compute 〈al〉 =
∑n
i=1〈a

(i)
l 〉 and similarly to obtain 〈bl〉 and 〈cl〉.

Figure 17. Construction of multiplication triples.

ρ, so that they can later verify that s · [c]− [ĉ]−ρ · [b] opens to 0. Since the second
triple will be disregarded, and s · a− â completely masks a since â is uniformly
random, no information is revealed about a. In our case we would have triples
(〈a〉,〈b〉,〈c〉) and (〈â〉,〈b〉,〈ĉ〉) and sample a random s ∈ F2m , it would not be
the case that φ(â) would act as a proper one-time pad for s · φ(a)8. A similar
problem would arise for adapting the combine step in [19].

Therefore, we proceed as in [15]: in the protocol ΠTriple we start by construct-
ing additive sharings of N = τ1 + τ1 · τ22 · T triples. Then some of these triples
are opened and it is checked that they are correct. This guarantees that most
of the remaining triples are correct. The remaining triples are then organized
in buckets and for each bucket all but one of the triples are sacrified in order
to guarantee that the remaining triple is correct with very high probability. In
order to be able to open proper sharings in the sacrifice step we need to add au-
thenticated sharings of an element in the kernel of ψ. We present a functionality
serving that purpose in Figure 19 and a protocol implementing it in Figure 20.

Proposition 6. ΠRanKer securely implements FRanKer in the (FAuth,FRand)-
hybrid model with statistical security parameter s.
8 Sampling s ∈ Fk2 instead would not solve the problem since s ∗ 〈a〉 − 〈â〉 is not a
proper [·]-sharing as described in Section 3.

Title Suppressed Due to Excessive Length 27

Protocol ΠTriple

The protocol generates T multiplication triples (〈a〉,〈b〉,〈c〉) where a,b ∈ Fk2 are ran-
dom vectors and c = a ∗ b. The integers τ1,τ2 are bucket sizes and are for security
reasons. Let N = τ1 + τ1 · τ22 ·T . We assume access to the functionalities FAuth, Fm,kROT,
FRand, and FRanKer, and we call ΠTripleConstruct as a subprotocol.
1. Construction: Call ΠTripleConstruct to produce N multiplication triples.
2. Cut-and-choose:

(a) Call FRand to obtain (l1,l2, .. . ,lτ1), where li 6= lj when i 6= j.
(b) Open 〈alj 〉, 〈blj 〉, and 〈clj 〉 for j = 1,2, .. . ,τ1. Abort if clj 6= alj ∗blj for some

j.
3. Sacrifice:

(a) Use FRand to randomly divide the remaining N − τ1 triples into τ22 ·T buckets
with τ1 triples in each.

(b) In each bucket we denote the triples by (〈al〉,〈bl〉,〈cl〉) for l = 1, .. . ,τ1 and
call FRanKer to obtain [rl], l = 2, .. . ,τ1 for each bucket.
i. Compute 〈εl〉 = 〈al〉 − 〈a1〉 and 〈δl〉 = 〈bl〉 − 〈b1〉 and open εl and δl for
l = 2, .. . ,τ1.

ii. Compute [σl] = 1 ∗ 〈cl〉 − 1 ∗ 〈c1〉 − εl ∗ 〈b1〉 − δl ∗ 〈a1〉 − φ(εl) · φ(δl) +
[rl] and open σl for l = 2, .. . ,τ2. Abort if ψ(σl) 6= 0. Otherwise, call
(〈a1〉,〈b1〉,〈c1〉) a correct triple.

4. Combine:
(a) Combine on a: Use FRand to randomly divide the remaining τ22 · T non-

malformed triples into τ2 · T buckets with τ2 in each. Denote the triples in
each bucket by (〈al〉,〈bl〉,〈cl〉) for l = 1, .. . ,τ2 and call FReEncodePair to obtain
one pair for each bucket. Combine the triples in each bucket as follows:
i. Compute 〈a′〉 =

∑τ2
l=1〈al〉 and 〈b

′〉 = 〈b1〉
ii. For l = 2,3, .. .τ2: Compute 〈εl〉 = 〈b1〉 − 〈bl〉 and open εl
iii. Compute [σ′] = 1 ∗ 〈c1〉+

∑τ2
l=2εl ∗ 〈al〉+ 1 ∗ 〈cl〉 − [r], where [r] is from

the reencoding pair.
iv. Open σ′ and set 〈c′〉 = ψ(σ′) + 〈ψ(r)〉 = 〈a′ ∗ b′〉 and call (〈a′〉,〈b′〉,〈c′〉)

a good triple.
(b) Combine on b: Use FRand to randomly divide the remaining τ2 · T non-

malformed triples into T buckets with τ2 in each. Denote the triples in each
bucket by (〈al〉,〈bl〉,〈cl〉) for l = 1, .. . ,τ2 and call FReEncodePair to obtain one
pair for each bucket. Combine the triples in each bucket as follows:
i. Compute 〈b′〉 =

∑τ2
l=1〈bl〉 and 〈a

′〉 = 〈a1〉
ii. For l = 2,3, .. .τ2: Compute 〈εl〉 = 〈a1〉 − 〈al〉 and open εl
iii. Compute [σ′] = 1 ∗ 〈c1〉+

∑τ2
l=2εl ∗ 〈bl〉+ 1 ∗ 〈cl〉 − [r], where [r] is from

the reencoding pair.
iv. Open σ′ and set 〈c′〉 = ψ(σ′) + 〈ψ(r)〉 = 〈a′ ∗ b′〉 and call (〈a′〉,〈b′〉,〈c′〉)

a good triple.
(c) Call FAuth.Check on all opened values so far. If the check succeeds output the

T good triples.

Figure 18. Multiplication triples.

28 I. Cascudo and J. S. Gundersen

Functionality FRanKer

This functionality is an extension to FPrep

1. RanKer On input (RanKer, id) sample a random field element r ∈ ker(ψ) and set
ValField[id] = r.

Figure 19. Functionality – Authenticated random element in ker(ψ).

Protocol ΠRanKer

The protocol generates [rj] for j = 1,2, .. . ,t, where [rj] is random in ker(ψ) and un-
known to all parties. We assume access to the functionality FRand.
1. Construct:

(a) Pi chooses r(i)j for j = 1,2, .. . ,t+ s uniformly at random in ker(ψ).
(b) Pi calls FAuth.Input to obtain [r

(i)
j].

(c) Compute [rj] =
∑n
i=1[r

(i)
j] for j = 1,2, .. . ,t+ s.

2. Sacrifice:
(a) Call FRand(Ft2) to obtain a′i for i = 1,2, .. . ,s and define ai = (a′i,ei) ∈ Ft+s2

where ei is the i’th canonical basis vector of length s.
(b) Compute [bi] =

∑t+s
j=1aij [rj], where aij is the j’th entry of ai, and partially

open bi.
(c) If bi /∈ ker(ψ) for some i ∈ {1,2, .. . ,s} then abort.
(d) Call FAuth.Check on the opened values bi.

3. Output: Output [rj] for j = 1,2, .. . ,t.

Figure 20. Authenticated random element in ker(ψ).

The proof of this proposition is similar to that of Proposition 4. The correctness
follows from the additivity of ψ.

The sacrifice step opens the door for a selective failure attack, where the
adversary can guess some information about the remaining triples from the fact
that it has not aborted, so a final combining step is used to remove this leakage.

Proposition 7. ΠTriple securely implements FPrep.Triple in the
(FAuth,Fm,kROT,FRand,FRanKer)-hybrid model.

The proof uses similar arguments as in [15] and can be found in Appendix A.2.

Proposition 8. ΠInputPair, ΠReEncodePair, and ΠTriple securely implements FPrep

in the (FAuth,Fm,kROT,FRand)-hybrid model.

Proof. This follows directly from Propositions 3, 4, and 7.

Complexity of Preprocessing

We briefly describe the communication complexity for producing the random-
ness needed for the online phase. Starting by considering the construction of an
input pair the only communication we have to consider here is a single call to

Title Suppressed Due to Excessive Length 29

FAuth.Input. The main cost of authentication is the call to ΠCOPEe where the
parties needs to send mk(n − 1) bits for each vector authenticated. In the case
where a field element is authenticated instead they need to send m2(n− 1) bits.
Furthermore, the party who is authenticating needs to send the shares of the
vector authenticating but this has only a cost of k(n− 1) bits. At last, the check
is carried out but we assume that the parties authenticate several vectors/values
in a batch and hence this cost is amortized away.

For the re-encoding pairs we assume that t is much larger than s. This means
that in order to obtain a single pair the parties need to authenticate n field
elements and n vectors. Once again we assume that the check is amortized away,
so this gives a total cost of sending (m2 +mk)n(n− 1) bits.

The same assumption, that t is much larger than s, is made for the reor-
ganizing pairs and the random elements in the kernel of ψ. This means that the
amortized cost of producing a reorganizing pair is (l+l′)n vector-authentications
and to obtain [r] for r ∈ ker(ψ) costs n authentication amortized.

Regarding the communication for obtaining a single multiplication triple we
ignore the vectors sent in the construction since the authentication is much
more expensive. Besides authentication we make τ1τ22n(n−1) calls to Fk,1ROT. We
authenticate 3τ1τ22n vectors in the construction. Furthermore, we need (τ2−1)τ22
elements from FRanKer and 2 reencoding pairs for the construction of the triple.
The cost of the remaining steps is not close to be as costly, so we ignore these.

In [15] it is suggested to use τ1 = τ2 = 3. The cost of preparing a multiplic-
ation gate using these parameters is that of producing 3 reencoding pairs (2 for
the preprocessing and 1 for the online phase), 18 authenticated elements in the
kernel of ψ and the multiplication triple which yields 27 calls to Fk,1ROT and 3 · 27
authentication of vectors. Thus using m = 3.1k from Table 3 in order to obtain
security s ≥ 64 and ignoring the calls to Fk,1ROT the communication becomes

3 · (3.12 + 3.1)k2n(n− 1) + 18 · 3.12k2n(n− 1) + 3 · 27 · 3.1 · k2n(n− 1) bits

= 462.21 · k2n(n− 1) bits.

Similarly, in order to obtain s ≥ 128 we use m = 3.21k from Table 3 and the
communication becomes 486.03 · k2n(n− 1) bits.

References

1. Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Advances in Cryptology — CRYPTO ’91, pages 420–432. Springer, 1992.

2. Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear
communication complexity. In Theory of Cryptography, pages 213–230. Springer,
2008.

3. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Advances in Cryptology
– EUROCRYPT 2011, pages 169–188. Springer, 2011.

4. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure computation
based on leaky correlations: High resilience setting. In Advances in Cryptology –
CRYPTO 2017, pages 3–32. Springer, 2017.

30 I. Cascudo and J. S. Gundersen

5. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure computa-
tion with constant communication overhead using multiplication embeddings. In
Progress in Cryptology – INDOCRYPT 2018, pages 375–398. Springer, 2018.

6. Ran Canetti. Universally composable security: a new paradigm for cryptographic
protocols. In Proceedings 42nd FOCS, pages 136–145, 10 2001.

7. Ignacio Cascudo. On squares of cyclic codes. IEEE Transactions on Information
Theory, 65(2):1034–1047, 02 2019.

8. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized
complexity of information-theoretically secure MPC revisited. In Advances in
Cryptology – CRYPTO 2018, pages 395–426. Springer, 2018.

9. Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, Rafael Dowsley,
and Irene Giacomelli. Efficient UC commitment extension with homomorphism
for free (and applications). In Advances in Cryptology – ASIACRYPT 2019, pages
606–635. Springer, 2019.

10. Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jesper Buus
Nielsen. Rate-1, linear time and additively homomorphic UC commitments. In
Advances in Cryptology – CRYPTO 2016, pages 179–207. Springer, 2016.

11. Ignacio Cascudo, Jaron Skovsted Gundersen, and Diego Ruano. Squares of matrix-
product codes. Finite Fields and Their Applications, 62:101606, 2020.

12. Ivan Damgård, Rasmus Lauritsen, and Tomas Toft. An empirical study and some
improvements of the minimac protocol for secure computation. In Security and
Cryptography for Networks, pages 398–415. Springer, 2014.

13. Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Advances in Cryptology –
CRYPTO 2012, pages 643–662. Springer, 2012.

14. Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of
boolean circuits using preprocessing. In Theory of Cryptography, pages 621–641.
Springer, 2013.

15. Tore K. Frederiksen, Benny Pinkas, and Avishay Yanai. Committed MPC. In
Public-Key Cryptography – PKC 2018, pages 587–619. Springer, 2018.

16. Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto
Trifiletti. On the complexity of additively homomorphic UC commitments. In
Theory of Cryptography, pages 542–565. Springer, 2016.

17. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A
unified approach to MPC with preprocessing using OT. In Proceedings, Part I, of
the 21st International Conference on Advances in Cryptology – ASIACRYPT 2015
- Volume 9452, page 711–735. Springer, 2015.

18. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput
secure three-party computation for malicious adversaries and an honest majority.
In Advances in Cryptology – EUROCRYPT 2017, pages 225–255. Springer, 2017.

19. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 830–842. ACM, 2016.

20. Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-
party computation for binary circuits. In Advances in Cryptology – CRYPTO 2014,
pages 495–512. Springer, 2014.

21. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Advances in Cryptology – CRYPTO 2012, pages 681–700. Springer, 2012.

Title Suppressed Due to Excessive Length 31

A Proofs

A.1 Proof of Theorem 3

Proof. The initialization phase is just communication with FPrep. For simulating
an input by a party Pi, if the party who inputs the value is not corrupted, then
the simulator samples and broadcasts a random ε. If it is corrupted, then when
the adversary broadcasts ε, then the simulator extracts x = ε + r and inputs
(Input,id,x,Pi) to FMPC. Additions consist of local computations and are trivial
to simulate. For every multiplication, the simulator generates uniformly random
vectors ε and δ and a uniformly random field element σ. The simulator sends
these values to the (internal copy of the) adversary who opens (ε′,δ′,σ′). If for
some multiplication, the tuple (ε′,δ′,σ′) is different from the one sent by the
simulator, the simulator will abort when simulating the first check in the output
phase. If not, the simulator receives the output z from FMPC.Output and sends
this to the adversary. If the adversary replies with a value z′ which is different
from z then the simulator aborts at the second check.

A.2 Proof of Proposition 7

Proof. The proof uses similar arguments as the one from [15].
Denote by a

(j,i)
l and b

(j,i)
l the actual values sent by a corrupt party to an

honest party where it should have sent a
(j)
l and b

(j)
l in the Construction step.

We can fix some a
(j)
l and b

(j)
l to be considered as the “input” for some specific

instance (for example lowest index of honest party i) and define the errors e(j,i)bl
=

b
(j,i)
l − b

(j)
l and e

(j,i)
al = a

(j,i)
l − a

(j)
l . Denoting the set of corrupt parties by A,

we define e
(i)
bl

=
∑
j∈Ae

(j,i)
bl

and e
(i)
al =

∑
j∈Ae

(j,i)
al . Summing up the shares c(i)l

we see that we end up with

cl = al ∗ bl +
∑
i/∈A

b
(i)
l ∗ e

(i)
al

+ a
(i)
l ∗ e

(i)
bl
,

where the adversary controls e
(i)
al and e

(i)
bl
. Additionally, the adversary can add

an extra error by authenticating to another value. That is, the adversary can
introduce an error eauth,l such that

cl = al ∗ bl +
∑
i/∈A

b
(i)
l ∗ e

(i)
al

+ a
(i)
l ∗ e

(i)
bl

+ eauth,l

We call the triple malformed if
∑
i/∈Ab

(i)
l ∗ e

(i)
al + a

(i)
l ∗ e

(i)
bl

+ eauth,l 6= 0.
We now discuss that the bucketing technique in [15] guarantees that after

the cut-and-choose and sacrifice steps, if the protocol does not abort then the
surviving triples are not malformed with very large probability. This is based in
the following lemma.

32 I. Cascudo and J. S. Gundersen

Lemma 1 ([15],[18]). Let N = τ1+τ1·τ22 ·T be the number of constructed triples
where the statistical security parameter satisfies s < log2

(
N !

τ2
2 ·T ·τ1!·(τ1·τ2

2 ·T)!

)
. If τ1

random triples are opened and all are correct, splitting the remaining τ1·τ22 ·T into
buckets of size τ1 will ensure that except with probability 2−s either all buckets
consist of correct triples or there will be at least one bucket with both correct and
malformed triples.

The lemma states that if the cut-and-choose step passes, we will be in one of the
two situations described with large probability. Notice that in the first case the
sacrifice step will pass and we end up with τ22 · T correct triples. In the second
case there will be some bucket where the protocol aborts in the sacrifice step. To
see that the sacrifice step aborts notice that if there is a pair of triples where one
is malformed and the other is not, then there exists an index l such that either
the first or the l-th triple, but not both, is malformed. Then when opening

σl = φ(1) · φ(cl)− φ(1) · φ(c1)− φ(εl) · φ(b1)− φ(δl) · φ(a1)− φ(εl) · φ(δl) + rl

and taking ψ on this we obtain

ψ(σl) = cl − c1 − al ∗ bl + a1 ∗ b1

since ψ(rl) = 0 due to FRanKer. However, if one of the triples is malformed we
have ψ(σl) 6= 0. Furthermore notice that if both triples are correct σl is simply
a random element from the kernel of ψ.

However, after the cut-and-choose and sacrifice phases passes, the adversary
may now have information about some of the triplets. This is because of the
following selective failure attacks.

Assume that the adversary has chosen e
(i)
al 6= 0 for single i. If the adversary

is able to guess the entries in b
(i)
l corresponding to the nonzero entries in e

(i)
al

it can still obtain cl = al ∗ bl. The probability of this happens is 2−|supp(e
(i)
al

)|.
The argument generalizes to the case where the adversary chooses e

(i)
al 6= 0 for

several i’s.
A similar argument holds when the adversary chooses e(i)bl

6= 0. In this way,
the adversary can be lucky to introduce some errors which cancel out and cause
the triples to be correct, and this fact will give the adversary information about
some parts of a and b, when the protocol does not abort when opening values
in the sacrifice step. To make sure that this leakage is cleaned, we execute a
combine step in order to re-establish the randomness.

We call the l-th triple leaky if the adversary has introduced some errors, i.e.
if e(j,i)al or e

(j,i)
bl

is nonzero, but the resulting triple is correct (not malformed).
With very high probability, at most s triples will be leaky if the sacrifice phase
has succeeded.

In order to remove the leakage we apply the Combine steps. For this we need
to ensure that after the sacrifice step there is at least one non-leaky triple in
each bucket. This is ensured by the following lemma.

Title Suppressed Due to Excessive Length 33

Lemma 2 ([15]). Inputting at least τ2−1

√
(s·e)τ2 ·2s

τ2
triples to the combine step

where at most s of them are leaky in the component being combined on, we
have that every bucket of τ2 triples contains at least one non-leaky triple (in the
component) with overwhelming probability in s.

Notice that if a bucket contains at least one non-leaky triple in the component
being combined on the outputted triple cannot be leaky in that component and
hence a and b are random in Fk2 after the combine steps.

B Results and techniques from [14] and [8]

B.1 Reverse Multiplication Friendly Embeddings (RMFE) [8]

In this section we describe how to construct the RMFEs presented in Theorem
1. The resulting RMFEs are concatenations of two RMFEs each coming from
the following lemma (Lemma 4 in [8]).

In first place remember that the extension field Fqm can be represented as
Fqm = Fq[X]/(h(X)) that is polynomials in Fq[X] modulo an irreducible poly-
nomial h. Let us call β = X modh(X). We can write Fqm = Fq(β) in the sense
that all elements in Fqm can be seen as polynomials of degree at most m− 1 in
β, where we apply the rule h(β) = 0 when multiplying.

Moreover, recall that if we have m = m1 ·m2 we can also see the field Fqm
as Fqm2 [Y]/(h′(Y)) where h′(Y) ∈ Fqm2 [Y] is irreducible of degree m1 (we do
remark however that despite being the same field, the representations we obtain
are not the same, so if we work with both representations we need to find an
isomorphism that takes one representation into the other).

Lemma 3. For all 1 ≤ k ≤ q + 1 there exists a (k,2k − 1)q-RMFE

Proof. The proof is constructive. Let Fq[X]≤k−1 denote the set of polynomials
over Fq with degree ≤ k − 1. Choose k different elements in Fq ∪ {∞k−1},
(x1,x2,. ..,xk), where ∞r is a formal symbol which gives the coefficient of Xr

if we evaluate f ∈ Fq[X]≤r. Let Fq2k−1 = Fq(β) and define the following maps,
where

ξ1 : Fq[X]≤k−1 → Fkq ; f 7→ (f(x1),f(x2),. ..,f(xk))

ξ2 : Fq[X]≤2k−2 → Fq2k−1 ; f 7→ f(β)

ξ′1 : Fq[X]≤2k−2 → Fkq ; f 7→ (f(x′1),f(x
′
2),. ..,f(x

′
k)),

where x′i = xi if xi ∈ Fq and x′i =∞2k−2 if xi =∞k−1. With these mappings in
mind we define

φ = ξ2 ◦ ξ−11 : Fkq → Fqm

ψ = ξ′1 ◦ ξ−12 : Fqm → Fkq .

Using the fact that (f · g)(β) = f(β) · g(β) and (f · g)(x′i) = f(xi) · g(xi) for
all f,g ∈ Fq[X]≤k−1 the property for RMFE holds.

34 I. Cascudo and J. S. Gundersen

How to concatenate the RMFEs is described in the following lemma (Lemma 5
in [8])

Lemma 4. If (φ1,ψ1) is a (k1,m1)qm2 -RMFE and (φ2,ψ2) is a (k2,m2)q-RMFE
then

φ : (x1,. ..,xk1) 7→ φ1(φ2(x1),. ..,φ2(xk1))

ψ : α 7→ ψ1(α) = (u1,. ..,uk1) 7→ (ψ2(u1),. ..,ψ2(uk1))

is a (k1k2,m1m2)q-RMFE

Proof. Let x = (x1,. ..,xk1),y = (y1,. ..,yk1) ∈ Fk1k2q .

ψ(φ(x) · φ(y)) = ψ2 ◦ ψ1

(
φ1(φ2(x1), ·· · ,φ2(xk1)) · φ1(φ2(y1),·· · ,φ2(yk1))

)
=
(
ψ2(φ2(x1) · φ2(y1)),. ..,ψ2(φ2(xk1) · φ2(yk2))

)
= (x1 ∗ y1,. ..,xk1 ∗ yk1) = x ∗ y.

Furthermore, the composition of Fq-linear maps are linear, implying that (φ,ψ)
is a (k1k2,m1m2)q-RMFE.

In the paper we use (21,65)2- and (42,135)2-RMFEs. We can obtain these by
concatenating a (3,5)2-RMFE as (φ2,ψ2) with respectively a (7,13)25 - and a
(14,27)25-RMFE (as (φ1,ψ1)) which can be constructed using the strategy in the
proof of Lemma 3. For completion note that the (3,5)2-RMFE is given as follows:
fix some irreducible polynomial h of degree 5 over F2 to have F25 = F2[X]/(h(X))
for example h = X5 +X2 + 1, let β = X mod h and set

φ2(b0,b1,b2) = b0 + (b0 + b1 + b2)β + b2β
2.

Here we have implicitly used x1 = 0,x2 = 1,x3 =∞2 as evaluation points.
The map ψ2 is

ψ2(b0 + b1β + b2β
2 + b3β

3 + b4β
4) = (b0,b0 + b1 + b2 + b3 + b4,b4).

B.2 The MPC embedding technique in [8]

The protocol in [8] works in the information-theoretical setting. The idea is to
embed an evaluation of k instances of a boolean circuit C into one evaluation of
an associated arithmetic circuit C̃ over the extension field F2m using the RMFE,
meaning that we will take the inputs of C, map them into F2m using the map φ
from the RMFE and evaluate C̃ on them.

Replacing (coordinatewise) sum and product gates in Fk2 by sum and products
gates in F2m would fall short, since the multiplication property of the RMFE only
works for products of exactly two elements, so in general x ∗ y ∗ z 6= ψ(φ(x) ·
φ(y) · φ(z)) (and this naturally extends to more factors). Moreover, generally
x 6= ψ(φ(x)).

The solution to this problem is to replace every multiplication gate in Fk2 by
a “multiplication gadget” that consists of the concatenation of a multiplication

Title Suppressed Due to Excessive Length 35

gate in F2m , followed by a “refreshing” gate computing the concatenation map
φ ◦ ψ : F2m → F2m . The addition gates over Fk2 are simply replaced by addition
gates over F2m . This constitutes our new arithmetic circuit C̃.

The evaluation strategy is then as follows: the inputs (as well as the constant
all-one vectors) are mapped from Fk2 into F2m with φ. We evaluate the circuit C̃
over F2m described above, and in the last step we apply φ−1. The rationale is
that, in such an evaluation, every wire of this circuit over F2m (consisting of ad-
ditive gates and multiplication gadgets) contains a value of the form φ(x) where
x is the value that would travel in that wire for the corresponding evaluation
of the circuit C over Fk2 . The justification for this invariant is that in the case
of additive gates this holds by linearity of φ, and in the case of multiplication
gadgets,

φ(x ∗ y) = φ(ψ(φ(x) · φ(y))) = (φ ◦ ψ)(φ(x) · φ(y)),

the first equality being a consequence of the RMFE definition.
Applying a secure computation protocol for an arithmetic circuit over F2m

presents two obstacles, as discussed in [8]: one is computing the map φ ◦ψ from
the multiplication gadgets, because this map is only linear over F2, and not over
F2m ; the other is that parties need to prove that they have embedded their inputs
correctly in F2m using φ, as a standard MPC protocol over F2m is oblivious to
whether the inputs are in a particular subset of the field (in this case the image
of φ). Both issues can be solved efficiently by use of an involved preprocessing
step with generates randomness in F2-linear subspaces of F2m , which involves
the combination of hyperinvertible matrices [2] and tensoring of vector spaces.

B.3 MiniMAC

In this section, we describe the online phase of MiniMAC.
We use the notation πk in this section to denote the projection map onto Fk2 .

Hence, for a vector x ∈ Fk∗2 where k∗ ≥ k let πk(x) be the vector consisting of
the first k entries of x.

The MACs make use of an [`,k,d] linear code C and its square C∗ with
parameters [`,k∗,d∗]. The code C∗ is defined as

C∗ = span{x ∗ y | x,y ∈ C}

If x ∈ Fk2 we use the notation 〈x〉 to denote that x is secretly shared along with
MACs. I.e.

〈x〉 =
(
(x(1),x(2),. ..,x(m)),(m(1)(x),m(2)(x),. ..,m(n)(x))

)
,

where Pi holds x(i) and m(i)(x) and it holds that

x =

n∑
i=1

x(i),

36 I. Cascudo and J. S. Gundersen

m(x) =

n∑
i=1

m(i)(x) = α ∗
n∑
i=1

C(x(i)) = α ∗ C(x),

where C(x(i)) is the encoding of x(i) in C.
Similarly, by 〈y〉∗, for y ∈ Fk∗2 , we represent the same type of authentication

but using C∗ instead of C.
We now describe the online phase of the MiniMAC protocol. The protocol is

also presented in Figure 21. For an input gate corresponding to an input from
Pi, the party takes a preprocessed pair (r,〈r〉) and broadcasts ε = x − r. All
the parties can by local computations compute ε + 〈r〉 = 〈x〉. Parties do linear
operations locally according to the following rules:

〈x〉+ 〈y〉 =
(
(x(1) + y(1),. ..,x(n) + y(n)),

(m(1)(x) +m(1)(y),. ..,m(n)(x) +m(n)(y))
)

= 〈x+ y〉,

a+ 〈x〉 =
(
(x(1) + a,x(2),. ..,x(n)),

(α(1) ∗ C(a) +m(1)(x),. ..,α(n) ∗ C(a) +m(n)(x))
)

= 〈a+ x〉,

a ∗ 〈x〉 =
(
(C∗−1(C(a) ∗ C(x(1))),. ..,C∗−1(C(a) ∗ C(x(n))),

(C(a) ∗m(1)(x),. ..,C(a) ∗m(n)(x))
)

= 〈t〉∗,

where πk(t) = a∗x and C∗−1(y) means the vector in Fk∗2 which is encoded to y.
Notice that this also describes how the parties locally can compute an addition
gate and furthermore, it shows that when multiplying by a constant vector we
end up with a 〈·〉∗-sharing. This is what happens in the multiply step, where we
end up with 〈ρ〉∗. Notice that πk(ρ) = x ∗ y. However, we need to transform it
back to a 〈·〉-sharing and this is what we need the preprocessed re-encode pair
for. To see that the steps in the protocol make this transformation correctly
notice that

πk(σ) + r = πk(ρ)− πk(s) + r = x ∗ y − r+ r = x ∗ y.

We will not go into details about the MAC check for MiniMAC but we will men-
tion that they do a batch check where they check random F`2-linear combinations
of the encodings of all opened vectors. For more information about the check see
[14].

Title Suppressed Due to Excessive Length 37

Protocol ΠMiniMAC

1. Initialize: The parties call the preprocessing functionality FPrep to obtain input
pairs (r,〈r〉) for each party, re-encode pairs (〈r〉,〈s〉∗), where πk(s) = r, and mul-
tiplication triples (〈a〉,〈b〉,〈c〉∗), where πk(c) = a ∗ b.

2. Input: For an input gate belonging to Pi having input x ∈ Fk2 the parties do the
following
(a) Pi takes a pair (r,〈r〉) and broadcasts ε = x− r.
(b) The parties compute 〈x〉 = ε + 〈r〉.

3. Add: To compute componentwise addition of 〈x〉 and 〈y〉 the parties locally com-
pute 〈x + y〉 = 〈x〉+ 〈y〉.

4. Multiply: To compute a componentwise multiplication of 〈x〉 and 〈y〉, take the
next available multiplication triple (〈a〉,〈b〉,〈c〉∗) and pair (〈r〉,〈s〉∗).
(a) Set 〈ε〉 = 〈x〉 − 〈a〉 and 〈δ〉 = 〈y〉 − 〈b〉 and partially open ε and δ.
(b) Compute 〈ρ〉∗ = 〈c〉∗ + ε ∗ 〈y〉+ δ ∗ 〈x〉 − ε ∗ δ
(c) Compute 〈σ〉∗ = 〈ρ〉∗ − 〈s〉∗ and partially open this value to obtain σ ∈ Fk

∗
2 .

(d) Compute πk(σ) + 〈r〉 = 〈x ∗ y〉 and output this value.
5. Output: This stage is entered when the players have an unopened sharing 〈z〉

which they want to output. The parties do the following:
(a) Execute a MAC check on all opened vectors.
(b) If the check passes, partially open z.
(c) Execute a MAC check on z
(d) If the check passes, output z to all parties.

Figure 21. Online phase of MiniMAC

C Universal Composability

We will use the universal composability model by Canetti [6]. The model follows
a real world-ideal world simulation paradigm. In order to prove security of a
protocol in this model, we roughly need to show that for any adversary taking
control of an allowed set of parties in Π, there exists a simulator, interacting
with the ideal functionality F and corrupting the same parties, that produces
an indistinguishable view towards any “environment”, as described below. The
environment (which intuitively captures everything that happens outside of the
protocol) provides inputs and reads the outputs of individual parties, and can
communicate with the adversary/simulator during the protocol. At the end of the
protocol, the environment tries to distinguish whether it has interacted with the
real protocol and the real adversary or with the ideal world and simulator, based
on the view it has received. Π UC-securely implements F if the environment
cannot distinguish with non-negligible probability.

In the ideal model, parties simply relay inputs from the environment to the
functionality, and outputs from the functionality to the environment. On the
other hand, the order of quantifiers indicates that the simulator needs to be
constructed for a specific adversary, we can have the simulator interact in a
black-box way with an internal copy of the adversary and so by abuse of language
we say in the proofs that the simulator is interacting with the adversary.

38 I. Cascudo and J. S. Gundersen

In addition to these two worlds, the UC-composability framework also con-
siders a G-hybrid model, where the real protocol π makes use of one or more
calls to an ideal functionality G. We can extend the definition above and say
that π UC-securely implements F if for any adversary for that protocol there is
a simulator in the ideal world that can produce the same view for any environ-
ment. Then the fundamental result in the UC-framework asserts that if there is
another protocol ρ that UC-securely implements G, we can replace the calls in
π to the functionality G by calls to ρ without affecting the security.

	A Secret-Sharing Based MPC Protocol for Boolean Circuits with Good Amortized Complexity

