
Lecture Notes in Computer Science 12470

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Bruno C. d. S. Oliveira (Ed.)

Programming Languages
and Systems
18th Asian Symposium, APLAS 2020
Fukuoka, Japan, November 30 – December 2, 2020
Proceedings

123

Editor
Bruno C. d. S. Oliveira
University of Hong Kong
Hong Kong, Hong Kong

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-64436-9 ISBN 978-3-030-64437-6 (eBook)
https://doi.org/10.1007/978-3-030-64437-6

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8632-2291
https://doi.org/10.1007/978-3-030-64437-6

Preface

This volume contains the papers presented at the 18th Asian Symposium on
Programming Languages and Systems (APLAS 2020), held online during
November 30 – December 2, 2020. APLAS 2020 was originally meant to be held in
Fukuoka City, Japan, but due to the COVID-19 epidemic, it was changed to an online
event.

APLAS aims to stimulate programming language research by providing a forum for
the presentation of the latest results and the exchange of ideas in programming lan-
guages and systems. APLAS is based in Asia but is an international forum that serves
the worldwide programming languages community.

This year we solicited contributions in the forms of regular research papers and tool
papers. Among others, solicited topics include: semantics, logics, and foundational
theory; design of languages, type systems, and foundational calculi; domain-specific
languages; compilers, interpreters, and abstract machines; program derivation, syn-
thesis, and transformation; program analysis, verification, model-checking; logic,
constraint, probabilistic, and quantum programming; software security; concurrency
and parallelism; tools and environments for programming and implementation; and
applications of SAT/SMT to programming and implementation.

We also continued employing a light double-blind reviewing process adopted
recently by APLAS with an author-response period. More precisely, we had a
two-stage reviewing process. Each paper received at least three reviews before the
author-response period, which was followed by a one-week Program Committee
(PC) discussion, taking into account initial impressions of the papers as well as the
author responses.

This year we received 46 submissions, out of which 19 papers (17 regular papers
and 2 tool papers) were accepted after thorough reviews and discussions by the PC. We
were also honored to include three invited talks by distinguished PL researchers:

– Luca Cardelli (University of Oxford, UK) on “Integrated Scientific Modeling and
Lab Automation”

– Hidehiko Masuhara (Tokyo Institute of Technology, Japan) on “Object Support for
GPU Programming: Why and How”

– Nadia Polikarpova (University of California San Diego, USA) on “Generating
Programs from Types”

I am indebted to many people who helped make APLAS 2020 possible. First and
foremost, I sincerely thank the PC, who have spent a lot of time and effort throughout
the entire reviewing process. I am also grateful for the sub-reviewers and expert
reviewers for their thorough and constructive reviews. I thank Masahiro Yasugi (Kyushu
Institute of Technology, Japan) who served as a general chair and worked out every
detail of the conference well in advance. This year’s APLAS was especially challenging
to prepare due to the complications of moving to and organizing an online event.

I am also grateful to AAFS Executive Committee (especially Wei-Ngan Chin, National
University of Singapore, Singapore, and Atsushi Igarashi, Kyoto University, Japan)
who provided a lot of helpful advice and thank them for their leadership. I thank the
previous APLAS PC chair, Anthony Widjaja Lin (TU Kaiserslautern, Germany) for his
helpful advice and resources. Finally, I thank Eelco Visser and Elmer van Chastelet for
their very helpful conf.researchr.org conference management system, as well as Eddie
Kohler for his very helpful HotCRP conference management system.

October 2020 Bruno C. d. S. Oliveira

vi Preface

Organization

General Chair

Masahiro Yasugi Kyushu Institute of Technology, Japan

General Vice-chair

Kento Emoto Kyushu Institute of Technology, Japan

Local Arrangement Chair

Ryosuke Sato The University of Tokyo, Japan

Remote Arrangement Chair

Tomoharu Ugawa The University of Tokyo, Japan

Workshop Chair

Atsushi Igarashi Kyoto University, Japan

Program Chair

Bruno C. d. S. Oliveira The University of Hong Kong, Hong Kong

Program Committee

Edwin Brady University of St Andrews, UK
Soham Chakraborty IIT Delhi, India
Shigeru Chiba The University of Tokyo, Japan
Andreea Costea National University of Singapore, Singapore
Silvia Crafa University of Padova, Italy
Pierre-Evariste Dagand LIP6, CNRS, France
Mila Dalla Preda University of Verona, Italy
Cristina David University of Bristol, UK
Benjamin Delaware Purdue University, USA
Jeremy Gibbons University of Oxford, UK
Ichiro Hasuo National Institute of Informatics, Japan
Sam Lindley Heriot-Watt University and The University

of Edinburgh, UK
James McKinna The University of Edinburgh, UK
Madhavan Mukund Chennai Mathematical Institute, India

Hakjoo Oh Korea University, South Korea
Florian Rabe University of Erlangen-Nuremberg, Germany
Sukyoung Ryu KAIST, South Korea
Tom Schrijvers KU Leuven, Belgium
Ilya Sergey Yale-NUS College and National University

of Singapore, Singapore
Marco Servetto Victoria University of Wellington, New Zealand
Wouter Swierstra Utrecht University, The Netherlands
Alwen Tiu The Australian National University, Australia
Sam Tobin-Hochstadt Indiana University Bloomington, USA
Janis Voigtländer University of Duisburg-Essen, Germany
Meng Wang University of Bristol, UK
Nicolas Wu Imperial College London, UK
Yizhou Zhang University of Waterloo, Canada
Tijs van der Storm CWI, University of Groningen, The Netherlands

Additional Reviewer

Robert Rand

viii Organization

Abstracts of Invited Talks

Integrated Scientific Modeling and Lab
Automation

Luca Cardelli

University of Oxford, UK
luca.a.cardelli@gmail.com

Abstract. The cycle of observation, hypothesis formulation, experimentation,
and falsification that has driven scientific and technical progress is lately
becoming automated in all its separate components. However, integration
between these automated components is lacking. Theories are not placed in the
same formal context as the (coded) protocols that are supposed to test them:
neither description knows about the other, although they both aim to describe
the same process. We develop integrated descriptions from which we can extract
both the model of a phenomenon (for possibly automated mathematical analy-
sis), and the steps carried out to test it (for automated execution by lab equip-
ment). This is essential if we want to carry out automated model synthesis,
falsification, and inference, by taking into account uncertainties in both the
model structure and in the equipment tolerances that may jointly affect the
results of experiments.

Object Support for GPU Programming:
Why and How

Hidehiko Masuhara

Tokyo Institute of Technology, Japan
masuhara@is.titech.ac.jp

Abstract. General-purpose computing on graphics processing units (GPGPU) is
now widely used in many application domains. However, programming for
GPGPU is challenging due to its peculiar performance characteristics and still
being done either in low-level languages or through libraries (e.g., those for
matrix computation and machine learning). This talk discusses the performance
challenges of using objects in GPGPU programming from the viewpoint of
memory management, and the efficient mechanisms to support objects.

Generating Programs from Types

Nadia Polikarpova

UC San Diego, USA
npolikarpova@eng.ucsd.edu

Abstract. Program synthesis is a promising approach to automating low-level
aspects of programming by generating code from high-level declarative speci-
fications. But what form should these specifications take? In this talk I will
advocate for using types as input to program synthesis. Types are widely
adopted by programmers, they can vary in expressiveness and capture both
functional and non-functional properties, and finally, type checking is often fully
automatic and compositional, which helps the synthesizer find the right pro-
gram. I will describe two type-driven program synthesizers we developed. The
first one is Synquid, a synthesizer for recursive functional programs that uses
expressive refinement types as a specification mechanism. The second one is
Hoogle+, which relies on more mainstream Haskell types and generates code
snippets by composing functions from Haskell libraries.

Contents

Program Analysis and Verification

A Set-Based Context Model for Program Analysis 3
Leandro Fachinetti, Zachary Palmer, Scott F. Smith, Ke Wu,
and Ayaka Yorihiro

Declarative Stream Runtime Verification (hLola). 25
Martín Ceresa, Felipe Gorostiaga, and César Sánchez

Formal Verification of Atomicity Requirements for Smart Contracts 44
Ning Han, Ximeng Li, Guohui Wang, Zhiping Shi, and Yong Guan

Types

Neural Networks, Secure by Construction: An Exploration
of Refinement Types . 67

Wen Kokke, Ekaterina Komendantskaya, Daniel Kienitz, Robert Atkey,
and David Aspinall

A New Refinement Type System for Automated mHFLZ Validity Checking. . . . 86
Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi,
and Takeshi Tsukada

Behavioural Types for Memory and Method Safety in a Core
Object-Oriented Language . 105

Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel,
Mathias S. Jakobsen, Mikkel K. Kettunen, and António Ravara

Syntactically Restricting Bounded Polymorphism for Decidable Subtyping . . . 125
Julian Mackay, Alex Potanin, Jonathan Aldrich, and Lindsay Groves

Semantics

An Abstract Machine for Strong Call by Value. 147
Małgorzata Biernacka, Dariusz Biernacki, Witold Charatonik,
and Tomasz Drab

Certified Semantics for Relational Programming . 167
Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev

Algebraic and Coalgebraic Perspectives on Interaction Laws. 186
Tarmo Uustalu and Niels Voorneveld

Program Generation, Transactions and Automation

Stack-Driven Program Generation of WebAssembly 209
Árpád Perényi and Jan Midtgaard

Banyan: Coordination-Free Distributed Transactions over
Mergeable Types. 231

Shashank Shekhar Dubey, K. C. Sivaramakrishnan,
Thomas Gazagnaire, and Anil Madhavapeddy

Automatically Generating Descriptive Texts in Logging Statements:
How Far Are We?. 251

Xiaotong Liu, Tong Jia, Ying Li, Hao Yu, Yang Yue, and Chuanjia Hou

Synthesis and Program Transformation

Parameterized Synthesis with Safety Properties . 273
Oliver Markgraf, Chih-Duo Hong, Anthony W. Lin, Muhammad Najib,
and Daniel Neider

Relational Synthesis for Pattern Matching . 293
Dmitry Kosarev, Petr Lozov, and Dmitry Boulytchev

REFINITY to Model and Prove Program Transformation Rules 311
Dominic Steinhöfel

Debugging, Profiling and Constraint Solving

A Counterexample-Guided Debugger for Non-recursive Datalog 323
Van-Dang Tran, Hiroyuki Kato, and Zhenjiang Hu

A Symbolic Algorithm for the Case-Split Rule in String
Constraint Solving. 343

Yu-Fang Chen, Vojtěch Havlena, Ondřej Lengál, and Andrea Turrini

P3: A Profiler Suite for Parallel Applications on the Java Virtual Machine . . . 364
Andrea Rosà and Walter Binder

Author Index . 373

xvi Contents

	Preface
	Organization
	Abstracts of Invited Talks
	Integrated Scientific Modeling and Lab Automation
	Object Support for GPU Programming: Why and How
	Generating Programs from Types
	Contents

