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Preface

This volume contains the papers presented at the 18th Asian Symposium on
Programming Languages and Systems (APLAS 2020), held online during
November 30 – December 2, 2020. APLAS 2020 was originally meant to be held in
Fukuoka City, Japan, but due to the COVID-19 epidemic, it was changed to an online
event.

APLAS aims to stimulate programming language research by providing a forum for
the presentation of the latest results and the exchange of ideas in programming lan-
guages and systems. APLAS is based in Asia but is an international forum that serves
the worldwide programming languages community.

This year we solicited contributions in the forms of regular research papers and tool
papers. Among others, solicited topics include: semantics, logics, and foundational
theory; design of languages, type systems, and foundational calculi; domain-specific
languages; compilers, interpreters, and abstract machines; program derivation, syn-
thesis, and transformation; program analysis, verification, model-checking; logic,
constraint, probabilistic, and quantum programming; software security; concurrency
and parallelism; tools and environments for programming and implementation; and
applications of SAT/SMT to programming and implementation.

We also continued employing a light double-blind reviewing process adopted
recently by APLAS with an author-response period. More precisely, we had a
two-stage reviewing process. Each paper received at least three reviews before the
author-response period, which was followed by a one-week Program Committee
(PC) discussion, taking into account initial impressions of the papers as well as the
author responses.

This year we received 46 submissions, out of which 19 papers (17 regular papers
and 2 tool papers) were accepted after thorough reviews and discussions by the PC. We
were also honored to include three invited talks by distinguished PL researchers:

– Luca Cardelli (University of Oxford, UK) on “Integrated Scientific Modeling and
Lab Automation”

– Hidehiko Masuhara (Tokyo Institute of Technology, Japan) on “Object Support for
GPU Programming: Why and How”

– Nadia Polikarpova (University of California San Diego, USA) on “Generating
Programs from Types”

I am indebted to many people who helped make APLAS 2020 possible. First and
foremost, I sincerely thank the PC, who have spent a lot of time and effort throughout
the entire reviewing process. I am also grateful for the sub-reviewers and expert
reviewers for their thorough and constructive reviews. I thank Masahiro Yasugi (Kyushu
Institute of Technology, Japan) who served as a general chair and worked out every
detail of the conference well in advance. This year’s APLAS was especially challenging
to prepare due to the complications of moving to and organizing an online event.



I am also grateful to AAFS Executive Committee (especially Wei-Ngan Chin, National
University of Singapore, Singapore, and Atsushi Igarashi, Kyoto University, Japan)
who provided a lot of helpful advice and thank them for their leadership. I thank the
previous APLAS PC chair, Anthony Widjaja Lin (TU Kaiserslautern, Germany) for his
helpful advice and resources. Finally, I thank Eelco Visser and Elmer van Chastelet for
their very helpful conf.researchr.org conference management system, as well as Eddie
Kohler for his very helpful HotCRP conference management system.

October 2020 Bruno C. d. S. Oliveira
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Abstracts of Invited Talks



Integrated Scientific Modeling and Lab
Automation

Luca Cardelli

University of Oxford, UK
luca.a.cardelli@gmail.com

Abstract. The cycle of observation, hypothesis formulation, experimentation,
and falsification that has driven scientific and technical progress is lately
becoming automated in all its separate components. However, integration
between these automated components is lacking. Theories are not placed in the
same formal context as the (coded) protocols that are supposed to test them:
neither description knows about the other, although they both aim to describe
the same process. We develop integrated descriptions from which we can extract
both the model of a phenomenon (for possibly automated mathematical analy-
sis), and the steps carried out to test it (for automated execution by lab equip-
ment). This is essential if we want to carry out automated model synthesis,
falsification, and inference, by taking into account uncertainties in both the
model structure and in the equipment tolerances that may jointly affect the
results of experiments.



Object Support for GPU Programming:
Why and How

Hidehiko Masuhara

Tokyo Institute of Technology, Japan
masuhara@is.titech.ac.jp

Abstract. General-purpose computing on graphics processing units (GPGPU) is
now widely used in many application domains. However, programming for
GPGPU is challenging due to its peculiar performance characteristics and still
being done either in low-level languages or through libraries (e.g., those for
matrix computation and machine learning). This talk discusses the performance
challenges of using objects in GPGPU programming from the viewpoint of
memory management, and the efficient mechanisms to support objects.



Generating Programs from Types

Nadia Polikarpova

UC San Diego, USA
npolikarpova@eng.ucsd.edu

Abstract. Program synthesis is a promising approach to automating low-level
aspects of programming by generating code from high-level declarative speci-
fications. But what form should these specifications take? In this talk I will
advocate for using types as input to program synthesis. Types are widely
adopted by programmers, they can vary in expressiveness and capture both
functional and non-functional properties, and finally, type checking is often fully
automatic and compositional, which helps the synthesizer find the right pro-
gram. I will describe two type-driven program synthesizers we developed. The
first one is Synquid, a synthesizer for recursive functional programs that uses
expressive refinement types as a specification mechanism. The second one is
Hoogle+, which relies on more mainstream Haskell types and generates code
snippets by composing functions from Haskell libraries.
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