Skip to main content

Skin Lesion Diagnosis with Imbalanced ECOC Ensembles

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Abstract

Diagnosis of skin lesions is a challenging task due to the similarities between different lesion types, in terms of appearance, location, and size. We present a deep learning method for skin lesion classification by fine-tuning three pre-trained deep learning architectures (Xception, Inception-ResNet-V2, and NasNetLarge), using the training set provided by ISIC2019 organizers. We combine deep convolutional networks with the Error Correcting Output Codes (ECOC) framework to address the open set classification problem and to deal with the heavily imbalanced dataset of ISIC2019. Experimental results show that the proposed framework achieves promising performance that is comparable with the top results obtained in the ISIC2019 challenge leaderboard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider a dermoscopy as uncropped if one-fourth the number of original pixels are dark.

  2. 2.

    https://challenge2019.isic-archive.com/live-leaderboard.html.

References

  1. Alquran, H., et al.: The melanoma skin cancer detection and classification using support vector machine. In: 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–5. IEEE (2017)

    Google Scholar 

  2. Atito, S., Yanikoglu, B.A., Aptoula, E.: Plant identification with large number of classes: sabanciu-gebzetu system in plantclef 2017. In: Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum, Dublin, Ireland, September 11–14, 2017. vol. 1866 (2017)

    Google Scholar 

  3. Atito, S., et al.: Plant identification with deep learning ensembles. In: Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, 10–14 September 2018, vol. 2125 (2018)

    Google Scholar 

  4. Barata, C., Celebi, M.E., Marques, J.S.: Improving dermoscopy image classification using color constancy. IEEE J. Biomed. Health Inform. 19(3), 1146–1152 (2014)

    Google Scholar 

  5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  6. Codella, N.C.F., et al.: Skin lesion analysis toward melanoma detection. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp. 168–172 (2018)

    Google Scholar 

  7. Combalia, M., et al.: Bcn20000: Dermoscopic lesions in the wild (2019)

    Google Scholar 

  8. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1994)

    Article  Google Scholar 

  9. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  10. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color and Imaging Conference, vol. 2004, pp. 37–41. Society for Imaging Science and Technology (2004)

    Google Scholar 

  11. Gutman, D., et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 (2016)

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Kearns, M.J., Valiant, L.G.: Learning boolean formulae or finite automata is as hard as factoring (1988)

    Google Scholar 

  14. Kimball, A.: The US dermatology workforce: a specialty remains in shortage. J. Am. Acad. Dermatol. 59, 741–745 (2008)

    Google Scholar 

  15. Kittler, H., Pehamberger, H., Wolff, K., Binder, M.: Diagnostic accuracy of dermoscopy. The Lancet Oncol. 3, 159–165 (2002)

    Article  Google Scholar 

  16. Liu, M., Zhang, D., Chen, S., Xue, H.: Joint binary classifier learning for ecoc-based multi-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2335–2341 (2016)

    Article  Google Scholar 

  17. Qin, J., Liu, L., Shao, L., Shen, F., Ni, B., Chen, J., Wang, Y.: Zero-shot action recognition with error-correcting output codes. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  19. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  21. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A Survey on Deep Transfer Learning: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part III, pp. 270–279 (2018)

    Google Scholar 

  22. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data 5, 180161 (2018)

    Article  Google Scholar 

  23. Ud Din, I., Rodrigues, J., Islam, N.: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn. Lett. 125 (2019)

    Google Scholar 

  24. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

  25. Zor, C., Windeatt, T., Yanikoglu, B.A.: Bias-variance analysis of ECOC and bagging using neural nets. In: Ensembles in Machine Learning Applications (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Atito Ali Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali Ahmed, S.A., Yanikoglu, B., Zor, C., Awais, M., Kittler, J. (2020). Skin Lesion Diagnosis with Imbalanced ECOC Ensembles. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12566. Springer, Cham. https://doi.org/10.1007/978-3-030-64580-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64580-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64579-3

  • Online ISBN: 978-3-030-64580-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics