
Learn to Move Through a Combination of Policy
Gradient Algorithms: DDPG, D4PG, and TD3

Nicolas Bach*, Andrew Melnik*, Malte Schilling, Timo Korthals, and
Helge Ritter

CITEC, Bielefeld University, Bielefeld, Germany
nbach@techfak.uni-bielefeld.de

andrew.melnik.papers@gmail.com

Abstract. Deep Reinforcement Learning has recently seen progress for
continuous control tasks, driven by yearly challenges such as the NeurIPS
Competition Track. This work combines complementary characteristics of
two current state of the art methods, Twin-Delayed Deep Deterministic
Policy Gradient and Distributed Distributional Deep Deterministic Policy
Gradient, and applied this in the state-of-the-art Learn to move — Walk
Around locomotion control challenge which was part of the NeurIPS 2019
Competition Track. The combined approach showed improved results
and achieved the 4th place in this competition. The article presents this
combination and evaluates the performance.

1 Introduction

The NeurIPS 2019: Learn to Move — Walk Around1 challenge [1,2] poses a
continuous control task for a physiologically plausible 3D walking agent in the
physics-based OpenSim environment [3] that is to be controlled by activation of
muscle fibers attached to the agent. The agent is supposed to follow a prescribed
2D velocity vector. The task became incrementally harder compared to the
previous NeurIPS 2018: AI for Prosthetics challenge, in which the provided 1D
velocity vector had always the same direction and only the absolute value was
changing.

We solved the task by combining Twin-delayed Deep Deterministic Policy
Gradient (TD3) [4] and Distributed Distributional Deep Deterministic Policy
Gradient (D4PG) [5] algorithms. Both algorithms are extensions of the Deep
Deterministic Policy Gradient (DDPG) [6] and implement several improvements
(see table 1). This solution showed to score an improvement compared to the
two algorithms individually and scored fourth place out of 310 teams in this
competition. In this paper, we evaluate the feasibility and performance of com-
bining these improvements and compare it to the performance of the two original
algorithms in the NeurIPS 2019: Learn to Move — Walk Around challenge. The
combined algorithm is tested against its components, TD3 and D4PG, in two

1 https://www.aicrowd.com/challenges/neurips-2019-learn-to-move-walk-around

* Equal contribution.

https://www.aicrowd.com/challenges/neurips-2019-learn-to-move-walk-around

2 Bach, Melnik et al.

experiments. Other top ranked solutions for this and previous years challenge
variants are described in [7,8,5,2]. Deep Reinforcement Learning methods has
been successfully applied in an increasing number of areas, ranging from computer
games towards robotic control [9,10,11,12,13,14,15].

2 Methods

Fig. 1. The task of the competition: Developing a controller capable of locomotion for
the skeleton, which can only be controlled via activation of its muscles on its legs. The
figure shows a movement of the agent in a sequence of five time steps. Active muscles
are shown in red, inactive muscles are shown in blue.

2.1 Combination of algorithms

Our algorithm is based on DDPG and combines all improvements (see table 1
for an overview) introduced by TD3 and D4PG. The implementation of TD3
and D4PG improvements is mostly straightforward (compartmentalization of
both algorithms can be seen in algorithm 1; red highlights D4PG and green
TD3). The improvements themselves do not intertwine with each other, except
for clipped double Q-Learning of TD3 and the distributional value function of
D4PG (in algorithm 1 computing the Q-value with twin critics and choosing their
minimum is part of the distributional update steps). The combined algorithm
should provide a more stable learning signal, while offering the same scalability
as found in D4PG. Overall, we assume that it should lead to an improvement,
first, compared to TD3 as the sample efficiency is better. Second, in comparison
with D4PG, as improvements to stabilize the learning process are deployed.

2.2 Comparison of Deterministic Policy Gradient algorithms

In the following, we describe experiments that demonstrate the viability of the
combination of deterministic policy gradient algorithms for the NeurIPS 2019:
Learn to Move — Walk Around challenge. We compare the combined approach
to its’ combinational parts, TD3 and D4PG. Further, we elaborate on the details
regarding the challenge, especially the reward function, which had to be optimized,
as this appeared detrimental to a reinforcement learning problem.

Combinatorial DDPG 3

Algorithm 1 Combination of TD3 (green) and D4PG (red)

Input: batch size M , trajectory length N , number of actors K, replay size R, explo-
ration constant ε, initial learning rates α0 and β0

1: Initialize critic networks Qθ1 , Qθ2 and actor network πφ replicating network weights
to each of the K actors with random network weights θ1, θ2, φ

2: Initialize target networks θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ
3: for t = 1, ..., T do
4: Sample mini-batch of M transitions (xi:i+N , ai:i+N−1, ri:i+N−1)

of length N for replay buffer with priority pi
5: Generate target action ã← π′φ(si:i+N−1) + ε, ε ∼ clip(N (0, δ̃),−c, c)
6: Construct target distributions

Yi = (

N−1∑
n=0

γnri+n) + γNminj=1,2Z
j
w′(xi+N , πθ′(xi+N))

for critics j = 1,2
7: Compute the actor and critics updates

δθi =
1

M

∑
i

∇w(Rpi)
−1d(Yi, argminZjZ

j
w(xi,ai))

∣∣∣
j=1,2

δφ =
1

M

∑
i

∇θπθ(xi)E[∇aargminZjZ
j
w(xi,a)]

∣∣∣
a=πθ(xi),j=1,2

8: Update critics θi ← θi + βt(δθi)
9: if t mod d then

10: Update φ← φ+ αtδφ and replicate network weights to the actors
11: Update target networks θ′i and φ′

12: end if
13: end for
14: return: policy parameters φ

Actor

1: repeat
2: Sample action a = πθ(x) + εN (0, 1)
3: Execute action a, observe reward r and state x′

4: Store (x,a, r,x′)
5: until learner finishes

4 Bach, Melnik et al.

Table 1. List of components of the deterministic policy gradients. A detailed description
of each component can be found in the appendix. The components of our combined
approach are shown in column four.

Approach
Component DDPG TD3 D4PG Ours

Deterministic policy gradient X X X X
Target policy and value networks X X X X
Explorative noise X X X X
Experience replay buffer X X
Clipped Double Q-Learning X X
Delayed update of policy networks X X
Target policy smoothing X X
Multiple sampler X X
Distributional critic X X
N-step returns X X
Prioritized experience replay buffer X X

The same configuration for all three algorithms was used to evaluate their
characteristics. Actor and critic neural networks (TD3 and our algorithm operated
with a pair of critics) were given three hidden layers with sizes (512, 512, 256)
in all three cases. We used Gaussian noise for exploration. Further, for each
algorithm we deployed a trainer thread to perform update steps and 22 sampler
threads to produce samples in parallel, which were necessary for the updates, and
store them in a shared replay buffer. Although originally TD3 has no distributed
training framework, we extended the algorithm for better evaluation of the other
improvements. A sampler is a copy of the policy network, which acts on the
environment, whereas the trainer contains the algorithm, which optimizes the
policy and value function, and copies the weights of the policy functions to the
sampler threads every 500 update steps.

The implementation of prioritized experience replay [16] that is employed by
D4PG and our approach uses the absolute TD-errors as sample-weighing-strategy
and produces batches dependant on those weights, favoring more important
samples. TD3 was implemented with a regular replay buffer, which is sampled
uniformly. For realizing the distributional critic used in D4PG and our algorithm,
we used a quantile distribution [17] consisting of 101 atoms. N-step returns
were set to five. Delayed updates of policy networks were executed in a ratio of
two critic updates for every actor update. For target policy smoothing we used
Gaussian noise.

2.3 OpenSim environment

The NeurIPS 2019: Learn to Move — Walk Around challenge poses the task
to control a physiologically plausible 3D walking agent in the physics-based
OpenSim environment [3] only by activation of muscle fibers attached to the

Combinatorial DDPG 5

Fig. 2. The competition’s environment. Based on OpenSim it provides a 3D environment,
in which the agent should be controlled, and a velocity field to determine the trajectory
the agent should follow. (source: [18])

agent. The activation range of the muscles spans the continuous space between 0
and 1. The agent has 22 muscles distributed over its lower body, so the action
space amounted to twenty-two dimension. The agent is supposed to follow a
provided 2D velocity vector field. This vector field V is a 2 x 11 x 11 tensor of
2D velocities in forward and leftward direction of the agent. It spans a 11 x 11
grid within 5 meters around the agent with the agent at its center. The distance
between each discrete point in the grid amounts to 0.5 meters (as can be seen in
figure 2). The vector field is one part of the observation space the agent could
access. The second part of the provided observation space is a dictionary of 97
observations for pelvis state, ground reaction forces, joint angles, and velocities,
as well as muscle states, such as their length. Therefore, the accessible observation
space amounts to 341 dimensions. Our solution took only into account the actual
target velocity in the agents position, as well as the difference between target
velocity and real velocity, resulting in an observation space of 103 dimensions for
our agent.

The environment provided two different reward functions for round one and
two of the NeurIPS 2019: Learn to Move — Walk Around on which the agent
was optimized. We used the reward function of the second round to conduct the
experiments described in section 3, which was provided by the competition’s
environment2. It was not shaped in any form. The environment returned reward
in each step (dense reward). The total reward J(π) is described as a sum of
reward for staying alive and reward for performing footsteps, where the latter
was defined as bridging a minimum distance between contact with the ground,
while traveling in the right direction and using minimal effort in terms of muscle

2 https://github.com/stanfordnmbl/osim-rl

https://github.com/stanfordnmbl/osim-rl

6 Bach, Melnik et al.

activation. The maximum number of steps in the first round was set to 1000 and
in round two to 2500 steps per episode.

J(π) = Ralive +Rstep (1)

=
∑
i

ralive +
∑
stepi

(wsteprstep − wvelcvel − weffortceffort) (2)

In equation (2) wstep, wvel and weffort refers to a constant weight of the stepping
reward as well as to the weights for effort and velocity costs. The costs and
rewards are defined as

ralive = 0.1 (3)

rstep =
∑

i in stepi

∆ti = ∆tstepi (4)

cvel = ||
∑

i in stepi

(vpelvis − vvectorfield)∆tstepi || (5)

ceffort = ||
∑

i in stepi

muscles∑
m

A2
m∆tstepi || (6)

with ∆ti = 0.01 seconds is the simulation time step. vpelvis and vvectorfield are
the velocity of the pelvis and the target velocity and Am are muscle activations.

A bonus of 500 was given by successfully standing near the target for a
time period (two to four seconds). This bonus could be achieved twice, as after
achieving the first reward a new velocity field spawned, which the agent also
needed to solve to successfully end the episode.

3 Experiments

In the first experiment, we ran a test agent with no exploration noise every
500 updates of policy weights and collected reward values for that episode. For
each algorithm, we repeated the training process with a different seed three
times. The average result of three tests for each algorithm is plotted in figure
3. One repetition of the training process amounted to 1,000,000 update steps of
the trainer thread. As described above, during training the episode length was
constrained to 1000 steps per episode. This limits the reward, which could be
achieved, by the number of steps.

For the second experiment, we tested the performance of the trained networks
from the first experiment. We ran each of the 9 agents (3 algorithms x 3 seeds)
on the same 50 episodes after the absolved training process (1,000,000 updates
steps). The maximum length of an episode was set to 2500 steps. As mentioned
above, this was established in the second round of the learning to run challenge,
where the agent’s task was to solve two velocity fields in one episode. Thereby,
the reward was limited. The networks were compared in terms of reward earned
and steps taken.

Combinatorial DDPG 7

3.1 Results of the experiments

Fig. 3. Results of experiment 1. In later stages of training the agent was able to achieve
a bonus reward of 500 by standing at its target for multiple seconds, resulting in spikes
in the later stages of training. However, the rewards of the episodes only amount to
about 350 in average because of their occurrence rate and difference in time during
training runs.

The results for experiment 1, which are depicted in figure 3, show that a
combination of algorithm converges faster to a well-performing policy, enabling
the agent to achieve the second round’s reward of 500. Due to restricted episode
length of 1000 during training the agent was not able to solve whole episodes
of the environment (default settings for difficulty 2 of the environment are 2500
steps per episode). Further, the reward is maxed out by around 350 for an episode.
This relates to the spikes in figure 3. The agent was not able to achieve the second
bonus, as the episode length was constrained to 1000 steps per episode during
training. The spikes amount to a reward of around 350 as they are averaged
over episodes, where the agent did not achieve bonus due to different occurrence
rates in all seeds. Moreover, we can also observe a smoother trend of the curve
until convergence (around 600,000 steps) for the combination of algorithms in
comparison to D4PG. In later stages of the training process we could also observe,
that our approach has less low-reward outliers as D4PG. TD3 was not able to
produce a policy, which was able to score more than a reward of around 50 and

8 Bach, Melnik et al.

therefore wasn’t able to produce any high-reward outliers by scoring the bonus
reward. D4PG was able to score the round two bonus, but at a later stage of the
training than our proposed algorithm

In experiment 2 (see table 2), we observed similar results. The trained policy
of our combined approach was able to outperform both TD3 and D4PG. After
the finished training, the TD3 algorithm scored worse compared to D4PG and
our approach in terms of average steps and reward. Our proposed combined
approach was able to produce a policy, which scores about 30% higher on average
than D4PG in terms of average reward and average steps taken in episodes. We
were also able to decrease the standard deviation in reward by about 20% and in
steps by about 15%, which implies less proneness to the failure mode.

Table 2. Results of second experiment.

Approach Reward - mean Reward - std Steps - mean Steps - std

Ours 354.9 195.1 2070.5 703.8
D4PG 265.1 242.3 1448.0 847.3
TD3 25.6 1.9 259.4 6.0

4 Discussion

We found that combining the algorithms improved the results. TD3 couldn’t
solve the task at hand. The policy produced was not able to exhibit walking
behavior and finished each episode abruptly with falling down in runtime with a
frozen model. During training, TD3 was also not able to improve its behavior,
such that the standing bonus could never be achieved. In general, TD3 fell off
behind D4PG and our approach. This could be due to the fact, that certain
improvements like prioritized sampling or n-step returns are helpful features for
solving the challenge posed in this particular environment. D4PG was able to
exhibit better performance compared to TD3. On runtime, a frozen D4PG policy
was able to move around and in some episodes earn the bonus by standing in the
middle of the target for an amount of time.

The combined approach was able to perform even better than D4PG. It
maximized reward faster than D4PG and showed to be more stable, as the
training curve of our algorithm has less low-reward outliers than D4PG. It also
scored higher in the second experiment than TD3 and D4PG (see table 2), while
having a smaller standard deviation of reward and steps than D4PG. However, it
was not able to fully solve an environment of the second round. This might be
due to the fact that we chose to reduce the episode length to 1000 steps during
training.

All in all, in the comparison to its components, we could not find any un-
favorable repercussions for the integrated approach in the two experiments by
combining the here mentioned improvements of D4PG and TD3.

Combinatorial DDPG 9

References

1. AIcrowd.com. Neurips 2019: Learn to move - walk around, 2019.

2. Lukasz Kidzinski, Sharada Prasanna Mohanty, Carmichael F. Ong, Zhewei Huang,
Shuchang Zhou, Anton Pechenko, Adam Stelmaszczyk, Piotr Jarosik, Mikhail
Pavlov, Sergey Kolesnikov, Sergey M. Plis, Zhibo Chen, Zhizheng Zhang, Jiale
Chen, Jun Shi, Zhuobin Zheng, Chun Yuan, Zhihui Lin, Henryk Michalewski, Piotr
Milos, Blazej Osinski, Andrew Melnik, Malte Schilling, Helge J. Ritter, Sean F.
Carroll, Jennifer L. Hicks, Sergey Levine, Marcel Salathé, and Scott L. Delp.
Learning to run challenge solutions: Adapting reinforcement learning methods for
neuromusculoskeletal environments. CoRR, abs/1804.00361, 2018.

3. Ajay Seth, Michael Sherman, Jeffrey A Reinbolt, and Scott L Delp. Opensim: a
musculoskeletal modeling and simulation framework for in silico investigations and
exchange. Procedia Iutam, 2:212–232, 2011.

4. Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

5. Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan
Horgan, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distri-
butional deterministic policy gradients. arXiv preprint arXiv:1804.08617, 2018.

6. Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

7. Sergey Kolesnikov and Valentin Khrulkov. Sample efficient ensemble learning with
catalyst.rl. arXiv preprint arXiv:[WIP], 2019.

8. Sergey Kolesnikov and Oleksii Hrinchuk. Catalyst.rl: A distributed framework for
reproducible rl research. arXiv preprint arXiv:1903.00027, 2019.

9. Malte Schilling, Kai Konen, Frank W. Ohl, and Timo Korthals. Decentralized deep
reinforcement learning for a distributed and adaptive locomotion controller of a
hexapod robot, 2020.

10. Timo Korthals, Andrew Melnik, Jürgen Leitner, and Marc Hesse. Multisensory
assisted in-hand manipulation of objects with a dexterous hand. juxi. net, 2019.

11. Kai Konen, Timo Korthals, Andrew Melnik, and Malte Schilling. Biologically-
inspired deep reinforcement learning of modular control for a six-legged robot. In
2019 IEEE International Conference on Robotics and Automation Workshop on
Learning Legged Locomotion Workshop,(ICRA) 2019, Montreal, CA, May 20-25,
2019, 2019.

12. Andrew Melnik, Sascha Fleer, Malte Schilling, and Helge Ritter. Modularization of
end-to-end learning: Case study in arcade games. arXiv preprint arXiv:1901.09895,
2019.

13. Malte Schilling and Andrew Melnik. An approach to hierarchical deep reinforcement
learning for a decentralized walking control architecture. In Biologically Inspired
Cognitive Architectures Meeting, pages 272–282. Springer, 2018.

14. Timo Korthals, Marc Hesse, Jürgen Leitner, Andrew Melnik, and Ulrich Rückert.
Jointly trained variational autoencoder for multi-modal sensor fusion. In 2019
22th International Conference on Information Fusion (FUSION), pages 1–8. IEEE,
2019.

15. Andrew Melnik, Lennart Bramlage, Hendric Voss, Federico Rossetto, and Helge
Ritter. Combining causal modelling and deep reinforcement learning for autonomous
agents in minecraft. 2019.

10 Bach, Melnik et al.

16. Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado Van Hasselt, and David Silver. Distributed prioritized experience replay.
arXiv preprint arXiv:1803.00933, 2018.

17. Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional
reinforcement learning with quantile regression. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

18. Neurips 2019 learn to move-environment. http://osim-rl.stanford.edu/docs/

nips2019/, 2019.
19. David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic policy gradient algorithms. 2014.
20. George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian

motion. Physical review, 36(5):823, 1930.
21. Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective

on reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 449–458. JMLR. org, 2017.

http://osim-rl.stanford.edu/docs/nips2019/
http://osim-rl.stanford.edu/docs/nips2019/

Combinatorial DDPG 11

A Appendix

A.1 Deterministic Policy Gradient Algorithms

Environments with continuous action spaces come a bit closer to the reality.
Although, they are often more difficult to solve, it is necessary to be able to solve
problems in this group, when we try to make progress towards algorithms we
can deploy in the real world to e.g. build controllers for robots. In the NeurIPS
2019: Learn to Move — Walk Around challenge using a continuous action space
as design choice is justified by imitating a humanoid 3D model more realistically.
This humanoid is controlled by activation of the muscles on his legs. The action
space consists of activation intervals for different muscles, from which a value
can be sampled from. The correct sampling of a value to produce a behaviour
pattern is the goal of the environment provided by the challenge. One of the
current state-of-the-art algorithms to solve such types of environments is the
model-free off-policy algorithm Deep Deterministic Policy Gradient (DDPG,[6])
as well as its improved versions, twin-delayed DDPG (TD3, [4]) and distributed,
distributional DDPG (D4PG, [5]). In the following we describe these algorithms
in more detail.

Deep Deterministic Policy Gradient (DDPG) In this work we use DDPG
as baseline algorithm for solving locomotion in reinforcement learning problems.
DDPG is an off-policy, model-free algorithm and it is able to solve problems
in environments with continuous action spaces. It can be seen as a variant of
Deep Q-networks, as it combines Deterministic Policy Gradients (DPG, [19])
with Q-Learning and other extensions, namely experience replay and target value
and policy networks. DDPG is furthermore an actor-critic-algorithm and consists
of 4 different neural networks in total: The actor, the critic and both target
actor and target critic. The actor is also called the policy function π(s) = a,
which computes an action for a given state. The critic, also refered to as Q-value
function, computes the Q-value, a numerical value that represents the discounted
future reward for a state-action-pair. The critic is also the main objective to be
optimized, such that we find the maximal, real Q-value for given state-action-
pairs. We can derive the optimal Q-Value function Q∗(s, a) by minimizing the
loss between the output of the function approximator and the bellman-equation:

Q∗(st, at) = E[r(st, at) + γmaxat+1
Q′∗(st+1, π

′(st))] (7)

This computes the Q-value for a given time step t. The discount rate γ
diminishes additional reward of steps into the future. This has the effect, that
immediate reward is given a preference over future reward. The value and policy
function on the right-hand site of the equation are the target value and policy
function. Their functions are discussed in section A.1.

Given the target function and the neural networks as function approximators
(given by actor and critic networks) we now can derive the loss function L:

L(θQ) = E[(Q(st, at|θQ)− Yt)2] (8)

12 Bach, Melnik et al.

where Yt is the target in a supervised learning sense and is computed by using
the Bellman-equation as intermediate optimum:

Yt = r(st, at) + γQ(st+1, µ(st+1|θQ) (9)

θQ are the function parameters for policy µ and value function Q. In the
next sections we discuss how to update the parameters of a policy by the
optimization step of the value function and the components experience replay
buffer, exploration noise and target policy and value networks.

Deterministic policy gradients In an environment which provides a contin-
uous action space we can derive a deterministic policy by using Deterministic
policy gradient (DPG). Rather than returning a probability distribution over
actions A given a state, a deterministic policy µ(s) = a returns a single action
in a deterministic way. The main objective J(θ) in an off-policy actor-critic
algorithm, which mainly optimizes the value function is defined as:

J(θ) =

∫
S
ρµ(s)Q(s, µθ(s))ds (10)

where θ are the parameters and S is the state space.

ρµ(s′) =

∫
S

inf∑
k=1

γk−1ρ0(s)ρµ(s→ s′, k)ds (11)

is defined as the discounted sum of state visitation probability density at state
s′. ρµ(s → s′, k) gives us the probability density from state s to state s′ after
moving k steps by using policy µ. ρ0(s) is the initial distribution over states.

We can now compute the gradient of J(θ) using the Deterministic policy
gradient theorem.

∇θJ(θ) =

∫
S
ρµ(s)∇aQµ(s, a)∇θµθ(s)|a=µθ(s)ds (12)

= Es≈ρµ [∇θµθ(s)∇aQµ(s, a)|a=µθ(s)] (13)

First, the chainrule yields the gradient of Q ∇aQµ(s, a) with respect to a.
Second, we derive the gradient of the deterministic policy ∇θµθ(s) with respect
to theta, which optimizes our policy. As an example to show how to compute
updates, consider DPG in combination with on-policy actor-critic policy SARSA.
First, we compute the TD-error in SARSA:

δt = Rt + γQw(st+1, at+1)−Qw(st, at) (14)

The parameter update of the value function is defined as:

wt+1 = wt + αwδt∇wQw(st, at) (15)

Combinatorial DDPG 13

Then, we can use the Deterministic policy gradient theorem to compute policy
parameter updates of θ using equation 12:

θt+1 = θt + αθ∇aQµ(s, a)∇θµθ(s)|a=µθ(s) (16)

One problem of using DPG is exploration because of the deterministic nature
of the policy we optimize. On way to prevent this is to add noise to the parameter
space or action space, which in this case would result in an off-policy non-
deterministic policy.

Exploration noise As mentioned in A.1, DPG updates could inhibit exploration
depending on the environment. To ensure exploration in the continuous action
space, DDPG uses an exploration policy µ′, in which noise is added to the actions
of the policy network µ.

µ′(st) = µ(st) +N (17)

N denotes noise sampled from a noise generating process, such as Gaussian
noise. The authors of the DDPG paper suggest using the Ornstein-Uhlenbeck
process [20] for exploring physical environments, as it allows temporally correlated
exploration.

Target value and policy networks DDPG utilizes frozen copies of value and
policy function to compute the target Yt (equation 9). More specifically, they are
used to compute the right-hand site of the bellman-equation, as it was found
that the learn process gets less stable, when not using copies due to the change of
weights during optimization. Thus, the learning process consists of the following
steps: first, a batch of training data is sampled from the experience buffer. Second,
the loss L (equation 8) is computed using the target value and policy networks to
generate Yt. After update steps of value and policy networks, the target networks
get softupdated by:

θQ
′
← τθQ + (1− τ)θQ

′
(18)

θµ
′
← τθµ + (1− τ)θµ

′
(19)

θQ and θµ are the parameters of the value network and the policy network,
θQ

′
and θµ

′
are the parameters of the target value and the policy network. The

constant τ � 1 is a hyperparameter, that realizes the soft update by scaling
down the update step, so that the parameters of the target networks change
slower than those of the actor and critic networks.

Experience replay buffer An experience sample typically consists of the tuple
s = {sn, a, r, d, sn+1}, where sn is the current and sn+1 the next state, a is the
action, r is the reward and d is a boolean indicating, whether an episode is over or

14 Bach, Melnik et al.

not. DDPG makes use of an experience replay buffer, in which samples generated
by the interaction of policy and environment are stored and from which batches
are sampled to perform updates using the value function, the bellman-equation
and DPG.

A.2 Twin-delayed Deep Deterministic Policy Gradient (TD3)

One common problem of DDPG is the overestimation of the Q-value, which in
turn results in policy-breaking. Twin-delayed Deep Deterministic Policy Gradient
is able to diminish this effect by extending DDPG algorithm with three additional
improvements. The first improvement is introducing a second value function
network (as in twin-critics) to learn two q-functions. Second, it updates the policy
network less frequently than the value networks. The third extension consists of
target policy smoothing, i.e. adding a small amount of noise to the output of the
target policy network. All these mentioned extensions provide more stability for
approximating the optimal policy.

Clipped double Q-Learning Addressing overestimation of the Q-value, i.e. a
state-action-pair is incorrectly valued too high, the first improvement of TD3 over
DDPG is implemented by using two critics or value function networks instead of
one (which also means two target critics). The two value functions are optimized
with one target Q-function, which uses the minimum of the Q-values estimated
by both target functions:

Yt = r(st, at) + γ min
i=1,2

Qθi(st+1, µθ′i(st+1)) (20)

By always choosing the minimum Q-value, it is more difficult for the value
functions to develop an overestimation of Q-value for certain inputs.

Delayed policy network updates Less frequent updates of the policy network
ensures, that the value function has a harder time converging on the failure mode,
where it overestimates actions incorrectly. In a scenario, where the value function
would start overestimating the outputs of a poor policy, additional updates of
the value network while keeping the same policy could lead to overcoming the
incorrect estimation of the poor performing policy.

Target policy smoothing The third improvement of TD3 is also an improve-
ment of the target Yt. The action produced by the target policy network, which is
utilized in the target Q-function, gets modified by adding a small amount of noise,
which is also clipped into an interval. This has the effect of covering a clipped
area around the action in the action space, instead of predicting a deterministic
action. In case, that the value-function produces a Q-value incorrectly to large
for a certain action, adding a clipped amount of noise to the action acts as a
regularizer, as the high-valued action gets smoothed by the noise.

Combinatorial DDPG 15

A.3 Distributed Distributional Deep Deterministic Policy Gradient
(D4PG)

D4PG, similar to TD3, is an extended version of DDPG. It implements 4 addi-
tional improvements, which overall address stability and scalability of DDPG.
The first improvement, a distributional value function, provides a more stable
estimation of the Q-value. Second, the process of gathering experiences is dis-
tributed over a number of in parallel acting policy networks, which store their
experiences in a shared experience replay buffer. The third improvement, pri-
oritized experience replay, weighs the produced experiences, so that important
experiences are more often sampled than others. The last improvement is n-step
returns. When computing the TD-error n-step-returns allows a more confident
estimation of a state-action-pair by producing a reward over n steps into the
future.

Multiple sampler To address the sample-inefficiency problem of model-free
reinforcement learning, multiple copys of the policy network run in parallel to
produce samples and store them in a shared experience buffer. The copys are
updated at the same time and the number of sampler can be chosen as required.

Distributional value function D4PG uses a distributional version of critic
updates. This means, that expected Q-value is modeled as a random variable, thus
the value function maps the input, a state-action-pair, to a distribution Zw, which
is distributed over w. Given Qw(s, a) = EZw(x, a), the loss for the distributional
function is given by minimizing the distance between two distributions L(w) =
E[d(Tµθ , Zw′(s, a), Zw(s, a)], where Tµθ is the Bellman operator. As [21] show,
this improvement results in a more stable learning signal.

N-step returns When constructing the target and doing the forward step of the
value network for computing the loss, this improvement incorporates computing
the sum of rewards of n-steps instead of having a one-step reward. The target
incorporating n-step returns is computed by:

Yt =

N−1∑
n=0

γNrt+n + γNQθ′(st+N , µθ′(st+N)) (21)

This estimates future reward more accurately.

Prioritized experience replay Instead of sampling uniformly from the replay
buffer, the samples stored in the prioritized experience replay buffer are weighted
with an importance weight and are sampled with a non-uniform probability pi.
The weight, which adjust the probability can, e.g. be realized by the TD-error.
This would have the effect, that samples with high TD-error get sampled more
often than others.

	Learn to Move Through a Combination of Policy Gradient Algorithms: DDPG, D4PG, and TD3

