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Abstract. For data sets with similar features, for example highly cor-
related features, most existing stability measures behave in an undesired
way: They consider features that are almost identical but have differ-
ent identifiers as different features. Existing adjusted stability measures,
that is, stability measures that take into account the similarities between
features, have major theoretical drawbacks. We introduce new adjusted
stability measures that overcome these drawbacks. We compare them
to each other and to existing stability measures based on both artificial
and real sets of selected features. Based on the results, we suggest us-
ing one new stability measure that considers highly similar features as
exchangeable.
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1 Introduction

Feature selection is one of the most fundamental problems in data analysis, ma-
chine learning, and data mining. Recently, it has drawn increasing attention due
to high-dimensional data sets emerging from many different fields. Especially in
domains where the chosen features are subject to further experimental research,
the stability of the feature selection is very important. Stable feature selection
means that the set of selected features is robust with respect to different data
sets from the same data generating distribution [7]. If for data sets from the same
data generating process, very different sets of features are chosen, this questions
not only the reliability of resulting models but could also lead to unnecessary
expensive experimental research.

The evaluation of feature selection stability is an active area of research.
Overviews of existing stability measures are given in [4] and [9]. The theoretical
properties of different stability measures are studied in [I0]. An extensive empir-
ical comparison of stability measures is given in [3]. The research that has been
done in various aspects related to stability assessment is reviewed in [IJ.

For data sets with similar features, the evaluation of feature selection stabil-
ity is more difficult. An example for such data sets are gene expression data sets,
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where genes of the same biological processes are often highly positively corre-
lated. The commonly used stability measures consider features that are almost
identical but have different identifiers as different features. Only little research
has been performed concerning the assessment of feature selection stability for
data sets with similar features. Stability measures that take into account the
similarities between features are defined in [I5], [I6] and [I7]. These measures,
however, have major theoretical drawbacks. We call stability measures that con-
sider the similarities between features “adjusted” stability measures.

In this paper, we introduce new adjusted stability measures. On both artificial
and real sets of selected features, we compare them to each other and to existing
stability measures and analyze their properties. The remainder of this paper
is organized as follows: In Section [2| the concept of feature selection stability
is explained in detail and adjusted stability measures are defined. The stability
measures are compared in Section 3] Section[d]contains a summary of the findings
and concluding remarks.

2 Concepts and Methods

In Subsection feature selection stability is explained and in Subsection [2.2
measures for quantifying feature selection stability are introduced.

2.1 Feature Selection Stability

The stability of a feature selection algorithm is defined as the robustness of
the set of selected features to different data sets from the same data generating
distribution [7]. Stability quantifies how different training data sets affect the
sets of chosen features. For similar data sets, a stable feature selection algorithm
selects similar sets of features. An example for similar data sets could be data
coming from different studies measuring the same features, possibly conducted
at different places and times, as long as the assumption of the same underlying
distribution is valid.

A lack of stability has three main reasons: too few observations, highly similar
features and equivalent sets of features. Consider a group of data sets, for which
the number of observations does not greatly exceed the number of features,
from the same data generating process. The subsets of features with maximal
predictive quality on the respective data sets often differ between these data sets.
One reason is that there are features that seem beneficial for prediction, but that
only help on the specific data set and not on new data from the same process.
Selecting such features and including them in a predictive model typically causes
over-fitting. Another reason is that there are features with similar predictive
quality even though they are unrelated with respect to their content. Due to
the small number of observations, chance has a large influence on which of these
features has the highest predictive quality on each data set. The instability of
feature selection resulting from both reasons is undesirable.



Adjusted Stability Measures 3

Regarding the case of highly similar and therefore almost identical features,
it is likely that for some data sets, one feature is selected and for other data
sets from the same process, another one of the similar features is chosen. As the
features are almost identical, it makes sense to label this as stable because the
feature selection algorithm always chooses a feature with the same information.
Therefore, it is desirable to have a stability measure that takes into account the
reason for the differences in the sets of chosen features. However, most existing
stability measures treat both situations equally: if the identifiers of the chosen
features are different, the feature selection is rated unstable.

Regarding the case of equivalent feature sets, for some data sets, there are
different sets of features that contain exactly the same information. Finding
all equivalent optimal subsets of features is an active field of research, see for
example [13], and worst-case intractable. The selection of equivalent subsets of
features is evaluated as unstable by all existing stability measures. Creating
stability measures that can recognize equivalent sets of features is out of the
scope of this paper.

2.2 Adjusted Stability Measures

For the definition of the stability measures, the following notation is used: As-
sume that there is a data generating process that generates observations of the
p features X1, ..., X,. Further, assume that there are m data sets that are gen-
erated by this process. A feature selection method is applied to all data sets.
Let V; C {Xi,...,Xp}, i=1,...,m, denote the set of chosen features for the
i-th data set and |V;| the cardinality of this set. The feature selection stability is
assessed based on the similarity of the sets V1, ..., V,,. For all stability measures,
large values correspond to high stability and small values to low stability.

Many existing stability measures that do not consider similarities between
features assess the stability based on the pairwise scores |V; NV}, see for exam-
ple [3] and [10]. An example for an unadjusted stability measure is

m—1

SMU =

[Vil-[V;
- mavil- )

VIV,
=1 i VIVl Vi = %

2
m(m — 1)

[Vil-[V5

is the expected value of |V; NV;| if |V;| and |Vj| features are chosen

at random with equal selection probabilities. 1/|V;| - |Vj| is an upper bound for
|V; N Vj]. Including it in the denominator makes 1 the maximum value of SMU. If
many of the sets V; and V; have a large overlap, the feature selection is evaluated
as rather stable. The basic idea of adjusted stability measures is to adjust the
scores |V; NV} in a way that different but highly similar features count towards
stability. Note that all of the following adjusted stability measures depend on a
threshold 6. This threshold indicates how similar features have to be in order to
be seen as exchangeable for stability assessment.
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Zucknick et al. [I7] extend the well known Jaccard index [6], considering the
correlations between the features:
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|Cor(x,y)| is the absolute Pearson correlation between z and y, 8 € [0,1] is a
threshold, and Is denotes the indicator function for a set S. One could generalize
this stability measure by allowing arbitrary similarity values from the interval
[0,1] instead of the absolute correlations. A major drawback of this stability
measure is that it is not corrected for chance. Correction for chance [10] means
that the expected value of the stability measure for a random feature selection
with equal selection probabilities for all features does not depend on the number
of chosen features.

Zhang et al. [I6] also present adjusted stability measures. Their scores are
developed for the comparison of two gene lists. The scores they define are

K+ 0;; — E[K + O]
Vil — E K + O]

DPOGRU =

with ij € {12,21}. K is defined as the number of genes that are included in
both lists and regulated in the same direction. O;; denotes the number of genes
in list ¢ that are not in list j but significantly positively correlated with at least
one gene in list j. For each pair of gene lists, two stability scores are obtained.

Yu et al. [I5] combine the two scores nPOGR;; and nPOGR; into one score
for the special case |V;| = |V}

K+ QutOu —E[K+O“+O”}
nPOGR =

V- £+ 232]

In this paper, we generalize this score to be applicable in the general context
of feature selection with arbitrary feature sets Vi,...,V,, by

1. replacing the quantity K by |V; N Vj|.

2. allowing the similarities between the features to be assessed by an arbitrary
similarity measure instead of only considering significantly positive correla-
tions, that is, replacing O"’-";ro’” by A(W’W);A(VJ’V"’) with A defined below.

0i;+0;i Vil +1V;

72 J ’by ‘ |2| Jl, the

3. replacing |V;|, which is the maximum value of K +

maximum value of |V; NV;| + —A(V"’Vf);A(Vj"/”’).

4. calculating the average of the scores for all pairs V;, Vj, i < j.
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As a result, the stability measure

m—1

2 i SsMy(Vi,Vj) *E[SSMY(VMVJ‘)]
m(m —1) — S M — E [Ssmy (Vi, Vj)]
A(%J/J) +A(V;, Vi)
2
and A(V;, V) ={z € (V;\V;) : 3y € (V; \ Vi) with similarity(z,y) > 6}

SMY =

with  Ssmy (Vi Vj) = |Vz N le +

is obtained. E denotes the expected value for a random feature selection and can
be assessed in the same way as described below for SMA. Similarity(z,y) € [0, 1]
quantifies the similarity of the two features « and y and 6 € [0, 1] is a threshold.

In situations where V; and V; greatly differ in size and contain many similar
features, the value of SMY may be misleading. Consider a scenario with |V;| >
Vi, IVinV;| = 0, A(V;,V;) = V4, and A(V;,V;) = |V;|. In such situations,
there are many features in the larger set that are similar to the same feature in
the smaller set. Even though the sets V; and V; greatly differ with respect to
feature redundancy and resulting effects for model building such as over-fitting,
the stability score attains its maximum value.

To overcome this drawback, a new stability measure employing an adjustment
Adj(V;,V;) different from w that fulfills

i)
is defined in this paper. This means that the adjusted score for V; and V; cannot

exceed the value of \V N V | that would be obtained if two sets V; and V with
|Vi] = |V;] and |V | = |V;| were chosen such that their overlap is maximal. This

max [|[V; N V;| + Adj(V;, V;)] < max [ V;

= Vil

= Vil

happens when V C V or V - V The resulting measure is

Z Z Vi N Vi + Adj(Vi, V;) — E[|[V; N V;| + Adj(Vi, V)]

SMA = ———
UB[|V; N Vj|] = E[|[V; N V;| 4+ Adj(V;, V)]

=1 j=1+1

with UB [|V; N V}|] denoting an upper bound for |V; N V;|. The expected values
E[|ViNVj| 4+ Adj(V;, V;)] cannot be calculated with a universal formula as they
depend on the data specific similarity structure. However, they can be estimated
by repeating the following Monte-Carlo-procedure N times: 1. Randomly draw
sets Vi C {X1,...,X,}and V; C {Xy,..., X, }, with |V;| = |Vi|, |V;| = |V, and
equal selection probabilities for all features. 2. Calculate the score |V N V| +
Adj(V;,V;). An estimate for the expected value E [|V; N V;| + Adj(V;, V;)] is the
average of the N scores.

Concerning the upper bounds UB [[V; N V||, min{[V;|, [V;[} is the tightest
upper bound for |V; N V;|. However, this upper bound is not a good choice for
UB [|V; NVj;|] because the stability measure could attain its maximum value for

sets V; G V or V; G Vi. To avoid it, UB[|V; NVj|] must depend on both |V

and |V;|. Possible choices are for example Ve H2'|V| or \/|Vi] - |V;]. These choices
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are upper bounds for |V; NV;| and they are met if and only if V; = V;. For
Vil # |V;], the bounds differ and min {|V|,|V;]} < /[Vi[ - [V;] < MYl holds
which makes +/|V;| - [V}| more suitable. Therefore, UB[|V; N V;|] = /|Vi| - |V}]
is used in this paper. If there are no similar features in the data set, SMA
is identical to SMU, independent of the choice of adjustment. Four different
adjustments are considered. We first define them and then give explanations for
their construction.

Adjypp (Vi, Vj) = size of maximum bipartite matching (V; \ V}, V; \ V)
Adjgreeay (Vis Vj) = greedy choice of most similar pairs of features
determined by Algorithm [I] introduced on page
Adjcount (Vi, V;) = min{A(V;,V;), A(V;, Vi) } with A as defined for SMY
Adjytean (Vi V5) = min{ M (V;, V;), M(V;, Vi) } with

j
wE\/i\‘/j:|Gij|>0 ’Gz
GY = {y € V; \ V; : similarity(z,y) > 0}

The resulting four variants of SMA are named SMA-MBM, SMA-Greedy, SMA-
Count and SMA-Mean. For the adjustment of SMA-MBM, a graph is con-
structed. In this graph, each feature of (V; \ V;) U (V; \ V;) is represented by
a vertex. Vertices z € V; \ V; and y € V; \ V; are connected by an edge, if and
only if similarity(x,y) > 6. An edge in the graph means that the correspond-
ing features of the two connected vertices should be seen as exchangeable for
stability assessment. A matching of a graph is defined as a subset of its edges
such that none of the edges share a vertex [12, p. 63]. A maximum matching is
a matching that contains as many edges as possible. The size of the maximum
matching is the number of edges that are included in the maximum matching.
The size of the maximum matching can be interpreted as the maximum number
of features in V;\ V; and V; \ V; that should be seen as exchangeable for stability
assessment with the restriction that each feature in V; \ V; may only be seen as
exchangeable with at most one feature in V; \ V; and vice versa. There are no
edges between vertices that both correspond to features of V; \ V; or V; \ V;, so
the graph is bipartite [I2, p. 17]. For the calculation of a maximum matching
for a bipartite graph, there exist specific algorithms [5].

The calculation of the maximum bipartite matching has the complexity
O((number of vertices + number of edges) - vnumber of vertices) [5] and hence
can be very time consuming. Therefore, a new greedy algorithm for choosing the
most similar pairs of features is introduced in Algorithm [I] It is used to calcu-
late the adjustment in SMA-Greedy. The return value of the algorithm is always
smaller than or equal to the size of the maximum bipartite matching of the corre-
sponding graph. The computational complexity of the algorithm is dominated by
the sorting of the edges and hence is O (number of edges - log(number of edges)).

Z similarity(z, y) and

yeGY
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1 size =0
La=[X,Y,S] = list of tuples z € V; \ V;, y € V; \ V;, similarity(z, y) with
similarity(z, y) > 6, sorted decreasingly by similarity values
Lp = empty list
while length of La > 0 do
[x,y,s] = first tuple of L4
add [z,y,s] to Lp
remove all tuples in L4 that contain = or y
end
return length of Lp

N

© 00 N O AW

Algorithm 1: Greedy choice of the most similar pairs of features.

For SMA-Count, A(V;,Vj) is the number of features in V;, that are not in
V; but that have a similar feature in V; \ V;. The minimum of A(V;,V;) and
A(V;,V;) is used in order to guarantee that the adjusted score for V; and V;

cannot exceed the value of \V N V| that would be obtained if two sets V; and
‘7]- with |V;| = |Vi| and |VJ| = |V;| were chosen such that their overlap is max-
imal. min{A(V;,V}), A(V;,V;)} is always larger than or equal to the size of the
maximum bipartite matching.

The adjustment of SMA-Mean is very similar to the one of SMA-Count.
While A(V;,V;) counts the number of features in V; \ V;, that have a similar
feature in V; \ V;, M(V;,V;) sums up the mean similarity values of the features
in V; \ V} to their similar features in V; \ V;. If there are no similarity values of
features in V; \ V; and V; \ V; in the interval [#,1), the adjustments of SMA-
Count and SMA-Mean are identical. Otherwise, the adjustment of SMA-Mean
is smaller than the adjustment of SMA-Count.

3 Experiments and Results

The adjusted stability measures SMZ, SMY, SMA-Count, SMA-Mean, SMA-
Greedy and SMA-MBM are compared to each other and to the unadjusted mea-
sure SMU. All calculations have been performed with the software R [11] using
the package stabm [2] for calculating the stability measures and batchtools [§]
for conducting the experiments on a high performance compute cluster.

3.1 Experimental Results on Artificial Feature Sets

First, a comparison in a situation with only 7 features is conducted. The advan-
tage of this comparison is that all possible combinations of 2 subsets of features
can be analyzed, as there are only 27 -27 = 16 384 possible combinations. For the
adjusted and corrected measures SMY, SMA-Count, SMA-Mean, SMA-Greedy
and SMA-MBM, the expected values of the pairwise scores are calculated exactly



8 Andrea Bommert and Jorg Rahnenfiihrer

01 01 01 01 01 09 1

01 01 01 01 0.1 1 095
01 01 01 09 1 01 01
01 01 01 1 09 01 01
095 095 1 01 01 01 01
09 1 09 01 01 01 01

1 09 09 01 01 01 01

Similarity 2 0.9 No Yes

Fig. 1. Similarity matrix for the 7 features. Similarity values must be in [0, 1].

by considering all possible pairs of sets of the same cardinalities. The values of
all stability measures presented in Subsection are calculated for all 16 384
possible combinations of 2 feature sets being selected from a total number of
7 features. Figure [1] displays the similarities between the 7 features used for this
analysis. The threshold 6 is set to # = 0.9, so there are 3 groups of similar fea-
tures. Note that the similarity matrix is sufficient for calculating the stability
measure for all pairs of possible combinations of 2 feature sets.

To compare all stability measures, in Figure 2| scatter plots of all pairs of
stability measures are shown. All adjusted measures differ strongly from the
unadjusted stability measure SMU with respect to their stability assessment
behavior. The adjusted stability measure SMZ, which is the only considered
measure that is not corrected for chance, also differs strongly from all other
stability measures. This demonstrates, that the missing correction has a large
impact on the stability assessment behavior. SMA-Count, SMA-Mean, SMA-
Greedy and SMA-MBM have almost identical values for all combinations. The
values assigned by SMY and by the SMA variants are also quite similar. However,
for combinations that obtain comparably large stability values by all of these
measures, SMY often attains larger values than the SMA measures. These are
combinations for which several features from the one set are mapped to the same
feature of the other set, see the discussion in Subsection This undesired
behavior of SMY occurs for large stability values. This is problematic because
large stability values are what an optimizer is searching for when fitting models
in a multi-criteria fashion taking into account the feature selection stability [3].

3.2 Experimental Results on Real Feature Sets

Now, the stability measures are compared based on feature sets that are se-
lected for four real data sets with correlated features (OpenML [14] IDs 851,
41163, 1484 and 1458) with feature selection methods. The details of the fea-
ture selections are omitted here due to space constraints. Also, the focus is on
the evaluation of the stability based on realistic feature sets resulting from real
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Fig. 2. Scatter plots of the stability values for the 16 384 combinations and all seven
stability measures. The line in each plot indicates the identity.

applications. To assess the similarity between features, the absolute Pearson cor-
relation is employed for all adjusted stability measures. The threshold 6 is set to
0 = 0.9 because in many fields, an absolute correlation of 0.9 or more is inter-
preted as a “strong” or even “very strong” association. For the adjusted and cor-
rected measures SMY, SMA-Count, SMA-Mean, SMA-Greedy and SMA-MBM,
the expected values of the pairwise scores are estimated based on N = 10000
replications. This value for N is suggested in [I6] and has shown to provide a
good compromise between convergence and run time in preliminary studies.

To analyze the similarities between the stability measures, Pearson correla-
tions between all pairs of stability measures are calculated and averaged across
data sets by calculating the arithmetic mean. Figure [ displays the results. The
adjusted and uncorrected stability measure SMZ differs most strongly from all
other stability measures. The adjusted and corrected measures SMY, SMA-
Count, SMA-Mean, SMA-Greedy and SMA-MBM assess the stability almost
identically. The corrected and unadjusted measure SMU is more similar to this
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SMA-Mean 0.8368 | 0.9642 | 0.9951 | 0.9974 | 0.9989

SMA-Count 0.8131 | 0.9702 | 0.9915 | 0.9955 | 1.0000 | 0.9989

SMA-MBM 0.8365 | 0.9624 | 0.9990 0 | 0.9955 | 0.9974 Similarity

1.00
SMA-Greedy 0.8477 | 0.9570 | 1.0000 | 0.9990 | 0.9915 | 0.9951 I

0.75
SMY

0.50
SMU 1.0000 | 0.7212 | 0.8477 | 0.8365 | 0.8131 | 0.8368
SMZ e}

SMzZ

SMU

SMY
SMA-Greedy
SMA-MBM
SMA-Count
SMA-Mean

Fig. 3. Mean Pearson correlations between all pairs of the seven stability measures.
The correlations between the stability measures are averaged across data sets.

group than to SMZ. Here, SMU is much more similar to the corrected and
adjusted stability measures SMY, SMA-Count, SMA-Mean, SMA-Greedy and
SMA-MBM than in the previous subsection. The reason is that the real data
sets considered here contain fewer similar features in comparison to the total
number of features than in the artificial example in the previous subsection.

Now, the run times of the stability measures for realistic feature sets are
compared. For SMU and SMZ, the run time is not an issue. For all of the
considered data sets, they can be computed in less than one second. Figure []
displays the run times for calculating the values of the adjusted and corrected
stability measures. The run times of these measures are much longer than the
run times of SMU and SMZ. The reason is that the expected values of the
scores have to be estimated, which involves frequently repeated evaluation of
the adjustments. For all data sets, SMY and SMA-Count require the least time
for calculation among the adjusted and corrected measures. For most data sets,
the calculation of SMA-Mean, SMA-Greedy and SMA-MBM takes much longer.
For large data sets, the latter computation times are not acceptable.

4 Conclusions

For data sets with similar features, for example data sets with highly correlated
features, the evaluation of feature selection stability is difficult. The commonly
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Fig. 4. Run times of the adjusted
sets. n: number of observations, p:

used stability measures consider features that are almost identical but have dif-
ferent identifiers as different features. This, however, is not desired because al-
most the same information is captured by the respective sets of features.

We have introduced and investigated new stability measures that take into
account similarities between features (“adjusted” stability measures). We have
compared them to existing stability measures based on both artificial and real
sets of selected features. For the existing stability measures, drawbacks were
explained and demonstrated.

For the newly proposed adjusted stability measure SMA, four variants were
considered: SMA-Count, SMA-Mean, SMA-Greedy and SMA-MBM. They differ
in the way they take into account similar features when evaluating the stability.
Even though the adjustments for similar features are conceptually different for
the four variants, the results are very similar both on artificial and on real sets
of selected features. With respect to run time, the variant SMA-Count outper-
formed the others. Therefore, we conclude that SMA-Count should be used when
evaluating the feature selection stability for data sets with similar features.

A promising future strategy is to employ SMA-Count when searching for
models with high predictive accuracy, a small number of chosen features and a
stable feature selection for data sets with similar features. To reach this goal,
one can perform multi-criteria hyperparameter tuning with respect to the three
criteria and assess the stability with SMA-Count.

Acknowledgements

This work was supported by German Research Foundation (DFG), Project
RA870/7-1 and Collaborative Research Center SFB 876, A3. We acknowledge
the computing time provided on the Linux HPC cluster at TU Dortmund Uni-



12

Andrea Bommert and Jorg Rahnenfiihrer

versity (LiDO3), partially funded in the course of the Large-Scale Equipment
Initiative by the German Research Foundation (DFG) as Project 271512359.

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

Awada, W., Khoshgoftaar, T.M., Dittman, D., Wald, R., Napolitano, A.: A review
of the stability of feature selection techniques for bioinformatics data. In: 2012
IEEE International Conference on Information Reuse and Integration. pp. 356—
363 (2012)

Bommert, A.: stabm: Stability Measures for Feature Selection (2019), |https://
CRAN.R-project.org/package=stabm, R package version 1.1.0

. Bommert, A., Rahnenfihrer, J., Lang, M.: A multicriteria approach to find pre-

dictive and sparse models with stable feature selection for high-dimensional data.
Computational and Mathematical Methods in Medicine 2017, 7907163 (2017)
He, Z., Yu, W.: Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34(4), 215-225 (2010)

Hopcroft, J.E., Karp, R.M.: An n°/? algorithm for maximum matchings in bipartite

graphs. SIAM Journal on Computing 2(4), 225-231 (1973)

Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes

et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547-579
1901

%(alou)sis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: A
study on high-dimensional spaces. Knowledge and Information Systems 12(1), 95—
116 (2007)

Lang, M., Bischl, B., Surmann, D.: batchtools: Tools for R to work on batch sys-

tems. Journal of Open Source Software 2(10) (2017)

Lausser, L., Miissel, C., Maucher, M., Kestler, H.A.: Measuring and visualizing the
stability of biomarker selection techniques. Computational Statistics 28(1), 51-65
(2013)

Nogueira, S.: Quantifying the Stability of Feature Selection. Ph.D. thesis, Univer-
sity of Manchester, United Kingdom (2018)

R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2018), https://www.R-project.
org/

Rahman, M.S.: Basic Graph Theory. Springer, New York, USA (2017)

Statnikov, A., Lytkin, N.I., Lemeire, J., Aliferis, C.F.: Algorithms for discovery of
multiple markov boundaries. Journal of Machine Learning Research 14, 499-566
2013

gfaunsc)horen7 J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: Networked science
in machine learning. ACM SIGKDD Explorations Newsletter 15(2), 49-60 (2013)
Yu, L., Han, Y., Berens, M.E.: Stable gene selection from microarray data via
sample weighting. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics 9(1), 262-272 (2012)

Zhang, M., Zhang, L., Zou, J., Yao, C., Xiao, H., Liu, Q., Wang, J., Wang, D.,
Wang, C., Guo, Z.: Evaluating reproducibility of differential expression discoveries
in microarray studies by considering correlated molecular changes. Bioinformatics
25(13), 1662-1668 (2009)

Zucknick, M., Richardson, S., Stronach, E.A.: Comparing the characteristics of
gene expression profiles derived by univariate and multivariate classification meth-
ods. Statistical Applications in Genetics and Molecular Biology 7(1), 7 (2008)


https://CRAN.R-project.org/package=stabm
https://CRAN.R-project.org/package=stabm
https://www.R-project.org/
https://www.R-project.org/

	Adjusted Measures for Feature Selection Stability for Data Sets with Similar Features

