Skip to main content

Reliable Solution of Multidimensional Stochastic Problems Using Metamodels

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12565))

Abstract

Multidimensional stochastic objective functions can be optimized by finding values in decision space for which the expected output is optimal and the uncertainty is minimal. We investigate the optimization of expensive stochastic black box functions \(f: \mathbb {R}^a \times \mathbb {R}^b \rightarrow \mathbb {R}\) with controllable parameter \(x \in \mathbb {R}^a\) and a b-dimensional random variable C. To estimate the expectation \(\mathrm {E}(f(x, C))\) and the standard deviation \(\mathrm {S}(f(x, C))\) as a measure of uncertainty with few evaluations of f, we use a metamodel of f. We compare an integration and a sampling approach for the estimation of \(\mathrm {E}(f(x, C))\) and \(\mathrm {S}(f(x, C))\). With the sampling approach, the runtime is much lower at almost no loss of quality.

The source code for the experiments and analyses of this paper is publicly available at https://github.com/mariusbommert/LOD2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrow, K.J., Harris, T., Marschak, J.: Optimal inventory policy. Econometrica 19(3), 250–272 (1951). https://www.jstor.org/stable/1906813

  2. Beachkofski, B.K., Grandhi, R.V.: Improved distributed hypercube sampling. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1274 (2002). https://doi.org/10.2514/6.2002-1274

  3. Bommert, M., Rudolph, G.: Reliable biobjective solution of stochastic problems using metamodels. In: Deb, K., Goodman, E., Coello Coello, C.A., Klamroth, K., Miettinen, K., Mostaghim, S., Reed, P. (eds.) Evolutionary Multi-Criterion Optimization, pp. 581–592. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_46

  4. Bossek, J.: ecr 2.0: A modular framework for evolutionary computation in R. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1187–1193. ACM (2017). https://doi.org/10.1145/3067695.3082470

  5. Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization. LNCS, vol. 5252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3

    Book  Google Scholar 

  6. Carnell, R.: lhs: Latin Hypercube Samples (2019). https://CRAN.R-project.org/package=lhs, R package version 1.0.1

  7. Fonseca, C.M., Guerreiro, A.P., López-Ibáñez, M., Paquete, L.: On the computation of the empirical attainment function. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization, pp. 106–120. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19893-9_8

  8. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) Evolutionary Multi-Criterion Optimization, pp. 213–225. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_15

  9. Gutjahr, W.J., Pichler, A.: Stochastic multi-objective optimization: a survey on non-scalarizing methods. Ann. Oper. Res. 236(2), 475–499 (2013). https://doi.org/10.1007/s10479-013-1369-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Global Optim. 34(3), 441–466 (2006). https://doi.org/10.1007/s10898-005-2454-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002). https://doi.org/10.1137/S1052623499363220

    Article  MathSciNet  MATH  Google Scholar 

  12. Lang, M., Bischl, B., Surmann, D.: batchtools: Tools for R to work on batch systems. J. Open Source Softw. 2(10) (2017). https://doi.org/10.21105/joss.00135

  13. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local search algorithms in biobjective optimization. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 209–222. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-9_9

  14. Markowitz, H.: Portfolio selection. J. Finan. 7(1), 77–91 (1952). https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

    Article  Google Scholar 

  15. Ponsich, A., Jaimes, A.L., Coello Coello, C.A.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evolution. Comput. 17(3), 321–344 (2013). https://doi.org/10.1109/TEVC.2012.2196800

    Article  Google Scholar 

  16. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019). https://www.R-project.org/

  17. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012). https://doi.org/10.18637/jss.v051.i01

    Article  Google Scholar 

  18. Swamy, C.: Risk-averse stochastic optimization: probabilistically-constrained models and algorithms for black-box distributions. In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pp. 1627–1646. SIAM (2011). https://doi.org/10.1137/1.9781611973082.126

Download references

Acknowledgments

The authors gratefully acknowledge the computing time provided on the Linux HPC cluster at TU Dortmund University (LiDO3), partially funded in the course of the Large-Scale Equipment Initiative by the German Research Foundation (DFG) as project 271512359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Bommert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bommert, M., Rudolph, G. (2020). Reliable Solution of Multidimensional Stochastic Problems Using Metamodels. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics