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Abstract. In Deep Reinforcement Learning (DRL), agents learn by
sampling transitions from a batch of stored data called Experience Re-
play. In most DRL algorithms, the Experience Replay is filled by ex-
periences gathered by the learning agent itself. However, agents that
are trained completely Off-Policy, based on experiences gathered by be-
haviors that are completely decoupled from their own, cannot learn to
improve their own policies. In general, the more algorithms train agents
Off-Policy, the more they become prone to divergence. Many possible
sources of the problem have been considered, but their relative impor-
tance has never been tested. The main contribution of this research is the
proposal of a novel Off-Policy learning framework called Policy Feedback,
used both as a tool to leverage offline-collected expert experiences, and
also as a general framework to better the understanding of the issues
behind Off-Policy Learning.

”The most crucial problems in Off-Policy learning can be solved
with the injection of an On-Policy feedback signal of any mag-
nitude.”

Keywords: Machine Learning · Deep Reinforcement Learning · DDPG
· Exploitation · Policy Feedback.

1 Introduction

It is a wide known fact that RL algorithms that combine Function Approxima-
tion, Bootstrapping and Off-Policy Learning, cannot train an agent successfully.
As a consequence of their catastrophic interaction, these three elements have
been referred to as the Deadly Triad, first mentioned by Sutton and Barto [11]
and later studied in more depth in the paper [6], which showed empirically that
when all of the three components are present in an RL algorithm, the learning
procedure would lead to divergence.
However, many state-of-the art techniques such as DQN [10, 9] and DDPG [8]
are considered Off-Policy techniques, as they learn from data that is not strictly
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constrained to be obtained from the current learning policy, but are able to train
agents successfully nonetheless.
However, Batch Learning techniques are unsuccessful unless the learning policy
is constrained to be related to the one explorative one [5, 7].
It was firstly suggested in [6] that the problem is that the concepts of On and Off
Policy learning are not crisp, and thus, instability is obtained in an increasing
fashion as the training procedure leans towards complete off-policiness (such as
the case for Batch Learning).
However, though it seems that the On-Policy experiences are crucial for a suc-
cessful training, their relative importance in the training process has not yet
been characterized.
With this work we intent to propose a novel simple architecture of Policy Feed-
back, that allows to leverage both on and off policy learning with flexibility. In
Policy Feedback, the agent’s Experience Replay is divided in two buffers, one
containing the expert transitions and the second, called Feedback Replay, con-
tains transitions collected by the learner itself, which provides at training time
a feedback signal from the agent’s own policy. It can be shown that any amount
of this Policy Feedback signal is sufficient to stabilize training and leverage the
Off-Policy expert knowledge to the fullest, outperforming algorithms which uti-
lize only experiences gathered from the training agent.
By studying the results obtained with Policy Feedback, we provide a deeper
understanding of the issues behind pure Off-Policy learning. In particular, two
issues are identified. The first is the classical divergence of the function approx-
imator, while the second is related to the newly introduced Generalization Over
Preference hypothesis, which states that the agent’s policy will be driven to tra-
verse trajectories that are overestimated due to function approximation, and
that without any feedback from the agent’s actual returns, it is impossible to
correct for this harmful bias. Policy Feedback stabilizes the function approxima-
tor and leverages the Generalization Over Preference to correct for it even with
a very small portion of Feedback signal, thereby solving the problems behind
Off-Policy Learning.
The aim of this dissertation is to introduce and support the following Feedback
Hypothesis :

”The most crucial problems in Off-Policy learning can be solved with the in-

jection of an On-Policy feedback signal of any magnitude.”

2 Motivations

In the literature, many examples exist showing that even in very simple MDPs,
the Deadly Triad would lead to divergence when learning the Q-function.

2.1 Tsitsiklis and Van Roy’s Counterexample

Consider the MDP shown in Figure 1a, where all immediate rewards are equal
to zero. The true Value function V is therefore 0 for each state [12].



Title Suppressed Due to Excessive Length 3

For this MDP, a linear function approximator V̂ (s) = φTs ·W is used for the Value
function, where φs is the unique vector of features associated to each state s,
and W is the vector of learnable parameters that defines V̂ .
At least one solution W ∗ exists, for which the function approximator represents
the true Value function correctly, namely W ∗=0.
V̂ is learned by feeding to the solver a sequence of transitions, and for each
transition received at timestep k a single update step is made in the form :

Wk+1 = Wk + α · ρk(rk + γ · V̂ (sk+1)− V̂ (sk)) · ∇W V̂ (sk) (1)

When learning On-Policy, the solver would be fed mostly the s2 → s2 tran-
sition to perform updates of Equation 1. In that case, W → 0 and the learning
is consistent.
However for this example, Off-Policy learning is performed, by sampling only
the same single transition s1 → s2, which is not compatible with the agent’s
state-visitation distribution. It is shown that in this case, it can happen that
W →∞.

2.2 Baird’s Counterexample

The MDP is composed of 6 states, with transition dynamics illustrated in Figure
1b [1]. Immediate reward for each transition is zero, and therefore, also for this
system Vsi = 0 ∀ i = 1, . . . , 6.
The value function is approximated by a linear combination of the state features
with the parameter vector W = (w1, . . . , w7)T , so that V̂ (s) = V̂ (s|W ) = φTs ·W .
The features of each state are shown in Figure 1b.
If the learning is On-Policy, the solver will be fed mostly with transition s7 → s7
and the learning will converge.
However, Baird noticed that if the transitions are sampled Off-Policy, and, in
particular, if they are all sampled with uniform distribution, the learning will
diverge.
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(b) Baird’s Counterexample

Fig. 1: Counterexamples For The Deadly Triad

2.3 The Deadly Triad

Value function approximation shares parameters over different states, and so, an
update to the value for a state may cause undesirable changes to the value of
other states. However when learning On-Policy, the agent experiences the true fu-
ture consequences of past decisions. Referring to Tsitsiklis and Van Roy’s Coun-
terexample, whenever the s1 → s2 transition is experienced and W is increased,
the agent will then immediately experience a sequence of s2 → s2 transitions,
and it will gradually understand that no reward is ever going to be obtained,
and W → 0.
Instead, when learning Off-Policy with Bootstrapping, there is no way of ground-
ing the current estimate over the true long-term consequences of the immediate
choices.
These considerations are similar to the ones in [7], in which researchers state
that with pure Off-Policy learning, the policy is trained for actions that are
”suggested” by the learning policy, but which are not present in the training
set, and for which the Q values that are learned are therefore inaccurate and in
general prone to divergence.

2.4 Off-Policy Learning in the Literature

Most state-of-the art algorithms are not On-Policy, but are still successful in
practice. In DQN[10, 9] and DDPG[8], low magnitude randomness is injected
into the learner’s policy to promote exploration. As a result, the experiences are
not gathered completely On-Policy, but the behavioural (exploratory) policy is
closely related to the learner’s. Moreover, the training data are collected into the
Experience Replay which thus also contains transitions related to older versions
of the agent’s policy, different from the current one.
The key point is that the concepts of ”On-Policy” and ”Off-Policy” are not
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binary. In [6] it was argued that the more algorithms train agents Off-Policy,
meaning, the more the explorative policy is different from the training policy,
the more they become prone to divergence.
To test this, Prioritized Experience Replays were used, and the training was
made progressively more Off-Policy by changing the Importance Sampling weights.
As the corrective weight’s effect faded, the training turned towards Off-Policy,
and learning diverged more frequently.

The use of a fixed batch of expert data for training is the limit case of com-
plete Off-Policy Learning and, as could be expected, policies cannot be learned
in this setting, even if the transitions were sampled from an expert policy, as
shown in [4, 7].
Current state-of-the-art techniques for Batch Learning address this limitation
by constraining the learned policy to be similar to the one seen used to collect
experiences [5, 7].

2.5 Feedback For Counterexamples

We propose a framework to explicitly combine contributions from On-Policy
and Off-Policy experiences, the Policy Feedback architecture. The first intuition
about Policy Feedback came when studying Tsitsiklis and Van Roy’s and Baird’s
counterexamples.
For both systems, the On-Policy distribution is concentrated on the recursive
transition(s2 → s2 and s7 → s7 respectively), which is the stable transition
that allows the procedure to convergence. This is because by following the true
system dynamics, it will be impossible for the training procedure to continue
overestimating artificially the amount of future rewards the agent would sup-
posedly receive.
However, Off-Policy samplings increases the proportion of the other transitions
which lead to artificial overestimations, causing divergence.

The observation that gave rise to Policy Feedback is the following:
for both examples, we can consider two policies, the agent’s policy which follows
the MDP’s dynamics and that always leads to stable learning, and the behavioral
policy which visits all transitions with the off-policy sampling distribution. We
can model these two policies with two different Experience Replays, in which
transitions are stored to meet the proportions enforced by the corresponding
policy. If transitions are sampled from these batches with uniform probability,
the distribution of sampled transitions will meet the corresponding visitation
distribution. The buffer of the behavioral policy, Bb, contains a single copy of
each transition, while the buffer of the agent’s policy, Ba, contains a single tran-
sition, the recursive one. When sampling with uniform distribution from this
batch, only the recursive transition will be sampled, over and over, as prescribed
by the agent’s policy.
We introduce a proportionality coefficient Pr to formalize both Experience Re-
plays with a single formulation BPr

. Pr represents the quantity of recursive
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transitions present in the batch, for each copy of the other transitions. The two
limit cases are the following :

– Pr=1 , BPr
= Bb. All transitions are present in the same proportion (Off-

Policy, uniform sampling).
– Pr → ∞ , BPr → Ba. The probability of sampling a transition that is not

the recursive one is infinitesimal (On-Policy sampling)

However, training does not have to be limited to these two cases.
By adjusting Pr ∈ (1,∞), we can adjust the sampling distribution.
Choosing Pr > 1, we are injecting into the Off-Policy batch a certain amount of
transitions sampled On-Policy. As a consequence, the overall batch distribution
moves away from the behavioral’s and closer to the agent’s.
Does the training process need Pr →∞ to be stable? It does not.
Indeed, for the systems in both the counterexamples, there exists a Pr min so
that if Pr > Pr min, the learning stabilizes and is able to converge to the correct
solution.
Different values of Pr were tested for both the examples. The learning trends
are shown in Figure 2.
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Fig. 2: Policy Feedback For Counterexamples For Different Feedback Intensity Pr

The proportion of On-Policy signal Pr is increased. After a threshold value, system
becomes asymptotically stable.
In Figure 2b, only training behaviour of the first parameter W1 is shown, as it is
representative of all parameters Wi , i = 1, . . . 7

The overall takeaway of this section is that there exists a minimum propor-
tion of transitions sampled On-Policy which stabilizes the learning, even if the
remaining experiences are gathered completely Off-Policy.
This feedback signal of the agent’s policy, if large enough, is sufficient to avoid
divergence, even in the presence of other destabilizing distributions.
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If in general this idea could be leveraged to contain the issues that arise when
learning Off-Policy, while at the same time making the most out of expert tran-
sitions gathered offline, this could lead to an increase in performance. This is the
core idea of Policy Feedback.

3 Design

The Policy Feedback method is based upon the standard DDPG algorithm [8],
modified by combining Batch Learning with the bio-inspired experience replay
introduced in [13].
In Policy Feedback, the Experience Replay is composed of two separate buffers.

– The Expert Memory ME , the fixed batch containing the expert transitions
collected offline.

– The Feedback Memory MF , a classical FIFO Experience Replay which is
progressively filled with the most recent experiences gathered by the learner.

As the expert already provides highly fruitful experiences, there is no need
for the agent to perform noisy exploration. In fact, the purpose of the agent’s
experience is not exploration itself, but an evaluation of the current policy’s
performance, which allows for online correction.
When building mini-batches for training, a single parameter, Pon p -probability
of On-Policy-, controls the proportion of transitions belonging to either Memory
Replay. Pon p controls the magnitude of the equivalent feedback signal (and the
amount of on-policiness of the algorithm).
The two limit cases are the following :

– With Pon p=1 , Policy Feedback corresponds to classical DDPG with no
exploration noise.

– With Pon p=0 , Policy Feedback corresponds to full Off-policy Batch Learn-
ing from the expert batch.

4 Experiments And Results

All the agent hyperparameters follow those of the DDPG paper [DDPG].
Experiments were repeated for different values of Pon p using the same Expert
ReplaysME , for two environments of the gym library : ”LunarLanderContinuous-
v2” and ”Swimmer-v2” [2]. Results are shown in Figure 3.
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Fig. 3: Policy Feedback For Different Values Of Feedback Intensity Pon p

In the full-Off-Policy case, with Pon p=0, the agent is completely unable to
improve its policy.
Instead, with any tested value of Pon p > 0 the learning was successful, and
actually led to a considerable increase of the speed of learning with respect to
the to the DDPG baseline, presenting similar features in terms of learning curves
and obtained scores.
Notice that for Swimmer, the higher values of Pon p, corresponding to a more
On-Policy learning, lead to slower trends. Indeed, this environment is struc-
turally more sensible to local minima, and by providing datapoints that are
more explorative, it could be hard to exploit the expert transitions to escape
them.

5 Discussion

In Figure 4, training losses of the neural Q functions are shown for the corre-
sponding experimental results in Figure 3.
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Fig. 4: Q-function Training Loss In Policy Feedback

It is clear from results in Figure 3 that the On-Policy feedback signal is cru-
cial for the training process to be successful, and is in general enough to support
and increase performance of the baseline DDPG procedure.

The Generalization Over Preference Hypothesis For the LunarLander case, re-
sults show that the low performance obtained when learning completely off-
Policy seems to be decorrelated from Q-instability. We therefore assume that Q-
divergence is not the only factor at play during Off-Policy learning, and propose
to find another. In this study, the Generalization Over Preference Hypothesis is
presented :

” An issue with complete Off-Policy Learning with Function Approxima-

tion and Bootstrapping is the generalization of the estimated Q-function over

regions of the state-action space that are not explored by the Behavioral Pol-

icy, but to which the training agent would be led to as a result of training.

”

Indeed, the Q function is learned from the transitions on the Experience Re-
play, and the policy is updated to choose actions which maximize the learned
Q. We call these actions the preference. Due to function approximation, Q gen-
eralizes and may be artificially high in some regions, leading to preferences that
are actually low-performing.
We argument that generalization over preference is a crucial cause of low-performance
of off-policy learning, and that it is only a subset of the generalization problem.
Indeed, to solve the latter, the Q function would need to be learned accurately
across the entire state-action space [4, 3], while the generalization over prefer-
ence can be addressed by only adjusting the Q values over the current preference.
This is exactly what is done in Policy Feedback, which always feeds training with
experiences collected by the learner, and which are thus related precisely to the
preference, which are therefore adjusted. As such, Policy Feedback provides an
empirical confirmation of the generalization over preference hypothesis
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6 Conclusions

In this paper, the Policy Feedback framework has been introduced, with he intent
to more deeply understand the issues behind Off-Policy learning and character-
ize the relative importance of On-Policy samples coming from the agent’s own
policy. The architecture is based on the DDPG algorithm, but combines experi-
ences coming from both the agent’s on policy and an offline expert though the
use of two separate memory buffers, from which the relative number of samples
can be controlled by a single parameter, thus controlling the equivalent feedback
magnitude used during trianing.
Results show that while the absence of such a signal leads to unstable and un-
feasible training, the injection of any amount of feedback from the agent’s own
policy is able to stabilize learning, allowing the agent to leverage the expert
experiences to the fullest, increasing the performance of the purely On-policy
DDPG.
Policy Feedback leverages the Generalization Over Preference issue to its advan-
tage, since it uses the transitions that the agent is directly led to by the training
process and immediately corrects for the inconsistencies.

Moreover, it was shown that any amount of feedback from the agent’s policy
distribution was able to lead the training Q loss towards convergence, while the
Full-Off-Policy case, compatibly with the studies on the Deadly Triad, would
still diverge.
As a result, Policy Feedback is able to solve both the problems of Off-Policy
learning, and leverage the available expert transitions to the fullest.
These results support the Feedback Hypothesis introduced at the beginning.
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