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Abstract. Genetic Algorithms have recently been successfully applied
to the Machine Learning framework, being able to train autonomous
agents and proving to be valid alternatives to state-of-the-art Reinforce-
ment Learning techniques. Their attractiveness relies on the simplicity
of their formulation and stability of their procedure, making them an
appealing choice for Machine Learning applications where the complex-
ity and instability of Deep Reinforcement Learning techniques is still an
issue. However, despite their apparent potential, the classic formulation
of Genetic Algorithms is unable to solve Machine Learning problems in
the presence of high variance of the fitness function, which is common in
realistic applications.
To the best of our knowledge, the presented research is the first study
about this limit, introduced as the Generalization Limit of Genetic Algo-
rithms, which causes the solutions that Genetic Algorithms return to be
not robust and in general low-performing. A solution is proposed based
on the Gradient Bias effect, which is obtained by artificially injecting
more robust individuals into the genetic population, therefore biasing the
evolutionary process towards this type of solutions. This Gradient Bias
effect is obtained by hybridising the Generic Algorithm with the Deep
Reinforcement Learning technique DDPG, resulting in the Explorative-
DDPG algorithm (X-DDPG).
X-DDPG will be shown to solve the Generalization Limit of its genetic
component via Gradient Bias, while outperforming its DDPG baseline
in terms of agent return and speed of learning.

Keywords: Machine Learning · Genetic Algorithms · Deep Reinforce-
ment Learning · DDPG · Gradient Bias · Distributed Exploration.

1 Introduction

In recent years, researchers have shown the ability of Genetic Algorithms (GA)
to extend beyond rudimentary Machine Learning applications to the training of
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autonomous agents, for a number of different tasks. Their general formulation
makes it possible to address very complex problems [9, 4], even relating to the
building blocks of intelligence [19, 2], with minimal intervention of the designers,
leaving the process free to extract from raw data as much information as required.
In the last years, GAs have been used to evolve agents that obtained performance
comparable or even superior to those trained with Deep Reinforcement Learning
algorithms in a number of benchmark environments [20, 17]. Indeed, the modern
trend seems to be leaning to GAs to solve more and more complex tasks.

However, there is a structural limitation. We show that, if for fixed policies the
tasks present stochasticity (in the policy and/or in the environment) which leads
to trajectories that are subject to high variance, GAs are unable to evolve robust
and highly-performing controllers. We call this problem the Generalization Limit
of Genetic Algorithms. To the best of our knowledge, no previous study highlights
these issues as a structural limitation of GAs that makes them incompatible with
most realistic problems concerning autonomous agents.
The main issue resides in the fact that initialized controllers are strongly biased
towards poorly performing and high variance individuals, and that such solutions
are a basin of attraction for GAs, which prefer such type of controllers and evolve
solutions with these undesired characteristics.

To solve this problem, we propose to hybridize the GA with a popular Rein-
forcement Learning algorithm, Deep Deterministic Policy Gradient (DDPG) [13].
Controllers obtained with Reinforcement Learning techniques are intrinsically
more robust, since the learning objective itself is to increase the theoretically ex-
pected score over the environment stochasticity. By periodically injecting DDPG-
trained agents into the genetic population, evolution is biased towards more
robust solutions. We name this phenomenon the Gradient Bias effect. The re-
sulting hybrid algorithm is called Explorative DDPG (X-DDPG), combining a
GA with a distributed variant of DDPG called AE-DDPG [23]. It will be shown
that X-DDPG is able to successfully face the Generalization Limit of its genetic
component, while also outperforming its RL baseline AE-DDPG.
Experiments are performed on RL benchmarks offered by the OpenAI Gym
platform [5].

This paper is organized as follows. In Section 2, the work related to this
research is illustrated. Section 3 is dedicated to the Generalization Limit of
Genetic Algorithms, introduced with experimental results and then discussed to
provide a better understanding of the underlying issue. In Section 4, GAs are
hybridized with AE-DDPG to create the X−DDPG algorithm, and the mutual
benefits that each component receives from the other are discussed, focusing on
the Gradient Bias.

2 Related Work

The central topic of this research are Genetic Algorithms, applied to the end-
to-end training of autonomous agents, a field where they have gained increas-
ing success in the last decades [1, 4]. In the field of Evolutionary Robotics [9],
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Artificial Neural Networks are used as robot controllers and trained by Evo-
lutionary Strategies. Notable are the works on Minimal Cognition [19], robot
locomotion [3], and symbol grounding [2]. They have also proved to be valid
alternatives to Reinforcement Learning techniques for some tasks [20, 17]. How-
ever, no previous study addresses the core topic presented in this paper, the
Generalization Limit of Genetic Algorithms, the low performance of GAs in the
presence of high variance of the fitness functions. Stochasticity in GAs has been
widely addressed in literature [15, 22, 11], either by stating the general need for
a reliable fitness estimation or the desire for a robust solution. Our contribution
moves forward by stating that the selection mechanism of GAs is incompatible
with high-variance fitness distributions, and that this limit is thus a structural
problem of the algorithm.

To address the Generalization Limit, we propose to support the evolutionary
process by hybridization with a RL algorithm: DDPG. The idea of hybridizing
RL algorithms with GAs is not new, though in most cases these algorithms are
built to have GAs support the RL process, either by influencing the agent net-
work weights [18, 6] or the training data [16]. In [7, 12], the genetic component is
used as a distributed exploration mechanism, where the transitions gathered when
evaluating the population’s new individuals are used to train the Reinforcement
Learning agent using DDPG. The present research builds on similar ideas. In
particular, [12] also includes the technique of injecting the DDPG-trained agent
into the genetic population. This is the core idea behind the Gradient Bias effect
introduced in this paper.

We present a hybrid algorithm, X−DDPG, which uses as RL component
a distributed exploration algorithm, AE-DDPG [23]. While in regular DDPG
training experiences are obtained only from the learning agent, in distributed
exploration algorithms many copies of the centralized agent contribute to these
experiences. This idea gave birth to techniques such as A3C [14], Apex [10],
Impala [8] and AE-DDPG [23] itself. Each method differs from the others in the
way the information gathered by the distributed explorers is used in the training
process.

3 The Generalization Limit of Genetic Algorithms

The perspective of being able to train neural policies with GAs, without the
need of computationally expensive and unstable backpropagation, seems ideal.
However, no previous study explicitly addresses the structural issue which we
introduce. The aim of this Section is to support the validity of the following
statement, which we propose as the core of our contribution:

”Classical Genetic Algorithms cannot be employed effectively for agent training

in the presence of high variance of the fitness function.”

3.1 Experiments

Individuals of the population are agents controlled by neural policies, whose
architectures follow that of the original DDPG algorithm [13]. Experiments
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are performed in two benchmark environments from the OpenAI-Gym library,
LunarLanderContinuous-v2 and Swimmer-v2 1. The scalar fitness of each indi-
vidual is the average score along 5 different episodes. Figure 1 shows the mean
and best scalar fitness of the population during the evolutionary process.
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Fig. 1: Mean and best assigned scalar fitness during evolution

A complete evolutionary process was repeated in each environment 5 times,
leading to similar early saturation of the fitness. The reason for this behavior
may be caused by the very issue this research addresses.

Fitness Distribution To monitor the expected value and variance of the true
fitness distributions of individuals during evolution, they are estimated from data
coming from 50 episode scores per-individual (Figure 2). Note that the scalar
fitness used in the evolutionary process is the average of 5 episode-wise scores
instead.
We estimate the fitness distribution mean and spread of two groups of individ-
uals, respectively:

– Last generation population: each individual of the last generation population.
Figure 2a.

– Best individuals in evolution history : whenever an individual emerges with
scalar fitness above the current best population fitness, we compute its true
fitness distribution. Figure 2b.

It is clear that the scalar fitness is a high overestimation of the true expected
value of the fitness distribution. Moreover, the variance is actually never reduced
as learning proceeds. These results suggest that the algorithm is not actually
finding solutions with highest performance.

1 The structure and parameters of the algorithm can be found at
https://github.com/AIRLab-POLIMI/GA-DRL, in the GA section.

https://github.com/AIRLab-POLIMI/GA-DRL
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(a) Fitness distribution and scalar fitness of each individual of the last generation
population
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(b) Fitness distribution and scalar fitness of individuals with highest scalar
fitness in history

Fig. 2: Estimated fitness distribution expected value and spread compared to assigned scalar
fitness

3.2 Discussion

Multiple features of the classical Genetic Algorithm concur to generate the Gen-
eralization Limit in stochastic environments, and are illustrated in the following.

Evaluation

– Due to stochasticity, individual per-episode outcomes are not deterministic.
Instead, each individual i has an associated fitness distribution fi.

– The scalar fitness f̂i of each individual, required for the evolutionary process,
is only computed once as the algebraic mean over a limited number n of
episodes.

– Computing an individual’s scalar fitness from the outcome of n episodes is
equivalent to sampling from the distribution of the algebraic mean, which
is related to individual’s own fitness distribution fi (same expected value,
variance rescaled by 1√

n
).
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– As a result, scalar fitnesses f̂i of high-variance individuals may be overes-
timated, meaning that the sampled algebraic mean of the scores over the n
episodes would be much higher than the true distribution’s expected value
Efi , due to the high variance of the distribution itself.

– The scalar fitness of robust/low-variance individuals may be lower than that
of the overestimated individuals with high-variance.

Selection

– Individuals are chosen for Crossover and Survival with a probability that
increases with their scalar fitness f̂i.

– Selected individuals will bias the propagation of genetic information, and
therefore solution type, throughout evolution.

– The classical Genetic Algorithm uses only the individuals’ scalar fitnesses
for selection. There is no way to account for the true fitness distribution.

– Overestimated individuals present high scalar fitness but also high-variance,
low-robustness fitness distributions. These overestimated individuals are there-
fore selected with high probability, but will transmit to future generations
the actual low-performance genetic information of their distributions.

– overestimated individuals with high-variance distributions may be selected
more frequently than robust individuals.

Initialized Population

– Only a portion of high-variance individuals will be overestimated.
– Initialized populations are usually mostly composed of high-variance indi-

viduals, providing the necessary initial bias for overestimated individuals to
overrun the robust ones.

The problem is that Genetic Algorithms try to find solutions with the high-
est possible scalar fitness. When individuals are instead characterized by fitness
distributions, individuals with high-variance are more likely to get higher scalar
fitness than robust individuals do, because the latter, characterized by low vari-
ance, would have to also present high expected values to sample high values.
Moreover, the initial population is mostly composed of individuals prone to over-
estimation, since random solutions are more likely to have high variance than
high performance. As a result, high-variance solutions are a basin of attraction
for classical GAs: the genetic search is biased towards these higher variance so-
lutions, where the sampled fitness highly overestimates the true expected value.

4 X−DDPG

To confront the Generalization Limit, we propose a hybrid solution that com-
bines the GA with an RL-based training process, with the aim of biasing the
genetic search toward more robust solutions. We call this algorithm Explorative-
DDPG.
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4.1 Motivations

Addressing the Limits of Genetic Algorithms When the amount of robust
individuals is very low, the proportion of high-variance solutions will increase
and eventually overrun the entire population. The problem could be solved by
artificially injecting robust individuals in it. The problem is how to find a source
of robust individuals without having to estimate their fitness distribution, which
may in general be a very computationally expensive procedure.

Reinforcement Learning techniques find policies with the highest possible
Q-value, which is the theoretical expected return, and, as a consequence, RL
solutions are intrinsically robust.

We propose to support the genetic evolution with a parallel Reinforcement
Learning process, used as a continuous source of more robust policies. Since RL
agents are trained with backpropagation, we called this the Gradient Bias effect.

Addressing the Limits of Reinforcement Learning GAs could also in turn
support the RL process.

In most DRL algorithms, the Experience Replay is filled by experiences gath-
ered only by the learning agent itself. This poor sample diversity may lead to
early convergence, a problem addressed in literature with distributed exploration
strategies. GAs could contribute to the distributed exploration, by inserting in
the Experience Replay trajectories sampled by the genetic individuals when eval-
uated. This would provide a more diversified set of experiences available to the
RL training.

These are the motivations that lead to the proposal of the novel algorithm
X−DDPG.

4.2 The Algorithm

In X−DDPG, a distributed DDPG training and a Genetic evolution are executed
in parallel. The two processes are mutually interacting.

– Improve DDPG – Maximal Exploration : The exploratory processes are
now two. The DDPG agent learns from transitions stored in its Experience
Replay, which is composed of two separate memories: one for the distributed
AE-DDPG exploration, and the other for the Genetic Experiences.

– Improve the GA – Gradient Bias : At the beginning of each generation,
a copy of the most recent DDPG agent is inserted in the population, and
is subject to Evaluation and Selection. This mechanism biases the genetic
search towards regions of more robust solutions, which the GA can traverse
more efficiently than DDPG.
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4.3 Experiments and Results

Experiments are performed on the two benchmark environments mentioned in
Section 3. The structure of the neural policies and the DDPG training are the
ones prescribed by the original DDPG paper [13]2.

X−DDPG And The Generalization Limit Of Genetic Algorithms We
compare the fitness distributions of the best individuals in the evolution history
(Figure 3b) with those of the individuals from the last generation (Figure 3a), for
the two cases of regular GA and X−DDPG. Fitness distributions are estimated
from 50 episode scores per-individual, with respect to the scalar fitnesses, which
are only composed of 5.
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(a) Individuals of last generation
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(b) Individuals with highest scalar fitness in history

Fig. 3: Estimated fitness distributions of individuals of last generation (3a) and individuals
with highest scalar fitness (3b), computed over 50 episodes per-individual, with and without
Gradient Bias

The best individuals throughout the evolution still show variability in their
fitness distributions. However, their expected values are close to the maximum,
around which most of the spread is concentrated, and thus, solutions are quite
robust. Moreover, the scalar fitness is in general not an overestimation of the
true expected value of the distribution. This is a very important property for
a GA since, in general, fitness distributions are not computed during training,

2 Further details on the algorithm configuration and parameters can be found at
https://github.com/AIRLab-POLIMI/GA-DRL, in the X -DDPG section

https://github.com/AIRLab-POLIMI/GA-DRL
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and designers must rely solely on the scalar fitness to monitor the evolutionary
process and quality of the solutions.

The sole Gradient Bias is able to make the evolutionary process not only
feasible and reliable, but also capable of returning solutions with a quality com-
parable with the state of the art.

X−DDPG Outperforms RL Baselines The algorithm uses as RL compo-
nent the distributed AE-DDPG algorithm [23].

The performance of the X−DDPG gradient training is now compared to that
of the pure AE-DDPG and regular DDPG. Results are reported in Figure 4a,
showing that the RL agent in X−DDPG outperforms agents trained by simple
DDPG and AE-DDPG.
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(a) Comparing performance of agents trained by X−DDPG and its baselines
AE-DDPG and DDPG
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(b) Comparison of the fitness of the best individuals in the history of the genetic
search, showing both the scalar fitness and the estimated distribution, with the
performance of the DDPG agent trained with X−DDPG

Fig. 4: Monitoring training agent performance

The final results are a comparison of the performance of the solutions gen-
erated by the two components of X−DDPG, independently from each other.
Figure 4b shows the performance of both its RL agent and the best individuals
generated by its genetic evolution. The best individuals of the genetic search ac-
tually outperform the RL agents from the very first generations, reaching optimal
regions. As a consequence, the overall algorithm obtains very high-performance
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solutions in a time even shorter than what required by the RL process, thanks
to the GA, which is supported by the Gradient Bias provided by DDPG.

This is a very interesting result, as it shows that indeed GAs are very powerful
tools to train autonomous agents, and that the Generalization Limit can be
overcome to unleash their full potential. It is clear that genetic individuals do
not only exploit the Gradient Bias in narrow regions surrounding the RL agent.
Instead, this bias is just an initial tool, used to overcome the first barriers of
high-variance solutions.

5 Conclusions

In this paper, a structural issue was presented, which makes Genetic Algorithms
ineffective when the problem induces high variance of the fitness distributions.
We called this the Generalization Limit of Genetic Algorithms, as the obtained
controllers are unable to generalize their working behavior, resulting, in general,
in this situation, in poor performance and unreliable learning.

In was shown that the problem arises from the interaction of GAs with the
stochasticity of the trajectories. The latter leads to high variance Fitness Dis-
tributions of the controllers, while the first is prone to overestimation of the
expected performance. When the variance is high, the overestimated fitness of
higher variance individuals surpass that of the more robust, lower variance, in-
dividuals, and the overall population is biased towards the preservation of these
high-variance, unreliable controllers.

In Section 4, a solution to this problem is presented, called the Gradient Bias.
Indeed, by periodically injecting in the population more robust individuals, a
threshold is reached where overestimated controllers cannot overrun the robust
ones anymore, and are instead progressively discarded.

A reliable source of robust individuals comes from a parallel Reinforcement
Learning algorithm, AE-DDPG. The two processes are mutually interacting, re-
sulting in the hybrid algorithm Explorative-DDPG. X-DDPG was shown to be
able to solve the Generalization Limit of the Genetic search, while also outper-
forming agents trained with pure AE-DDPG.

Genetic Algorithms are actually able to exploit regions with higher fitness
more efficiently than DDPG, but only once such regions are approached by the
population. This need of the genetic search to be biased outside lower perfor-
mance regions may be the reason that led in the past to underestimate the
potential of Genetic Algorithms.

5.1 Limits and Future Directions

Generality of the statements The presented results have been shown for
a limited number of tasks. Our current research aim is to widen the range of
environments to show the generality of both the issue and the solution that we
presented. This will also include different incarnations of the Genetic Algorithm
formulation.
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A pure Genetic Solution. Though promising, the Gradient Bias effect can
only support the Genetic Algorithm when the GA is used to solve a problem
formulated in an RL framework. Though it is argued by Sutton and Barto [21]
that any learning problem can be formulated as such, it may still be an issue to
always model a problem in this fashion. The ideal condition would be to solve
the Generalization Limit with a variation of the pure GA. It has been shown
in this paper that, once appropriately supported, GAs are more than capable
to solve even complex problems, outperforming the more commonly used RL
algorithms.

The Power of Hybridization X−DDPG has been introduced in this paper
mainly as a solution to the Generalization Limit of its genetic component, with
the introduction of the Gradient Bias effect. However, in the environments under
study, X−DDPG obtained state of the art results in terms of training iterations
and final performance, by only affecting the training experiences. Future studies
will focus on different types of DRL algorithms, applied to a larger and more
diversified set of environments.
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