Skip to main content

Wasserstein Embeddings for Nonnegative Matrix Factorization

  • Conference paper
  • First Online:
  • 1553 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12565))

Abstract

In the field of document clustering (or dictionary learning), the fitting error called the Wasserstein (In this paper, we use “Wasserstein”, “Earth Mover’s”, “Kantorovich–Rubinstein” interchangeably) distance showed some advantages for measuring the approximation of the original data. Further, It is able to capture redundant information, for instance synonyms in bag-of-words, which in practice cannot be retrieved using classical metrics. However, despite the use of smoothed approximation allowing faster computations, this distance suffers from its high computational cost and remains uneasy to handle with a substantial amount of data. To circumvent this issue, we propose a different scheme of NMF relying on the Kullback-Leibler divergence for the term approximating the original data and a regularization term consisting in the approximation of the Wasserstein embeddings in order to leverage more semantic relations. With experiments on benchmark datasets, the results show that our proposal achieves good clustering and support for visualizing the clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Affeldt, S., Labiod, L., Nadif, M.: Ensemble block co-clustering: a unified framework for text data. In: CIKM (2020)

    Google Scholar 

  • Ailem, M., Role, F., Nadif, M.: Co-clustering document-term matrices by direct maximization of graph modularity. In: CIKM, pp. 1807–1810 (2015)

    Google Scholar 

  • Ailem, M., Salah, A., Nadif, M.: Non-negative matrix factorization meets word embedding. In: SIGIR, pp. 1081–1084 (2017)

    Google Scholar 

  • Allab, K., Labiod, L., Nadif, M.: A semi-NMF-PCA unified framework for data clustering. IEEE Trans. Knowl. Data Eng. 29(1), 2–16 (2016)

    Article  Google Scholar 

  • Buchta, C., Kober, M., Feinerer, I., Hornik, K.: Spherical k-means clustering. J. Stat. Softw. 50(10), 1–22 (2012)

    Google Scholar 

  • Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2010)

    Google Scholar 

  • Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  • Cuturi, M., Doucet, A.: Fast computation of Wasserstein barycenters. In: International Conference on Machine Learning, pp. 685–693 (2014)

    Google Scholar 

  • Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: SIGKDD, pp. 126–135 (2006)

    Google Scholar 

  • Genevay, A., Cuturi, M., Peyré, G., Bach, F.: Stochastic optimization for large-scale optimal transport. In: Advances in Neural Information Processing Systems, pp. 3440–3448 (2016)

    Google Scholar 

  • Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  • Labiod, L., Nadif, M.: Co-clustering under nonnegative matrix tri-factorization. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7063, pp. 709–717. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24958-7_82

    Chapter  Google Scholar 

  • Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Google Scholar 

  • Li, T., Ding, C.: Nonnegative matrix factorizations for clustering: a survey. In: Data Clustering, pP. 149–176. Chapman and Hall/CRC (2018)

    Google Scholar 

  • Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 840–853 (2007)

    Article  Google Scholar 

  • McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  • Mi, L., Zhang, W., Gu, X., Wang, Y.: Variational Wasserstein clustering. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 336–352. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_20

    Chapter  Google Scholar 

  • Muzellec, B., Nock, R., Patrini, G., Nielsen, F.: Tsallis regularized optimal transport and ecological inference. In: AAAI (2017)

    Google Scholar 

  • Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: CCV, pp. 460–467 (2009)

    Google Scholar 

  • Rolet, A., Cuturi, M., Peyré, G.: Fast dictionary learning with a smoothed Wasserstein loss. In: Artificial Intelligence and Statistics, pp. 630–638 (2016)

    Google Scholar 

  • Salah, A., Nadif, M.: Directional co-clustering. Adv. Data Anal. Classif. 13(3), 591–620 (2018). https://doi.org/10.1007/s11634-018-0323-4

    Article  MathSciNet  MATH  Google Scholar 

  • Salah, A., Ailem, M., Nadif, M.: A way to boost semi-NMF for document clustering. In: CIKM, pp. 2275–2278 (2017)

    Google Scholar 

  • Salah, A., Ailem, M., Nadif, M.: Word co-occurrence regularized non-negative matrix tri-factorization for text data co-clustering. In: AAAI, pp. 3992–3999 (2018)

    Google Scholar 

  • Sandler, R., Lindenbaum, M.: Nonnegative matrix factorization with earth mover’s distance metric. In: CVPR, pp. 1873–1880 (2009)

    Google Scholar 

  • Schmitz, M.A., et al.: Wasserstein dictionary learning: optimal transport-based unsupervised nonlinear dictionary learning. SIAM J. Imaging Sci. 11(1), 643–678 (2018)

    Google Scholar 

  • Shirdhonkar, S., Jacobs, D.W.: Approximate earth mover’s distance in linear time. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  • Strehl, A., Ghosh, J.: Cluster ensembles–a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)

    Google Scholar 

  • Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

  • Yoo, J., Choi, S.: Orthogonal nonnegative matrix factorization: multiplicative updates on Stiefel manifolds. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 140–147. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88906-9_18

    Chapter  Google Scholar 

  • Yuan, Z., Oja, E.: Projective nonnegative matrix factorization for image compression and feature extraction. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 333–342. Springer, Heidelberg (2005). https://doi.org/10.1007/11499145_35

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickael Febrissy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Febrissy, M., Nadif, M. (2020). Wasserstein Embeddings for Nonnegative Matrix Factorization. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics