Skip to main content

A General Approach for Risk Controlled Trading Based on Machine Learning and Statistical Arbitrage

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12565))

Abstract

Nowadays, machine learning usage has gained significant interest in financial time series prediction, hence being a promise land for financial applications such as algorithmic trading. In this setting, this paper proposes a general approach based on an ensemble of regression algorithms and dynamic asset selection applied to the well-known statistical arbitrage trading strategy. Several extremely heterogeneous state-of-the-art machine learning algorithms, exploiting different feature selection processes in input, are used as base components of the ensemble, which is in charge to forecast the return of each of the considered stocks. Before being used as an input to the arbitrage mechanism, the final ranking of the assets takes also into account a quality assurance mechanism that prunes the stocks with poor forecasting accuracy in the previous periods. The approach has a general application for any risk balanced trading strategy aiming to exploit different financial assets. It was evaluated implementing an intra-day trading statistical arbitrage on the stocks of the S&P500 index. Our approach outperforms each single base regressor we adopted, which we considered as baselines. More important, it also outperforms Buy-and-hold of S&P500 Index, both during financial turmoil such as the global financial crisis, and also during the massive market growth in the recent years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are 21 trading days in one month.

References

  1. Ariyo, A.A., Adewumi, A.O., Ayo, C.K.: Stock price prediction using the Arima model. In: 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, pp. 106–112 (2014). https://doi.org/10.1109/UKSim.2014.67

  2. Atsalakis, G.S., Valavanis, K.P.: Surveying stock market forecasting techniques - Part II: soft computing methods. ESWA 36(3), 5932–5941 (2009). https://doi.org/10.1016/J.ESWA.2008.07.006

    Article  Google Scholar 

  3. Atzeni, M., Recupero, D.R.: Multi-domain sentiment analysis with mimicked and polarized word embeddings for human-robot interaction. FGCS (2019). https://doi.org/10.1016/j.future.2019.10.012. http://www.sciencedirect.com/science/article/pii/S0167739X19309719

  4. Avellaneda, M., Lee, J.H.: Statistical arbitrage in the us equities market. Quan. Finan. 10(7), 761–782 (2010). https://doi.org/10.1080/14697680903124632

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergmeir, C., Hyndman, R.J., Koo, B.: A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 120, 70–83 (2018). https://doi.org/10.1016/j.csda.2017.11.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Blaskowitz, O.J., Herwartz, H.: Adaptive forecasting of the EURIBOR swap term structure (2009)

    Google Scholar 

  7. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day Inc., San Francisco (1990)

    MATH  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  9. Brown, G., Wyatt, J.L., Tiňo, P.: Managing diversity in regression ensembles. J. Mach. Learn. Res. 6, 1621–1650 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Carta, S., Corriga, A., Ferreira, A., Recupero, D.R., Saia, R.: A holistic auto-configurable ensemble machine learning strategy for financial trading. Computation 7(4), 67 (2019)

    Article  Google Scholar 

  11. Carta, S., Ferreira, A., Recupero, D.R., Saia, M., Saia, R.: A combined entropy-based approach for a proactive credit scoring. Eng. Appl. Artif. Intell. 87, 103292 (2020). https://doi.org/10.1016/j.engappai.2019.103292

    Article  Google Scholar 

  12. Cavalcante, R.C., Brasileiro, R.C., Souza, V.L., Nobrega, J.P., Oliveira, A.L.: Computational intelligence and financial markets: a survey and future directions. Expert Syst. Appl. 55, 194–211 (2016). https://doi.org/10.1016/J.ESWA.2016.02.006

    Article  Google Scholar 

  13. Chalimourda, A., Schölkopf, B., Smola, A.J.: Experimentally optimal \(\nu \) in support vector regression for different noise models and parameter settings. Neural Netw. 17(1), 127–141 (2004). https://doi.org/10.1016/S0893-6080(03)00209-0

    Article  MATH  Google Scholar 

  14. Christoffersen, P.F., Diebold, F.X.: How relevant is volatility forecasting for financial risk management? Rev. Econ. Stat. 82(1), 12–22 (2000). https://doi.org/10.1162/003465300558597

    Article  Google Scholar 

  15. Damghani, B.M.: The non-misleading value of inferred correlation: an introduction to the cointelation model. Wilmott 2013(67), 50–61 (2013). https://doi.org/10.1002/wilm.10252

    Article  Google Scholar 

  16. Dawid, A.P.: Present position and potential developments: some personal views statistical theory the prequential approach. J. R. Stat. Soc.: Ser. A (Gener.) 147(2), 278–290 (1984)

    Google Scholar 

  17. Devezas, T.: Principles of Forecasting. A Handbook for Researchers and Practitioners: J. Scott Armstrong. Kluwer Academic Publishers, Norwell (2001). xii and 849 p. ISBN 0-7923-7930-6 (hardbound); us\$190. Technol. Forecast. Soc. Change, 69(3), 313–316 (2002). https://doi.org/10.1016/S0040-1625(02)00180-4

  18. Enke, D., Thawornwong, S.: The use of data mining and neural networks for forecasting stock market returns. Expert Syst. Appl. 29(4), 927–940 (2005). https://doi.org/10.1016/J.ESWA.2005.06.024. https://www.sciencedirect.com/science/article/pii/S0957417405001156?via%3Dihub

  19. Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018). https://doi.org/10.1016/J.EJOR.2017.11.054

    Article  MathSciNet  MATH  Google Scholar 

  20. Gatev, E., Goetzmann, W.N., Rouwenhorst, K.G.: Pairs trading: performance of a relative-value arbitrage rule. Rev. Finan. Stud. 19(3), 797–827 (2006). https://doi.org/10.1093/rfs/hhj020

    Article  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  22. Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: machine learning techniques applied to financial market prediction. Expert Syst. Appl. 124, 226–251 (2019). https://doi.org/10.1016/J.ESWA.2019.01.012

    Article  Google Scholar 

  23. Huck, N.: Pairs selection and outranking: an application to the S&P 100 index. Eur. J. Oper. Res. 196(2), 819–825 (2009). https://doi.org/10.1016/j.ejor.2008.03.025

    Article  Google Scholar 

  24. Huck, N.: Large data sets and machine learning: applications to statistical arbitrage. Eur. J. Oper. Res. 278(1), 330–342 (2019). https://doi.org/10.1016/J.EJOR.2019.04.013

    Article  MathSciNet  MATH  Google Scholar 

  25. Kara, Y., Acar Boyacioglu, M., Baykan, Ö.K.: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul Stock Exchange. Expert Syst. Appl. 38(5), 5311–5319 (2011). https://doi.org/10.1016/J.ESWA.2010.10.027

    Article  Google Scholar 

  26. Kaufman, C., Lang, D.T.: Pairs trading. In: Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving, pp. 241–308 (2015). https://doi.org/10.1201/b18325

  27. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3146–3154. Curran Associates, Inc. (2017)

    Google Scholar 

  28. Khandani, A.E., Lo, A.W.: What happened to the quants in august 2007? Evidence from factors and transactions data. J. Finan. Mark. 14(1), 1–46 (2011). https://doi.org/10.1016/j.finmar.2010.07.005

    Article  Google Scholar 

  29. Knoll, J., Stübinger, J., Grottke, M.: Exploiting social media with higher-order factorization machines: statistical arbitrage on high-frequency data of the S&P 500. Quan. Finan. 19(4), 571–585 (2019). http://www.scopus.com

  30. Krauss, C., Do, X.A., Huck, N.: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500. Eur. J. Oper. Res. 259(2), 689–702 (2017). https://doi.org/10.1016/J.EJOR.2016.10.031

    Article  MATH  Google Scholar 

  31. Large, J., Lines, J., Bagnall, A.: The heterogeneous ensembles of standard classification algorithms (HESCA): the whole is greater than the sum of its parts (2017)

    Google Scholar 

  32. Lee, K.J., Yoo, S., Jin, J.J.: Neural network model vs. Sarima model in forecasting Korean stock price index (KOSPI) (2007)

    Google Scholar 

  33. Leung, M.T., Daouk, H., Chen, A.S.: Forecasting stock indices: a comparison of classification and level estimation models. Int. J. Forecast. 16(2), 173–190 (2000). https://doi.org/10.1016/S0169-2070(99)00048-5. http://www.sciencedirect.com/science/article/pii/S0169207099000485

  34. Lo, A.W.: Hedge Funds: An Analytic Perspective (Revised and Expanded Edition), Student edn. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  35. Lo, A., Hasanhodzic, J.: The Evolution of Technical Analysis: Financial Prediction from Babylonian Tablets to Bloomberg Terminals. Wiley, Bloomberg (2011)

    Google Scholar 

  36. Merh, N., Saxena, V.P., Pardasani, K.R.: A comparison between hybrid approaches of ANN and ARIMA for Indian stock trend forecasting (2010)

    Google Scholar 

  37. Recupero, D., Dragoni, M., Presutti, V.: ESWC 15 challenge on concept-level sentiment analysis. Commun. Comput. Inf. Sci. 548, 211–222 (2015). https://doi.org/10.1007/978-3-319-25518-7_18. Cited By 17

    Article  Google Scholar 

  38. Reforgiato Recupero, D., Cambria, E.: ESWC 14 challenge on concept-level sentiment analysis. Commun. Comput. Inf. Sci. 475, 3–20 (2014). https://doi.org/10.1007/978-3-319-12024-9_1. Cited By 17

    Article  Google Scholar 

  39. Sutherland, I., Jung, Y., Lee, G.: Statistical arbitrage on the KOSPI 200: an exploratory analysis of classification and prediction machine learning algorithms for day trading. J. Econ. Int. Bus. Manag. 6(1), 10–19 (2018)

    Google Scholar 

  40. Takeuchi, L.: Applying deep learning to enhance momentum trading strategies in stocks (2013)

    Google Scholar 

  41. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999). https://doi.org/10.1109/72.788640

    Article  Google Scholar 

  42. Vidyamurthy, G.: Pairs Trading : Quantitative Methods and Analysis. Wiley, Hoboken (2004)

    Google Scholar 

Download references

Acknowledgements

The research performed in this paper has been supported by the “Bando “Aiuti per progetti di Ricerca e Sviluppo”—POR FESR 2014-2020—Asse 1, Azione 1.1.3, Strategy 2- Program 3, Project AlmostAnOracle - AI and Big Data Algorithms for Financial Time Series Forecasting”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Reforgiato Recupero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carta, S., Recupero, D.R., Saia, R., Stanciu, M.M. (2020). A General Approach for Risk Controlled Trading Based on Machine Learning and Statistical Arbitrage. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics