
Scaling Up Quasi-Newton Algorithms:
Communication Efficient Distributed SR1

Majid Jahani, Mohammadreza Nazari, Sergey Rusakov, Albert S. Berahas, and
Martin Takáč

Lehigh University, Bethlehem, PA, 18015, USA

Abstract. In this paper, we present a scalable distributed implementa-
tion of the Sampled Limited-memory Symmetric Rank-1 (S-LSR1) algo-
rithm. First, we show that a naive distributed implementation of S-LSR1
requires multiple rounds of expensive communications at every iteration
and thus is inefficient. We then propose DS-LSR1, a communication-
efficient variant that: (i) drastically reduces the amount of data commu-
nicated at every iteration, (ii) has favorable work-load balancing across
nodes, and (iii) is matrix-free and inverse-free. The proposed method
scales well in terms of both the dimension of the problem and the num-
ber of data points. Finally, we illustrate the empirical performance of
DS-LSR1 on a standard neural network training task.

Keywords: SR1 · Distributed Optimization · Deep Learning.

1 Introduction

In the last decades, significant efforts have been devoted to the development of
optimization algorithms for machine learning. Currently, due to its fast learning
properties, low per-iteration cost, and ease of implementation, the stochastic
gradient (SG) method [8,32], and its adaptive [19,25], variance-reduced [18,22,35]
and distributed [17,31,40,45] variants are the preferred optimization methods
for large-scale machine learning applications. Nevertheless, these methods have
several drawbacks; they are highly sensitive to the choice of hyper-parameters
and are cumbersome to tune, and they suffer from ill-conditioning [2, 9, 43].
More importantly, these methods offer a limited amount of benefit in distributed
computing environments since they are usually implemented with small mini-
batches, and thus spend more time communicating instead of performing “actual”
computations. This shortcoming can be remedied to some extent by increasing
the batch sizes, however, there is a point after which the increase in computation
is not offset by the faster convergence [39].

Recently, there has been an increased interest in (stochastic) second-order
and quasi-Newton methods by the machine learning community; see e.g., [4–6,
10,11,16,21,23,29,34,36,42]. These methods judiciously incorporate curvature
information, and thus mitigate some of the issues that plague first-order methods.
Another benefit of these methods is that they are usually implemented with larger
batches, and thus better balance the communication and computation costs. Of

ar
X

iv
:1

90
5.

13
09

6v
2

 [
m

at
h.

O
C

]
 1

3
M

ay
 2

02
0

2 Majid Jahani et al.

course, this does not come for free; (stochastic) second-order and quasi-Newton
methods are more memory intensive and more expensive (per iteration) than
first-order methods. This naturally calls for distributed implementations.

NODE K

NODE 3

NODE 2

NODE 1

MASTER
NODE

WORKER
NODE

rKrK

bKbK

r1r1

b1b1

r2r2
b2b2

r3r3
b3b3

Broadcast: bj , j = {1, . . . , K}
Reduce: rj , j = {1, . . . , K}

Fig. 1: Distributed Computing
Schematic.

In this paper, we propose an efficient dis-
tributed variant of the Sampled Limited-memory
Symmetric Rank-1 (S-LSR1) method [3]—DS-
LSR1—that operates in the master-worker frame-
work (Figure 1). Each worker node has a portion of
the dataset, and performs local computations using
solely that information and information received
from the master node. The proposed method is
matrix-free (Hessian approximation never explic-
itly constructed) and inverse-free (no matrix inver-
sion). To this end, we leverage the compact form of
the SR1 Hessian approximations [12], and utilize
sketching techniques [41] to approximate several required quantities. We show
that, contrary to a naive distributed implementation of S-LSR1, the method
is communication-efficient and has favorable work-load balancing across nodes.
Specifically, the naive implementation requires O(md) communication, whereas
our approach only requires O(m2) communication, where d is the dimension of
the problem, m is the LSR1 memory and m� d1. Furthermore, in our approach
the heavy computations are done by the worker nodes and the master node
performs only simple aggregations, whereas in the naive approach the computa-
tionally intensive operations, e.g., Hessian-vector products, are computed locally
by the master node. Finally, we show empirically that DS-LSR1 has good strong
and weak scaling properties, and illustrate the performance of the method on a
standard neural network training task.

Problem Formulation and Notation We focus on machine learning empirical risk
minimization problems that can be expressed as:

min
w∈Rd

F (w) :=
1

n

n∑
i=1

f(w;xi, yi) =
1

n

n∑
i=1

fi(w), (1.1)

where f : Rd → R is the composition of a prediction function (parametrized by
w) and a loss function, and (xi, yi)ni=1 denote the training examples (samples).
Specifically, we focus on deep neural network training tasks where the function
F is nonconvex, and the dimension d and number of samples n are large.

The paper is organized as follows. We conclude this section with a discussion
of related work. We describe the classical (L)SR1 and sampled LSR1 (S-LSR1)
methods in Section 2. In Section 3, we present DS-LSR1, our proposed distributed
variant of the sampled LSR1 method. We illustrate the scaling properties of
DS-LSR1 and the empirical performance of the method on deep learning tasks in
Section 4. Finally, in Section 5 we provide some final remarks.

1
Note, these costs are on top of the communications that are common to both approaches.

Communication Efficient Distributed SR1 3

Related Work The Symmetric Rank-1 (SR1) method [15, 24] and its limited-
memory variant (LSR1) [28] are quasi-Newton methods that have gained signifi-
cant attention by the machine learning community in recent years [3, 20]. These
methods incorporate curvature (second-order) information using only gradient
(first-order) information. Contrary to arguably the most popular quasi-Newton
method, (L)BFGS [27,30], the (L)SR1 method does not enforce that the Hessian
approximations are positive definite, and is usually implemented with a trust-
region [30]. This has several benefits: (1) the method is able to exploit negative
curvature, and (2) the method is able to efficiently escape saddle points.

There has been a significant volume of research on distributed algorithms
for machine learning; specifically, distributed gradient methods [7, 14,31,40,45],
distributed Newton methods [21,37,44] and distributed quasi-Newton methods
[1,13,17]. Possibly the closest work to ours is VF-BFGS [13], in which the authors
propose a vector-free implementation of the classical LBFGS method. We leverage
several of the techniques proposed in [13], however, what differentiates our work
is that we focus on the S-LSR1 method. Developing an efficient distributed
implementation of the S-LSR1 method is not as straight-forward as LBFGS for
several reasons: (1) the construction and acceptance of the curvature pairs, (2)
the trust-region subproblem, and (3) the step acceptance procedure.

2 Sampled limited-memory SR1 (S-LSR1)

In this section, we review the sampled LSR1 (S-LSR1) method [3], and discuss
the components that can be distributed. We begin by describing the classical
(L)SR1 method as this will set the stage for the presentation of the S-LSR1
method. At the kth iteration, the SR1 method computes a new iterate via

wk+1 = wk + pk,

where pk is the minimizer of the following subproblem

min‖p‖≤∆k
mk(p) = F (wk) +∇F (wk)T p+ 1

2p
TBkp, (2.1)

∆k is the trust region radius, Bk is the SR1 Hessian approximation

Bk+1 = Bk + (yk−Bksk)(yk−Bksk)T

(yk−Bksk)T sk
, (2.2)

and (sk, yk) = (wk −wk−1,∇F (wk)−∇F (wk−1)) are the curvature pairs. In the
limited memory version, the matrix Bk is defined as the result of applying m
SR1 updates to a multiple of the identity matrix using the set of m most recent
curvature pairs {si, yi}k−1

i=k−m kept in storage.
The main idea of the S-LSR1 method is to use the SR1 updating formula, but

to construct the Hessian approximations using sampled curvature pairs instead of
pairs that are constructed as the optimization progresses. At every iteration, m
curvature pairs are constructed via random sampling around the current iterate;
see Algorithm 2. The S-LSR1 method is outlined in Algorithm 1. The components
of the algorithms that can be distributed are highlighted in magenta.

4 Majid Jahani et al.

Several components of the above algorithms can be distributed. Before we
present the distributed implementations of the S-LSR1 method, we discuss
several key elements of the method: (1) Hessian-vector products; (2) curvature
pair construction; (3) curvature pair acceptance; (4) search direction computation;
(5) step acceptance procedure; and (6) initial Hessian approximations.

For the remainder of the paper, let Sk = [sk,1, sk,2, . . . , sk,m] ∈ Rd×m and
Yk = [yk,1, yk,2, . . . , yk,m] ∈ Rd×m denote the curvature pairs constructed at the
kth iteration, Sik ∈ Rd×m and Y ik ∈ Rd×m denote the curvature pairs constructed

at the kth iteration by the ith node, and B
(0)
k = γkI ∈ Rd×d, γk ≥ 0, denote the

initial Hessian approximation at the kth iteration.

Algorithm 1 Sampled LSR1 (S-LSR1)

Input: w0 (initial iterate), ∆0 (initial trust
region radius).
1: for k = 0, 1, 2, ... do
2: Compute F (wk) and ∇F (wk)
3: Compute (Sk, Yk) (Algorithm 2)
4: Compute pk (solve subproblem (2.1))

5: Compute ρk = F (wk)−F (wk+pk)
mk(0)−mk(pk)

6: if ρk ≥ η1 then Set wk+1 = wk +pk
7: else Set wk+1 = wk

8: ∆k+1 = adjustTR(∆k, ρk) [3, Ap-
pendix B.3]

9: end for

Algorithm 2 Construct new (Sk, Yk)
curvature pairs

Input: wk (current iterate), m (mem-
ory), r (sampling radius), Sk = [],
Yk = [] (curvature pair containers).
1: for i = 1, 2, ...,m do
2: Sample a random direction σi

3: Sample point w̄i = wk + rσi

4: Set si = wk − w̄i and
yi = ∇2F (wk)si

5: Set Sk = [Sk si] and Yk = [Yk yi]
6: end for
Output: S, Y

Hessian-vector products Several components of the algorithms above require the
calculation of Hessian vector products of the form Bkv. In the large-scale setting,
it is not memory-efficient, or even possible for some applications, to explicitly
compute and store the d× d Hessian approximation matrix Bk. Instead, one can
exploit the compact representation of the SR1 matrices [12] and compute:

Bk+1v = B
(0)
k v + (Yk −B(0)

k Sk)(Dk + Lk + LTk − STk B(0)
k Sk︸ ︷︷ ︸

Mk

)−1(Yk −B(0)
k Sk)T v,

Dk = diag[sTk,1yk,1, . . . , s
T
k,myk,m], (Lk)j,l =

{
sTk,j−1yk,l−1 if j > l,

0 otherwise.
(2.3)

Computing Bk+1v via (2.3) is both memory and computationally efficient; the
complexity of computing Bk+1v is O(m2d) [12].

Curvature pair construction For ease of exposition, we presented the curvature
pair construction routine (Algorithm 2) as a sequential process. However, this
need not be the case; all pairs can be constructed simultaneously. First, generate
a random matrix Sk ∈ Rd×m, and then compute Yk = ∇2F (wk)Sk ∈ Rd×m. We
discuss a distributed implementation of this routine in the following sections.

Communication Efficient Distributed SR1 5

Curvature pair acceptance In order for the S-LSR1 Hessian update (2.2) to be
well defined, and for numerical stability, we require certain conditions on the
curvature pairs employed; see [30, Chapter 6]. Namely, for a given η > 0, we
impose that the Hessian approximation Bk+1 is only updated using the curvature
pairs that satisfy the following condition:

|sTk,j(yk,i −B(j−1)
k sk,j)| ≥ η‖sk,j‖‖yk,i −B(j−1)

k sk,j‖, (2.4)

for j = 1, . . . ,m, where B
(0)
k is the initial Hessian approximation and B

(j−1)
k ,

for j = 2, . . . ,m, is the Hessian approximation constructed using only curvature

pairs {sl, yl}, for l < j, that satisfy (2.4). Note, Bk+1 = B
(m)
k . Thus, potentially,

not all curvature pairs returned by Algorithm 2 are used to update the S-LSR1
Hessian approximation. Checking this condition is not trivial and requires m
Hessian vector products. In [3, Appendix B.5], the authors propose a recursive
memory-efficient mechanism to check and retain only the pairs that satisfy (2.4).

Search direction computation The search direction pk is computed by solving
subproblem (2.1) using CG-Steihaug; see [30, Chapter 7]. This procedure requires
the computation of Hessian vectors products of the form (2.3).

Step acceptance procedure In order to determine if a step is successful (Line
6, Algorithm 1) one has to compute the function value at the trial iterate and
the predicted model reduction. This entails a function evaluation and a Hessian
vector product. The acceptance ratio ρk determines if a step is successful, after
which the trust region radius has to be adjusted accordingly. For brevity we omit
the details from the paper and refer the interested reader to [3, Appendix B.3].

Initial Hessian approximations B
(0)
k In practice, it is not clear how to choose the

initial Hessian approximation. We argue, that in the context of S-LSR1, a good

choice is B
(0)
k = 0. In Figure 2 we show the eigenvalues of the true Hessian and

the eigenvalues of the S-LSR1 matrices for different values of γk (B
(0)
k = γkI) for

a toy problem. As is clear, the eigenvalues of the S-LSR1 matrices with γk = 0
better match the eigenvalues of the true Hessian. Moreover, by setting γk = 0,
the rank of the approximation is at most m and thus the CG algorithm (used to
compute the search direction) terminates in at most m iterations, whereas the
CG algorithm may require as many as d� m iterations when γk 6= 0. Finally,

B
(0)
k = 0 removes a hyper-parameter. Henceforth, we assume that B

(0)
k = 0,

however, we note that our method can be extended to B
(0)
k 6= 0.

2.1 Naive Distributed Implementation of S-LSR1

In this section, we describe a naive distributed implementation of the S-LSR1
method, where the data is stored across K machines. At each iteration k, we
broadcast the current iterate wk to every worker node. The worker nodes calculate
the local gradient, and construct local curvature pairs Sik and Y ik . The local

6 Majid Jahani et al.

0 5 10 15 20 25 30 35 40
Iterations

10−2

10−1

No
rm

 G
ra
d

A

C

B

SR1

0 5 10 15 20 25 30 35

10 18

10 15

10 12

10 9

10 6

10 3

100

Point A

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

0 5 10 15 20 25 30 35

10 17

10 14

10 11

10 8

10 5

10 2

101
Point B

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

0 5 10 15 20 25 30 35

10 17

10 14

10 11

10 8

10 5

10 2

101
Point C

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

Fig. 2: Comparison of the eigenvalues of S-LSR1 for different γ (@ A, B, C) for a toy classification
problem.

information is then reduced to the master node to form ∇F (wk), Sk and Yk.
Next, the SR1 curvature pair condition (2.4) is recursively checked on the master
node. Given a set of accepted curvature pairs, the master node computes the
search direction pk. We should note that the last two steps could potentially be
done in a distributed manner at the cost of m + 1 extra expensive rounds of
communication. Finally, given a search direction the trial iterate is broadcast to
the worker nodes where the local objective function is computed and reduced to
the master node, and a step is taken.

As is clear, in this distributed implementation of the S-LSR1 method, the
amount of information communicated is large, and the amount of computation
performed on the master node is significantly larger than that on the worker
nodes. Note, all the Hessian vector products, as well as the computations of
the M−1

k are performed on the master node. The precise communication and
computation details are summarized in Tables 2 and 3.

3 Efficient Distributed S-LSR1 (DS-LSR1)

The naive distributed implementation of S-LSR1 has several significant deficien-
cies. We propose a distributed variant of the S-LSR1 method that alleviates
these issues, is communication-efficient, has favorable work-load balancing across
nodes and is inverse-free and matrix-free. To do this, we leverage the form of the

compact representation of the S-LSR1 updating formula (B
(0)
k = 0)

Bk+1v = YkM
−1
k Y Tk v, (3.1)

and the form of the SR1 condition (2.4). We observe the following: one need not
communicate the full Sk and Yk matrices, rather one can communicate STk Yk,
STk Sk and Y Tk Yk. We now discuss the means by which we: (1) reduce the amount
of information communicated and (2) balance the computation across nodes.

3.1 Reducing the Amount of Information Communicated

As mentioned above, communicating curvature pairs is not necessary; instead
one can just communicate inner products of the pairs, reducing the amount
of communication from 2md to 3m2. In this section, we show how this can be
achieved, and in fact show that this can be further reduced to m2.

Communication Efficient Distributed SR1 7

Construction of STk Sk and STk Yk Since the curvature pairs are scale invariant
[3], Sk can be any random matrix. Therefore, each worker node can construct
this matrix by simply sharing random seeds. In fact, the matrix STk Sk need not
be communicated to the master node as the master node can construct and
store this matrix. With regards to the STk Yk, each worker node can construct
local versions of the Yk curvature pair, Y ik , and send STk Y

i
k to the master node

for aggregation, i.e., STk Yk = 1/K
∑K
i=1 S

T
k Y

i
k . Thus, the amount of information

communicated to the master node is m2.

Construction of Y Tk Yk Constructing the matrix Y Tk Yk in distributed fashion, with-
out communicating local Y ik matrices, is not that simple. In our communication-
efficient method, we propose that the matrix is approximated via sketching [41],
using quantities that are already computed, i.e., Y Tk Yk ≈ Y Tk SkSTk Yk. In order for
the sketch to be well defined, Sk ∼ N (0, I/m), thus satisfying the conditions of
sketching matrices [41]. By using this technique, we construct an approximation
to Y Tk Yk with no additional communication. Note, the sketch size in our setting is
equal to the memory size m. We should also note that this approximation is only
used in checking the SR1 condition (2.4), which is not sensitive to approximation
errors, and not in the Hessian vector products.

3.2 Balancing the Computation Across the Nodes

Balancing the computation across the nodes does not come for free. We propose
the use of a few more rounds of communication. The key idea is to exploit the
compact representation of the SR1 matrices and perform as much computation
as possible on the worker nodes.

Computing Hessian vector products Bk+1v The Hessian vector products (3.1),
require products between the matrices Yk, M−1

k and a vector v. Suppose that
the we have M−1

k on the master node, and that the master node broadcasts this
information as well as the vector v to the worker nodes. The worker nodes then
locally compute M−1

k (Y ik)T v, and send this information back to the master node.
The master node then reduces this to form M−1

k (Yk)T v, and broadcasts this vector
back to the worker nodes. This time the worker nodes compute Y ikM

−1
k (Yk)T v

locally, and then this quantity is reduced by the master node; the cost of this
communication is d. Namely, in order to compute Hessian vector products, the
master node performs two aggregations, the bulk of the computation is done on
the worker nodes and the communication cost is m2 + 2m+ 2d.

Checking the SR1 Condition 2.4 As proposed in [3], at every iteration condi-
tion (2.4) is checked recursively by the master node. For each pair in memory,
checking this condition amounts to a Hessian vector product as well as the use
of inner products of the curvature pairs. Moreover, it requires the computation

of (M
(j)
k)−1 ∈ Rj×j , for j = 1, . . . ,m, where M−1

k = (M
(m)
k)−1.

8 Majid Jahani et al.

Inverse-Free Computation of M−1
k The matrix M−1

k is non-singular [12], depends
solely on inner products of the curvature pairs, and is used in the the compu-
tation of Hessian vector products (3.1). This matrix is constructed recursively
(its dimension grows with the memory) by the master node as condition (2.4)
is checked. We propose an inverse-free approach for constructing this matrix.

Suppose we have the matrix (M
(j)
k)−1, for some j = 1, . . . ,m− 1, and that the

new curvature pair (sk,j+1, yk,j+1) satisfies (2.4). One can show that

(M
(j+1)
k)−1 =

[
(M

(j)
k)−1 + ζ(M

(j)
k)−1uvT (M

(j)
k)−1 −ζ(M

(j)
k)−1u

−ζvT (M
(j)
k)−1 ζ

]

where ζ = 1/c− vT (M
(j)
k)−1u, vT = sTk,j+1Yk,1:l and Yk,1:l = [yk,1, . . . , yk,l] for l ≤ j,

u = v, and c = sTk,j+1yk,j+1. We should note that the matrix (M
(1)
k)−1 is a

singleton. Consequently, constructing (M
(j)
k)−1 in an inverse-free manner allows

us to compute Hessian vector products and check condition (2.4) efficiently.

3.3 The Distributed S-LSR1 (DS-LSR1) Algorithm

Pseudo-code for our proposed distributed variant of the S-LSR1 method and the
curvature pair sampling procedure are given in Algorithms 3 and 4, respectively.
Right arrows denote broadcast steps and left arrows denote reduce steps. For
brevity we omit the details of the distributed CG-Steihaug algorithm (Line 5,
Algorithm 3), but note that it is a straightforward adaptation of [30, Algorithm
7.2] using quantities described above computed in distributed fashion.

Algorithm 3 Distributed Sampled LSR1 (DS-LSR1)

Input: w0 (initial iterate), ∆0 (initial trust region radius), m (memory).
Master Node: Worker Nodes (i = 1, 2, . . . ,Ki = 1, 2, . . . ,Ki = 1, 2, . . . ,K):
1: for k = 0, 1, 2, ... do
2: Broadcast: wk −→−→−→ Compute Fi(wk), ∇Fi(wk)
3: Reduce: Fi(wk), ∇Fi(wk) to F (wk), ∇F (wk) ←−←−←−
4: Compute new (M−1

k , Yk, Sk) pairs via Algorithm 4
5: Compute pk via CG-Steihaug [30, Algorithm 7.2]
6: Broadcast: pk, M−1

k −→−→−→ Compute M−1
k (Y i

k)T pk, ∇Fi(wk)T pk, Fi(wk + pk)
7: Reduce: M−1

k (Y i
k)T pk, ∇Fi(wk)T pk, Fi(wk + pk) to M−1

k Y T
k pk, ∇F (wk)T pk,

F (wk + pk) ←−←−←−
8: Broadcast: M−1

k Y T
k pk −→−→−→ Compute (Y i

k)TM−1
k Y T

k pk
9: Reduce: (Y i

k)TM−1
k Y i

kpk to Bkpk = (Yk)TM−1
k Ykpk ←−←−←−

10: Compute ρk = F (wk)−F (wk+pk)
mk(0)−mk(pk)

11: if ρk ≥ η1 then Set wk+1 = wk + pk else Set wk+1 = wk

12: ∆k+1 = adjustTR(∆k, ρk) [3, Appendix B.3]
13: end for

Communication Efficient Distributed SR1 9

Algorithm 4 Construct new (Sk, Yk) curvature pairs

Input: wk (iterate), m (memory), Sk = [], Yk = [] (curvature pair containers).
Master Node: Worker Nodes (i = 1, 2, . . . ,Ki = 1, 2, . . . ,Ki = 1, 2, . . . ,K):
1: Broadcast: S̄k and wk −→−→−→ Compute Ȳk,i = ∇2Fi(wk)S̄k

2: Reduce: S̄T
k Ȳk,i to S̄T

k Ȳk and Ȳ T
k S̄kS̄

T
k Ȳk ←−←−←− Compute S̄T

k S̄k and S̄T
k Ȳk,i

3: Check the SR1 condition (2.4) and construct M−1
k recursively using

S̄T
k S̄k, S̄T

k Ȳk and Ȳ T
k Ȳk and construct list of accepted pairs Sk and Yk

4: Broadcast: the list of accepted curvature pairs

Output: M−1, Yk, Sk

3.4 Complexity Analysis - Comparison of Methods

Table 1: Details of quantities communi-
cated and computed.

Variable Dimension

wk,∇F (wk),∇Fi(wk)

pk, Yk,iM
−1
k Y T

k pk, Bkd d× 1
F (wk), Fi(wk) 1
Sk, Sk,i, Yk, Yk,i d×m
ST
k Yk,i, S

T
k,iYk,i,M

−1
k m×m

M−1
k Y T

k,ipk m× 1

We compare the complexity of a naive dis-
tributed implementation of S-LSR1 and DS-
LSR1. Specifically, we discuss the amount of
information communicated at every iteration
and the amount of computation performed
by the nodes. Tables 2 and 3 summarize the
communication and computation costs, re-
spectively, and Table 4 summarizes the de-
tails of the quantities presented in the tables.

As is clear from Tables 2 and 3 the amount of information communicated in
the naive implementation (2md+ d+ 1) is significantly larger than that in the
DS-LSR1 method (m2 + 2d+ 2m+ 1). Note, m� d. This can also be seen in
Figure 3 where we show for different dimension d and memory m the number of
floats communicated at every iteration. To put this into perspective, consider
a training problem where d = 9.2M (e.g., VGG11 network [38]) and m = 256,
DS-LSR1 and naive DS-LSR1 need to communicate 0.0688GB and 8.8081GB,
respectively, per iteration. In terms of computation, it is clear that in the naive
approach the amount of computation is not balanced between the master and
worker nodes, whereas for DS-LSR1 the quantities are balanced.

Table 2: Communication Details.

Naive DS-LSR1 DS-LSR1

Broadcast: wk wk, pk,M
−1

Reduce:

∇Fi(wk), Fi(wk),

Sk,i, Yk,i

∇Fi(wk), Fi(wk), ST
k Yk,i,

Yk,iM
−1
k Yk,ipk,M

−1
k Y T

k,ipk

Table 3: Computation Details.

Naive DS-LSR1 DS-LSR1

Worker: ∇Fi(wk), Fi(wk), Yk,i

∇Fi(wk), Fi(wk), Yk,i, S
T
k,iYk,i

M−1
k Y T

k,ipk, Yk,iM
−1
k Y T

k pk, CG

Master: M−1
k , wk+1, Bkd, CG M−1

k , wk+1

103 104 105 106 107

Dimension

103

104

105

106

107

108

109

1010

1011

Fl
oa

ts
 C

om
m

un
ic

at
ed

m = 24, 26, 28, 210, 212

DS-LSR1
Naive DS-LSR1

Fig. 3: Number of floats communi-
cated per iteration for different di-
mension d and memory size m.

10 Majid Jahani et al.

4 Numerical Experiments

The goals of this section are threefold: (1) To illustrate the scaling properties of
the method and compare it to the naive implementation (Figures 4 & 5); (2) To
deconstruct the main computational elements of the method and show how they
scale in terms of memory (Figure 6); and (3) To illustrate the performance of
DS-LSR1 on a neural network training task (Figure 7). We should note upfront
that the goal of this section is not to achieve state-of-the-art performance and
compare against algorithms that can achieve this, rather to show that the method
is communication efficient and scalable.2

4.1 Scaling

Weak Scaling We considered two different types of networks: (1) Shallow (one
hidden layer), and (2) Deep (7 hidden layers), and for each varied the number of
neurons in the layers (MNIST dataset [26], memory m = 64). Figure 4 shows the
time per iteration for DS-LSR1 for different number of variables and batch sizes.

103 104 105 106

Number of Variables

10 1

100

Ti
m

e
Pe

r
Ite

ra
tio

n
(s

ec
)

Shallow Network
Algorithm, BS
DS-LSR1, 16
DS-LSR1, 32
DS-LSR1, 64
DS-LSR1, 128
DS-LSR1, 256
DS-LSR1, 512
DS-LSR1, 1024
DS-LSR1, 2048

103 104 105 106

Number of Variables

10 1

100

Ti
m

e
Pe

r
Ite

ra
tio

n
(s

ec
)

Deep Network

Algorithm, BS
DS-LSR1, 16
DS-LSR1, 32
DS-LSR1, 64
DS-LSR1, 128
DS-LSR1, 256
DS-LSR1, 512
DS-LSR1, 1024
DS-LSR1, 2048

Fig. 4: Weak Scaling: Time/iteration (sec) vs # of variables; Shallow (left), Deep (right).

Strong Scaling We fix the problem size (LeNet, CIFAR10, d = 62006 [26]), vary
the number of nodes and measure the speed-up achieved. Figure 5 illustrates
the relative speedup (normalized speedup of each method with respect to the
performance of that method on a single node) of the DS-LSR1 method and the
naive variant for m = 256. The DS-LSR1 method achieves near linear speedup as
the number of nodes increases, and the speedup is better than that of the naive
approach. We should note that the times of our proposed method are lower than
the respective times for the naive implementation. The reasons for this are: (1)
DS-LSR1 is inverse free, and (2) the amount of information communicated is
significantly smaller.

2
All algorithms were implemented in Python (PyTorch library), using the MPI for Python dis-
tributed environment. The experiments were conducted on XSEDE clusters using GPU nodes.
Each physical node includes 4 K80 GPUs, and each MPI process is assigned to a distinct GPU.
Code available at: https://github.com/OptMLGroup/DSLSR1.

https://github.com/OptMLGroup/DSLSR1

Communication Efficient Distributed SR1 11

1 2 3 4 5 6 7 8
Number of Nodes

1

2

3

4

5

6

7

8

Sp
ee

du
p

m = 64
Linear Speedup
DS-LSR1
Naive DS-LSR1

1 2 3 4 5 6 7 8
Number of Nodes

1

2

3

4

5

6

7

8

Sp
ee

du
p

m = 256
Linear Speedup
DS-LSR1
Naive DS-LSR1

Fig. 5: Strong Scaling: Relative speedup vs # of nodes.

Scaling of Different Components of DS-LSR1 We deconstruct the main com-
ponents of the DS-LSR1 method and illustrate the scaling (per iteration) with
respect to memory size. Figure 6 shows the scaling for: (1) reduce time; (2)
total time; (3) CG time; (4) time to sample S, Y pairs. For all these plots, we
ran 10 iterations, averaged the time and also show the variability. As is clear,
our proposed method has lower times for all components of the algorithm. We
attribute this to the aforementioned reasons.

102 103

Memory Size

10 5

10 4

10 3

10 2

10 1

Re
du

ce
 T

im
e

(s
ec

)

Algorithm
DS-LSR1
Naive DS-LSR1

102 103

Memory Size

10 1

100

101

102

Pe
r

Ite
ra

tio
n

Ti
m

e
(s

ec
)

Algorithm
DS-LSR1
Naive DS-LSR1

102 103

Memory Size

10 2

10 1

CG
 T

im
e

(s
ec

)

Algorithm
DS-LSR1
Naive DS-LSR1

102 103

Memory Size

10 1

100

101

102

S-
Y

Sa
m

pl
e

Ti
m

e
(s

ec
)

Algorithm
DS-LSR1
Naive DS-LSR1

Fig. 6: Time (sec) for different components of DS-LSR1 with respect to memory.

4.2 Performance of DS-LSR1

In this section, we show the performance of DS-LSR1 on a neural network training
task; LeNet [26], CIFAR10, n = 50000, d = 62006, m = 256. Figure 7 illustrates

12 Majid Jahani et al.

the training accuracy in terms of wall clock time and amount of data (GB)
communication (left and center plots), for different number of nodes. As expected,
when using larger number of compute nodes training is faster. Similar results
were obtained for testing accuracy. We also plot the performance of the naive
implementation (dashed lines) in order to show that: (1) the accuracy achieved
is comparable, and (2) one can train faster using our proposed method.

0 500 1000 1500 2000 2500 3000
Wall-Clock Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 A
cc

ur
ac

y

1 Node
2 Nodes
4 Nodes
8 Nodes

10 3 10 2 10 1 100 101

Communicated Data in GB

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 A
cc

ur
ac

y

DS-LSR1
Naive DS-LSR1

0 25 50 75 100 125 150
Training Iteration

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

Ja
cc

ar
d

si
m

ila
rit

y

Fig. 7: Performance of DS-LSR1 on CIFAR10 dataset with different number of nodes.

Finally, we show that the curvature pairs chosen by our approach are al-
most identical to those chosen by the naive approach even though we use an
approximation (via sketching) when checking the SR1 condition. Figure 7 (right
plot), shows the Jaccard similarity for the sets of curvature pairs selected by the
methods; the pairs are almost identical, with differences on a few iterations.

5 Final Remarks

This paper describes a scalable distributed implementation of the sampled LSR1
method which is communication-efficient, has favorable work-load balancing across
nodes and that is matrix-free and inverse-free. The method leverages the compact
representation of SR1 matrices and uses sketching techniques to drastically reduce
the amount of data communicated at every iteration as compared to a naive
distributed implementation. The DS-LSR1 method scales well in terms of both
the dimension of the problem and the number of data points.

Acknowledgements This work was partially supported by the U.S. National Sci-
ence Foundation, under award numbers NSF:CCF:1618717, NSF:CMMI:1663256
and NSF:CCF:1740796, and XSEDE Startup grant IRI180020.

Communication Efficient Distributed SR1 13

References

1. Agarwal, A., Chapelle, O., Dud́ık, M., Langford, J.: A reliable effective terascale
linear learning system. Journal of Machine Learning Research 15, 1111–1133 (2014)

2. Berahas, A.S., Bollapragada, R., Nocedal, J.: An investigation of newton-sketch
and subsampled newton methods. arXiv preprint arXiv:1705.06211 (2017)

3. Berahas, A.S., Jahani, M., Takác, M.: Quasi-newton methods for deep learning:
Forget the past, just sample. arXiv preprint arXiv: 1901.09997 (2019)

4. Berahas, A.S., Nocedal, J., Takác, M.: A multi-batch l-bfgs method for machine
learning. In: NeurIPS. pp. 1055–1063 (2016)

5. Berahas, A.S., Takáč, M.: A robust multi-batch l-bfgs method for machine learning.
Optimization Methods and Software 35(1), 191–219 (2020)

6. Bollapragada, R., Byrd, R.H., Nocedal, J.: Exact and inexact subsampled newton
methods for optimization. IMA Journal of Numerical Analysis (2016)

7. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Proceedings of COMPSTAT’2010, pp. 177–186. Springer (2010)

8. Bottou, L., Cun, Y.L.: Large scale online learning. In: NeurIPS. pp. 217–224 (2004)

9. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine
learning. Siam Review 60(2), 223–311 (2018)

10. Byrd, R.H., Chin, G.M., Neveitt, W., Nocedal, J.: On the use of stochastic hessian
information in optimization methods for machine learning. SIAM Journal on
Optimization 21(3), 977–995 (2011)

11. Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-newton method
for large-scale optimization. SIAM Journal on Optimization 26(2), 1008–1031 (2016)

12. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-newton matrices
and their use in limited memory methods. Math. Program. 63, 129–156 (1994)

13. Chen, W., Wang, Z., Zhou, J.: Large-scale l-bfgs using mapreduce. In: NeurIPS. pp.
1332–1340 (2014)

14. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Olukotun, K., Ng, A.Y.:
Map-reduce for machine learning on multicore. In: NeurIPS. pp. 281–288 (2007)

15. Conn, A.R., Gould, N.I., Toint, P.L.: Convergence of quasi-newton matrices gener-
ated by the symmetric rank one update. Math. Program. 50(1-3), 177–195 (1991)

16. Curtis, F.E.: A self-correcting variable-metric algorithm for stochastic optimization.
In: ICML. pp. 632–641 (2016)

17. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker,
P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In: NeurIPS.
pp. 1223–1231 (2012)

18. Defazio, A., Bach, F., Lacoste-Julien, S.: Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In: NeurIPS. pp. 1646–
1654 (2014)

19. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12, 2121–2159
(2011)

20. Erway, J.B., Griffin, J., Marcia, R.F., Omheni, R.: Trust-region algorithms for train-
ing responses: Machine learning methods using indefinite hessian approximations.
Optimization Methods and Software pp. 1–28 (2019)

21. Jahani, M., He, X., Ma, C., Mokhtari, A., Mudigere, D., Ribeiro, A., Takáč, M.:
Efficient distributed hessian free algorithm for large-scale empirical risk minimization
via accumulating sample strategy. arXiv preprint arXiv:1810.11507 (2018)

14 Majid Jahani et al.

22. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. In: NeurIPS. pp. 315–323 (2013)

23. Keskar, N.S., Berahas, A.S.: adaqn: An adaptive quasi-newton algorithm for training
rnns. In: Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. pp. 1–16. Springer (2016)

24. Khalfan, H.F., Byrd, R.H., Schnabel, R.B.: A theoretical and experimental study of
the symmetric rank-one update. SIAM Journal on Optimization 3(1), 1–24 (1993)

25. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

27. Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale opti-
mization. Math. Program. 45(1-3), 503–528 (1989)

28. Lu, X.: A study of the limited memory SR1 method in practice. University of
Colorado at Boulder (1996)

29. Martens, J.: Deep learning via hessian-free optimization. In: ICML. vol. 27, pp.
735–742 (2010)

30. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations
Research, Springer, second edn. (2006)

31. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In: NeurIPS. pp. 693–701 (2011)

32. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathe-
matical Statistics pp. 400–407 (1951)

33. Rodgers, D.P.: Improvements in multiprocessor system design. ACM SIGARCH
Computer Architecture News 13(3), 225–231 (1985)

34. Roosta-Khorasani, F., Mahoney, M.W.: Sub-sampled newton methods. Math. Pro-
gram. 174(1-2), 293–326 (2019)

35. Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic
average gradient. Math. Program. 162(1-2), 83–112 (2017)

36. Schraudolph, N.N., Yu, J., Günter, S.: A stochastic quasi-newton method for online
convex optimization. In: Artificial Intelligence and Statistics. pp. 436–443 (2007)

37. Shamir, O., Srebro, N., Zhang, T.: Communication-efficient distributed optimization
using an approximate newton-type method. In: ICML. pp. 1000–1008 (2014)

38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

39. Takác, M., Bijral, A.S., Richtárik, P., Srebro, N.: Mini-batch primal and dual
methods for svms. In: ICML (3). pp. 1022–1030 (2013)

40. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE transactions on automatic
control 31(9), 803–812 (1986)

41. Woodruff, D.P.: Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science 10(1–2), 1–157 (2014)

42. Xu, P., Roosta, F., Mahoney, M.W.: Newton-type methods for non-convex opti-
mization under inexact hessian information. Math. Program. pp. 1–36 (2017)

43. Xu, P., Roosta-Khorasan, F., Mahoney, M.W.: Second-order optimization for non-
convex machine learning: An empirical study. arXiv:1708.07827 (2017)

44. Zhang, Y., Xiao, L.: Communication-efficient distributed optimization of self-
concordant empirical loss. Large-Scale and Distributed Optimization p. 289 (2018)

45. Zinkevich, M., Weimer, M., Li, L., Smola, A.J.: Parallelized stochastic gradient
descent. In: NeurIPS. pp. 2595–2603 (2010)

Communication Efficient Distributed SR1 15

A Theoretical Results and Proofs

In this section, we prove a theoretical result about the matrix (M
(j)
k)−1.

Lemma 1. The matrix M
(j+1)
k , for j = 0, . . . ,m− 1, has the form:

M
(j+1)
k =

[
M

(j)
k u
vT c

]
, (A.1)

where vT = sTk,j+1Yk,1:l and l ≤ j, u = v and c = sTk,j+1yk,j+1, and is nonsingular.
Moreover, its inverse can be calculated as following:

(M
(j+1)
k)−1 =

[
(M

(j)
k)−1 + ζ(M

(j)
k)−1uvT (M

(j)
k)−1 −ζ(M

(j)
k)−1u

−ζvT (M
(j)
k)−1 ζ

]
(A.2)

where ζ =
1

c− vT (M
(j)
k)−1u

.

Proof. It is trivial to show that M
(j+1)
k shown in (A.1) is equivalent to the

corresponding matrix in (2.3). Moreover, the second part of the lemma follows

immediately from the fact that M
(i+1)
k is itself non-singular and symmetric as

shown in [12]. Lets consider the following matrix M
(i+1)
k :

M
(j+1)
k =

[
M

(j)
k u
vT c

]
(A.3)

We know that M
(i)
k is invertible, and in the following by simple linear algebra,

we calculate the inverse of M
(i+1)
k :[

M
(j)
k u I 0
vT c 0 1

]
⇒
[
I (M

(j)
k)−1u (M

(j)
k)−1 0

vT c 0 1

]
⇒
[
I (M

(j)
k)−1u (M

(j)
k)−1 0

0 c− vT (M
(j)
k)−1u −vT (M

(j)
k)−1 1

]

⇒

 I (M
(j)
k)−1u (M

(j)
k)−1 0

0 1
−vT (M

(j)
k)−1

c− vT (M
(j)
k)−1u

1

c− vT (M
(j)
k)−1u

⇒

I 0 (M

(j)
k)−1 +

(M
(j)
k)−1uvT (M

(j)
k)−1

c− vT (M
(j)
k)−1u

−(M
(j)
k)−1u

c− vT (M
(j)
k)−1u

0 1
−vT (M

(j)
k)−1

c− vT (M
(j)
k)−1u

1

c− vT (M
(j)
k)−1u

⇒
[
I 0 (M

(j)
k)−1 + ζ(M

(j)
k)−1uvT (M

(j)
k)−1 −ζ(M

(j)
k)−1u

0 1 −ζvT (M
(j)
k)−1 ζ

]

16 Majid Jahani et al.

The last line is by putting ζ =
1

c− vT (M
(j)
k)−1u

.

Lemma 1 describes a recursive method for computing (M
(j)
k)−1 ∈ Rj×j , for

j = 1, . . . ,m. Specifically, one can calculate (M
(j+1)
k)−1 using (M

(j)
k)−1. We

should note, that the first matrix (M
(1)
k)−1 is simply a number. Overall, this

procedure allows us to compute (M
(j)
k)−1 without explicitly computing an inverse.

B Additional Algorithm Details

In this section, we present additional details about the S-LSR1 and DS-LSR1
algorithms discussed in the Sections 2 and 3.

B.1 CG Steihaug Algorithm - Serial

In this section, we describe CG-Steihaug Algorithm [30] which is used for com-
puting the search direction pk.

Algorithm 5 CG-Steihaug (Serial)

Input: ε (termination tolerance), ∇F (wk) (current gradient).

1: Set z0 = 0, r0 = ∇F (wk), d0 = −r0
2: if ‖r0‖ < ε then
3: return pk = z0 = 0
4: end if
5: for j = 0, 1, 2, ... do
6: if dTj Bkdj ≤ 0 then
7: Find τ ≥ 0 such that pk = zj +τdj minimizes mk(pk) and satisfies ‖pk‖ = ∆k

8: return pk
9: end if

10: Set αj =
rTj rj

dTj Bkdj
and zj+1 = zj + αjdj

11: if ‖zj+1‖ ≥ ∆k then
12: Find τ ≥ 0 such that pk = zj + τdj and satisfies ‖pk‖ = ∆k

13: return pk
14: end if
15: Set rj+1 = rj + αjBkdj
16: if ‖rj+1‖ < εk then
17: return pk = zj+1

18: end if

19: Set βj+1 =
rTj+1rj+1

rTj rj
and dj+1 = −rj+1 + βj+1dj

20: end for

Communication Efficient Distributed SR1 17

B.2 CG Steihaug Algorithm - Distributed

In this section, we describe a distributed variant of CG Steihaug algorithm that
is used as a subroutine of the DS-LSR1 method. The manner in which Hessian
vector products are computed was discussed in Section 3.

Algorithm 6 CG-Steihaug (Distributed)

Input: ε (termination tolerance), ∇F (wk) (current gradient), M−1
k .

Master Node: Worker Nodes (i = 1, 2, . . . ,Ki = 1, 2, . . . ,Ki = 1, 2, . . . ,K):
1: Set z0 = 0, r0 = ∇F (wk), d0 = −r0
2: if ‖r0‖ < εk then
3: return pk = z0 = 0
4: end if
5: for j = 0, 1, 2, ... do
6: Broadcast: dj , M

−1
k −→−→−→ Compute M−1

k (Y i
k)T dj

7: Reduce: M−1
k (Y i

k)T dj to M−1
k Y T

k dj ←−←−←−
8: Broadcast: M−1

k Y T
k dj −→−→−→ Compute Y i

kM
−1
k Y T

k dj
9: Reduce: Y i

kM
−1
k Y T

k dj to Bkdj = YkM
−1
k Y T

k dj ←−←−←−
10: if dTj Bkdj ≤ 0 then
11: Find τ ≥ 0 such that pk = zj+τdj minimizes mk(pk) and satisfies ‖pk‖ = ∆k

12: return pk
13: end if

14: Set αj =
rTj rj

dTj Bkdj
and zj+1 = zj + αjdj

15: if ‖zj+1‖ ≥ ∆k then
16: Find τ ≥ 0 such that pk = zj + τdj and satisfies ‖pk‖ = ∆k

17: return pk
18: end if
19: Set rj+1 = rj + αjBkdj
20: if ‖rj+1‖ < εk then
21: return pk = zj+1

22: end if

23: Set βj+1 =
rTj+1rj+1

rTj rj
and dj+1 = −rj+1 + βj+1dj

24: end for

18 Majid Jahani et al.

B.3 Trust-Region Management Subroutine

In this section, we present the Trust-Region management subroutine ∆k+1 =
adjustTR(∆k, ρk). See [30] for further details.

Algorithm 7 ∆k+1 = adjustTR(∆k, ρk, η2, η3, γ1, ζ1, ζ2): Trust-
Region management subroutine

Input: ∆k (current trust region radius), 0 ≤ η3 < η2 < 1, γ1 ∈
(0, 1), ζ1 > 1, ζ2 ∈ (0, 1) (trust region parameters).

1: if ρk > η2 then
2: if ‖pk‖ ≤ γ1∆k then
3: Set ∆k+1 = ∆k

4: else
5: Set ∆k+1 = ζ1∆k

6: end if
7: else if η3 ≤ ρk ≤ η2 then
8: Set ∆k+1 = ∆k

9: else
10: ∆k+1 = ζ2∆k

11: end if

B.4 Load Balancing

In distributed algorithms, it is very important to have work-load balancing across
nodes. In order for an algorithm to be scalable, every machine (worker) should
have similar amount of assigned computation, and each machine should be equally
busy. According to Amdahl’s law [33] if the parallel/distributed algorithm runs t
portion of time only on one of the machines (e.g., the master node), the theoretical
speedup (SU) is limited to at most

SU ≤ 1

t+
(1− t)
K

. (B.1)

As is clear from Tables 2 and 3, the DS-LSR1 method makes each machine
almost equally busy, and as a result DS-LSR1 has a near linear speedup. On
the other hand, in the naive DS-LSR1 approach the master node is significantly
busier than the remainder of the nodes, and thus by Adamhl’s law, the speedup
will not be linear and is bounded above by (B.1).

B.5 Communication and Computation Details

In this section, we present details about the quantities that are communicated
and computed at every iteration of the distributed S-LSR1 methods. All the
quantities below are in Tables 2 and 3.

Communication Efficient Distributed SR1 19

Table 4: Details of quantities communicated and computed.

Variable Dimension

wk d× 1

F (wk), Fi(wk) 1

∇F (wk),∇Fi(wk) d× 1

pk d× 1

Sk, Sk,i d×m
Yk, Yk,i d×m
ST
k Yk,i, S

T
k,iYk,i m×m

M−1
k m×m

Bkd d× 1

M−1
k Y T

k,ipk m× 1

Yk,iM
−1
k Y T

k pk d× 1

M−1
k m×m

B.6 Floats Communicated per Iteration

In this section, we should the number of floats communicated per iteration for
DS-LSR1 and naive DS-LSR1 for different memory size and dimension.

102 103

Memory Size

103

104

105

106

107

108

109

1010

1011

Fl
oa

ts
 C

om
m

un
ic

at
ed

d = 103, 104, 105, 106, 107

DS-LSR1
Naive DS-LSR1

103 104 105 106 107

Dimension

103

104

105

106

107

108

109

1010

1011

Fl
oa

ts
 C

om
m

un
ic

at
ed

m = 24, 26, 28, 210, 212

DS-LSR1
Naive DS-LSR1

Fig. 8: Number of floats communicated ate every iteration for different dimension d and memory size
m.

20 Majid Jahani et al.

C Additional Numerical Experiments and Experimental
Details

In this section, we present additional experiments and experimental details.

C.1 Initial Hessian Approximation B
(0)
k

In this section, we show additional results motivating the use of B
(0)
k . Figure 9,

is identical to Figure 2. Figure 10 shows similar results for a larger problem. See
[3] for details about the problems.

0 5 10 15 20 25 30 35 40
Iterations

10−2

10−1

No
rm

 G
ra
d

A

C

B

SR1

0 5 10 15 20 25 30 35

10 18

10 15

10 12

10 9

10 6

10 3

100

Point A

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

0 5 10 15 20 25 30 35

10 17

10 14

10 11

10 8

10 5

10 2

101
Point B

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

0 5 10 15 20 25 30 35

10 17

10 14

10 11

10 8

10 5

10 2

101
Point C

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

Fig. 9: Comparison of the eigenvalues of S-LSR1 for different γ (@ A, B, C) for a small toy classifi-
cation problem.

0 10 20 30 40 50 60
Iterations

10 2

10 1

No
rm

 G
ra

d

A

B

C

SR1

0 25 50 75 100 125 150 175

10 17

10 14

10 11

10 8

10 5

10 2

101
Point A

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

0 25 50 75 100 125 150 175

10 18

10 15

10 12

10 9

10 6

10 3

100

Point B

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

0 25 50 75 100 125 150 175

10 18

10 15

10 12

10 9

10 6

10 3

100

Point C

Full Hessian(+)
Full Hessian(-)
S-LSR1, = 0.1
S-LSR1, = 0.01
S-LSR1, = 0.001
S-LSR1

Fig. 10: Comparison of the eigenvalues of S-LSR1 for different γ (@ A, B, C) for a medium toy
classification problem.

Communication Efficient Distributed SR1 21

C.2 Shallow and Deep Network Details

In this section, we describe the networks used in the weak scaling experiments.
For the problems corresponding to the Tables 5 and 6 we used ReLU activation
functions and soft-max cross-entropy loss.

Table 5: Details for Shallow Networks.

Network
Hidden
Layers

Nodes/

Layer ddd

1 1 1 805

2 1 10 7960

4 1 100 79510

3 1 1000 795010

Table 6: Details for Deep Networks.

Network
Hidden
Layers

Nodes/

Layer ddd

1 7 2-2-2-2-2-2-2 817

2 7 10-10-10-10-10-10-10 8620

4 7 100-100-100-10-10-10-10 100150

3 7 1000-100-100-10-10-10-10 896650

22 Majid Jahani et al.

C.3 Weak Scaling

In this section, we show the weak scaling properties of DS-LSR1 for two different
networks, different batch sizes and different number of variables.

103 104 105 106

Number of Variables

10 1

100

Ti
m

e
Pe

r
Ite

ra
tio

n
(s

ec
)

Shallow Network
Algorithm, BS
DS-LSR1, 16
DS-LSR1, 32
DS-LSR1, 64
DS-LSR1, 128
DS-LSR1, 256
DS-LSR1, 512
DS-LSR1, 1024
DS-LSR1, 2048

103 104 105 106

Number of Variables

10 1

100

Ti
m

e
Pe

r
Ite

ra
tio

n
(s

ec
)

Deep Network

Algorithm, BS
DS-LSR1, 16
DS-LSR1, 32
DS-LSR1, 64
DS-LSR1, 128
DS-LSR1, 256
DS-LSR1, 512
DS-LSR1, 1024
DS-LSR1, 2048

Fig. 11: Weak Scaling: Time/iteration (sec) vs # of variables; Shallow (left), Deep (right).

C.4 Strong Scaling

In this section, we show the strong scaling properties of DS-LSR1 and naive
DS-LSR1 for different memory sizes. The problem details for these experiments
were as follows: LeNet, CIFAR10, d = 62006, [26].

1 2 3 4 5 6 7 8
Number of Nodes

1

2

3

4

5

6

7

8

Sp
ee

du
p

m = 64
Linear Speedup
DS-LSR1
Naive DS-LSR1

1 2 3 4 5 6 7 8
Number of Nodes

1

2

3

4

5

6

7

8

Sp
ee

du
p

m = 256
Linear Speedup
DS-LSR1
Naive DS-LSR1

Fig. 12: Strong Scaling: Relative speedup for different number of compute nodes and different
memory levels: 64 (left), 256 (right).

Communication Efficient Distributed SR1 23

C.5 Scaling of Different Components of DS-LSR1

In this section, we show the scaling properties of the different components of
the DS-LSR1 method and compare with the naive distributed implementation.
We deconstruct the main components of the DS-LSR1 method and illustrate the
scaling with respect to memory. Specifically, we show the scaling for: (1) reduce
time/iteration; (2) time/iteration; (3) CG time/iteration; (4) time to sample S,
Y pairs/iteration. For all these plots, we ran 10 iterations and averaged the time,
and also show the variability.

102 103

Memory Size

10 5

10 4

10 3

10 2

10 1

Re
du

ce
 T

im
e

(s
ec

)

Algorithm
DS-LSR1
Naive DS-LSR1

102 103

Memory Size

10 1

100

101

102

Pe
r

Ite
ra

tio
n

Ti
m

e
(s

ec
)

Algorithm
DS-LSR1
Naive DS-LSR1

102 103

Memory Size

10 2

10 1

CG
 T

im
e

(s
ec

)

Algorithm
DS-LSR1
Naive DS-LSR1

102 103

Memory Size

10 1

100

101

102

S-
Y

Sa
m

pl
e

Ti
m

e
(s

ec
)

Algorithm
DS-LSR1
Naive DS-LSR1

Fig. 13: Time (sec) for different components of DS-LSR1 with respect to memory.

24 Majid Jahani et al.

C.6 Performance of DS-LSR1

In this section, we show training and testing accuracy in terms of wall clock time
and amount of data communicated (in GB).

0 500 1000 1500 2000 2500 3000
Wall-Clock Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 A
cc

ur
ac

y

1 Node
2 Nodes
4 Nodes
8 Nodes

0 500 1000 1500 2000 2500 3000
Wall-Clock Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

in
g

Ac
cu

ra
cy

10 3 10 2 10 1 100 101

Communicated Data in GB

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 A
cc

ur
ac

y

DS-LSR1
Naive DS-LSR1

10 3 10 2 10 1 100 101

Communicated Data in GB

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

in
g

Ac
cu

ra
cy

DS-LSR1
Naive DS-LSR1

Fig. 14: Performance of DS-LSR1 on CIFAR10 dataset with different number of nodes.

	Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1

