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Abstract. It is important to find ride matches for individuals who participate in ridesharing

quickly, and it is equally important to minimize the number of drivers to serve all individuals

and minimize the total travel distance of the vehicles. This paper considers the following

ridesharing problem: given a set of trips, each trip consists of an individual, a vehicle of the

individual and some requirements, select a subset of trips and use the vehicles of selected trips

to deliver all individuals to their destinations while satisfying the requirements and achieving

some optimization goal. Requirements of trips are specified by parameters including source,

destination, vehicle capacity, preferred paths, detour distance and number of stops a driver is

willing to make, and time constraints. We consider two optimization problems: minimizing

the number of selected vehicles and minimizing total travel distance of the vehicles. We prove

that it is NP-hard to approximate both minimization problems within a constant factor if

any one of the requirements related to the detour distance, preferred paths, number of stops

and time constraints is not satisfied. We give K+2
2

-approximation algorithms for minimizing

the number of selected vehicles when the requirement related to the number of stops is not

satisfied, where K is the largest capacity of all vehicles.

Keywords: Ridesharing problem, optimization problems, approximation algorithms, algo-

rithmic analysis

1 Introduction

The use of shared mobility (carpooling/ridesharing) is becoming popular around the world.

With recent advancement in communication technologies, ridesharing in large scale are emerg-

ing. Ridesharing services are enabling timely and convenient transportation to many people.

The need of such services is increasing as the population grows in urban areas. At the same

time, the number of cars on the road also increases. According to [34], personal vehicles are

the main transportation mode in more than 200 European cities between 2001 and 2011. In

the United States, personal vehicles are also the main transportation mode [9]. The occu-

pancy rate of personal vehicles in the United States is 1.6 persons per vehicle in 2011 [15, 32]

1A preliminary version of the paper appeared in the Proceeding of COCOA2020 [18].
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(and decreased to 1.5 persons per vehicle in 2017 [9]), which can be a major cause for con-

gestion, and the estimated cost of congestion is a round $121 billion per [4]. Shared mobility

(carpooling or ridesharing) is a promising effective way to increase the occupancy rate, which

can reduce congestion [3, 14]. It is estimated that ridesharing to work in Dublin, Ireland, can

reduce 12,674 tons of CO2 emissions per year [8], and taxi-ridesharing in Beijing can reduce

120 million liters of gasoline annually [26]. A number of systems for ridesharing services

are known, such as Uber, Lyft and DiDi. These systems are also called mobility-on-demand

(MoD) systems and can support dynamic ridesharing: ridesharing requests arrive dynam-

ically, and the system provides a service in real-time. In this paper, we study the static

ridesharing problem but our algorithms can be applied to dynamic services. A sequence of

dynamic ridesharing requests within a time interval can be viewed as a set of static requests

and solved by a static ridesharing algorithm [33].

Due to the COVID-19 pandemic, traffic volume has decreased significantly in many ar-

eas [11]2,3. The recent study [11] of pandemic impacts on road traffic found that one of the

most effective ways to reduce traffic fuel consumption and emissions is indeed by reducing

the number of vehicles on the road, and the authors suggested that the policy makers should

encourage ridesharing to reduce the number of vehicles on the road after the pandemic. Dur-

ing the pandemic, in addition to reducing emissions, ridesharing may be safer than public

transit for colleagues who work at the same place; such a type of ridesharing is also easier

for contact tracing. A major lesson from the pandemic is that people should cooperate to

protect our living environment, and ridesharing is an effective way to reduce the vehicles on

the road, and thus reduce pollution [11, 14]. In this paper, we focus on this goal.

More specifically, we study two minimization problems in the following ridesharing prob-

lem: Given a set of trips (requests) in a road network, where each trip consists of an indi-

vidual, a vehicle of the individual and some requirements, select a subset of trips to deliver

the individuals of all trips to their destinations by the vehicles of the selected trips satisfying

the requirements. We call the individual of a selected trip a driver and an individual other

than a driver a passenger. The parameters specifying the requirements of a trip include the

source and destination of the trip, the vehicle capacity (number of seats to serve passengers),

the preferred paths of individual when selected as a driver, the detour distance and number

of stops the driver willing to make to serve passengers, and time constraints such as depar-

ture/arrival times. Our optimization goals are to minimize the number of selected vehicles (or

equivalently number of drivers) and to minimize the total travel distance of selected vehicles

(drivers) to serve all trips.

In general, the ridesharing problem is a generalization of the vehicle routing problem

2Google COVID-19 Community Mobility Reports, 2021-02. https://google.com/covid19/mobility
3Geotab Blog, 2021-02. https://geotab.com/blog/congestion-and-commercial-traffic
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(VRP) and Dial-A-Ride problem (DARP) [29], and thus, it is NP-hard. Mixed Integer Pro-

gramming (MIP) formulation combined with exact methods or heuristics to solve the MIP for-

mulation have been used to solve the ridesharing problem [4, 20, 22]. The MIP based approach

is time consuming and not practical for the ridesharing of large scale. Most previous works

use (meta)heuristics or study the simplified ridesharing for large instances [1, 23, 31, 33].

There are two types of optimization goals in ridesharing: operational objectives and quality-

related objectives [29]. The operational objectives are to optimize system-wide optimiza-

tion performances such as maximizing the number of matched/served trips and minimizing

the total travel distance/time of all vehicles. The quality-related objectives are to improve

the satisfactions of individuals (drivers/passengers), such as minimizing the waiting time of

each individual passenger and maximizing the cost saving of the drivers/passengers. This

is done in first-come first-serve manner for ridesharing service users and is usually achieved

by agent-based or decentralized approach by simulating the interaction between passenger

ride-requests and driver ride-services (e.g. [5, 13, 30]). The decentralized approach may be

good for providing service to users, but it lacks the ability to achieve operational objectives

which optimize system performance. The centralized approach, using MIP or heuristics, can

achieve system-wide optimization goals as a whole (approximately for large instances). A

number of variants and mathematical formulations of the ridesharing problem are derived

from DARP and a review on DARP can be found in [28]. Readers may refer to [2, 14, 29]

for literature surveys and reviews on the ridesharing problem.

Previous works mainly focus on empirical studies of the ridesharing problem. Recently, a

model for analyzing the relations between the computational complexity of the ridesharing

problem and its parameters was introduced by Gu. et al [16]; an algorithmic analysis for

the simplified ridesharing problem with parameters of source, destination, vehicle capacity,

detour distance limit and preferred paths only. It is shown in [16] that if one of the following

conditions is not satisfied then both minimizing the number of drivers and minimizing the

total travel distance of the drivers are NP-hard:

(1) All trips have the same destination or all trips have the same source.

(2) Detour is not allowed for every trip (zero detour condition).

(3) Each trip has a unique preferred path (fixed path condition).

When all of Conditions (1)-(3) are satisfied, the following exact algorithms are given in [17]:

O(M + l3) time dynamic programming algorithms for both minimization problems, where

M is the size of road map and l is the number of trips, and an O(M + l · log l) time exact

algorithm for minimizing the number of drivers.
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Kuteil and Rawitz [24] studied the maximum carpool matching problem (MCMP), which

is closely related to the ridesharing problem. An instance of MCMP consists of a directed

graphH(V,E), where the vertices of V represent the individuals and an arc (u, v) ∈ E denotes

v can serve u. Every v ∈ V is flexible to be a driver or passenger. The goal of MCMP is

to select a set of drivers S ⊆ V to serve all trips of V such that the number of passengers

is maximized; MCMP is NP-hard [19]. Approximation algorithms are proposed in [24], and

these algorithms can be modified into K+2
2

-approximation algorithms for minimizing the

number of drivers in the ridesharing problem, where K is the largest capacity of all vehicles.

In this paper, we extend the computational complexity analysis of the simplified rideshar-

ing problem to more generalized problems with three additional parameters: the number of

stops a driver willing to make to serve passengers, departure time and arrival time of each

trip. Two more conditions related to the three parameters are considered:

(4) Each driver is willing to stop as many times as its vehicle capacity to pick-up passengers.

(5) All trips have the same earliest departure time and same latest arrival time.

We call Condition (4) the stop constraint condition and Condition (5) the time constraint

condition. Our results in this paper are:

1. We prove that it is NP-hard to approximate within a constant factor for each problem

of minimizing the number of drivers and minimizing the total travel distance of drivers

if stop constraint or time constraint condition is not satisfied.

2. We further show that it is NP-hard to approximate within a constant factor for each

problem of minimizing the number of drivers and minimizing the total travel distance

of drivers if Condition (2) (zero detour) or Condition (3) (fixed path) is not satisfied.

3. We give two K+2
2

-approximation algorithms for minimizing the number of drivers when

the input instances satisfy Conditions (1-3) and (5), where K is the largest capacity of

all vehicles. For a ridesharing instance of a road network with size M and l trips, our

first algorithm, which is a modification of of an approximation algorithm (StarImprove)

for the MCMP problem in [24], runs in O(M + K · l3) time. Our second algorithm is

more practical and runs in O(M + l2) time.

Application of ridesharing In practice, our algorithms may apply to the following de-

scribed scenario: A ridesharing scenario in regular school commute may be represented by

an instance satisfying Conditions (1)-(3) and (5). In the morning, many students and staffs

go to the same university/college campus (Condition (1), same destination) around the same

time (Condition (5)). Each driver always wants to use a fixed path (usually the fastest route)
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from home to school (Condition (3)) and does not want to detour (Condition (2)) because

time constraints may be tight and traffic can be unpredictable during the peak hours. Then

in the afternoon, staffs and students leave from the same school (Condition (1), same source)

around the same time; from the similar reasons, drivers may want to use a fixed path from

school to home and do not want to detour. Depending on the time constraints, a driver may

want to only stop once or twice to pick-up passengers such that the driver’s travel duration

is not prolonged; on the other hand, if a driver wants to stop many times, Condition (4) is

satisfied. There are studies focus on ridesharing for university commute, such as [7, 10, 12].

The work commute scenario is similar to school commute, except the destinations may be

scattered around an office area. In this case and a more dynamic setting for ridesharing, one

can apply our algorithms by grouping users together who satisfy (or nearly satisfy) Conditions

(1-3) and (5). This grouping technique has been applied to solving the traveling salesman

problem with time windows problem (TSPTW) [6], which may be useful in minimizing the

total travel distance of drivers for the ridesharing problem.

Other studies have shown the possible potential of ridesharing involving autonomous ve-

hicles and (autonomous) taxis [4, 25]. It can further benefit the use of autonomous vehicles

by computing solution with minimum number of vehicles or minimum total travel distance

of vehicles. Another interesting application is multimodal transportation with ridesharing

(integrating public and private transportation). This area of research has gained some at-

traction recently (e.g. [21, 27, 35]). It may be possible to apply our algorithms to this area

to satisfy public transportation users demand.

The rest of the paper is organized as follows. We give in Section 2 the preliminaries of

the paper. We prove the inapproximability results for stop constraint condition and time

constraint condition in Sections 3 and 4, respectively. The inapproximability results for

Conditions (2) and (3) are given in Section 5. We modify an approximation algorithm for

the MCMP problem into an approximation algorithm for minimizing the number of drivers

in Section 6 and present a more practical approximation algorithm for the same minimization

problem in Section 7. The final section concludes the paper.

2 Preliminaries

A (undirected) graph G consists of a set V (G) of vertices and a set E(G) of edges, where

each edge {u, v} of E(G) is a (unordered) pair of vertices in V (G). A digraph H consists of

a set V (H) of vertices and a set E(H) of arcs, where each arc (u, v) of E(H) is an ordered

pair of vertices in V (H). A graph G (digraph H) is weighted if every edge of G (arc of H) is

assigned a real number as the edge length. A path between vertex v0 and vertex vk in graph

G is a sequence e1, .., ek of edges, where ei = {vi−1, vi} ∈ E(G) for 1 ≤ i ≤ k and vi 6= vj for
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i 6= j and 0 ≤ i, j ≤ k. A path from vertex v0 to vertex vk in a digraph H is defined similarly

with each ei = (vi−1, vi) an arc in H. The length of a path P is the sum of the lengths of

edges (arcs) in P . For simplicity, we express a road network by a weighted undirected graph

G(V,E) with non-negative edge length: V (G) is the set of locations in the network, an edge

{u, v} represents the road segment between u and v.

In the ridesharing problem, we assume that the individual of every trip can be assigned

as a driver or passenger. In addition to a vehicle and individual, each trip has a source, a

destination, a capacity of the vehicle, a set of preferred (optional) paths (e.g., shortest paths)

to reach the destination, a limit (optional) on the detour distance/time from the preferred

path to serve other individuals, a limit (optional) on the number of stops a driver wants to

make to pick-up passengers, an earliest departure time, and a latest arrival time. Each trip

in the ridesharing problem is expressed by an integer label i and specified by parameters

(si, ti, ni, di,Pi, δi, αi, βi), which are defined in Table 1.

Parameter Definition

si The source (start location) of i (a vertex in G)

ti The destination of i (a vertex in G)

ni The number of seats (capacity) of i available for passengers

di The detour distance limit i willing to make for offering services

Pi The set of preferred paths of i from si to ti in G

δi The maximum number of stops i willing to make to pick-up passengers

αi The earliest departure time of i

βi The latest arrival time of i

Table 1: Parameters for a trip i.

When the individual of trip i delivers (using i’s vehicle) the individual of a trip j, we

say trip i serves trip j and call i a driver and j a passenger. The serve relation between a

driver i and a passenger j is defined as follows. A trip i can serve i itself and can serve a

trip j 6= i if i and j can arrive at their destinations by time βi and βj respectively such that

j is a passenger of i, the detour of i is at most di, and the number of stops i has to make to

serve j is at most δi. When a trip i can serve another trip j, it means that i-j is a feasible

assignment of a driver-passenger pair. We extend this notion to a set σ(i) of passenger trips

that can be served by a driver i (i ∈ σ(i)). A driver i can serve all trips of σ(i) if the total

detour of i is at most di, the number of stops i have to make to pick-up σ(i) is at most δi,

and every j ∈ σ(i) arrives at tj before βj. At any specific time point, a trip i can serve at

most ni + 1 trips. If trip i serves some trips after serving some other trips (known as re-take

passengers in previous studies), trip i may serve more than ni + 1 trips. In this paper, we
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study the ridesharing problem in which no re-taking passenger is allowed. A serve relation

is transitive if i can serve j and j can serve k imply i can serve k. Let (G,R) be an instance

of the ridesharing problem, where G is a road network (weighted graph) and R = {1, .., l} is

a set of trips. (S, σ), where S ⊆ R is a set of trips assigned as drivers and σ is a mapping

S → 2R, is a partial solution to (G,R) if

• for each i ∈ S, i can serve σ(i),

• for each pair i, j ∈ S with i 6= j, σ(i) ∩ σ(j) = ∅, and

• σ(S) = ∪i∈Sσ(i) ⊆ R.

When σ(S) = R, (S, σ) is called a solution of (G,R). For a (partial) solution (S, σ) we

sometimes simply call S a (partial) solution when σ is clear from the context or not related

to the discussion.

We consider the problem of minimizing |S| (the number of drivers) and the problem

of minimizing the total travel distance of the drivers in S. To investigate the relations

between the computational complexity and problem parameters, Gu et al. [16] introduced

the simplified minimization (ridesharing) problems with parameters (si, ti, ni, di,Pi) only and

the following conditions:

(1) All trips have the same destination or all trips have the same source, that is, ti = D

for every i ∈ R or si = χ for every i ∈ R.

(2) Zero detour: each trip can only serve others on his/her preferred path, that is, di = 0

for every i ∈ R.

(3) Fixed path: Pi has a unique preferred path Pi.

It is shown in [16] that if any one of Conditions (1), (2) and (3) is not satisfied, both

minimization problems are NP-hard. Polynomial time exact algorithms are given in [17] for

the simplified minimization problems if all of Conditions (1-3) and transitive serve relation are

satisfied. In this paper, we study more generalized minimization problems with all parameters

in Table 1 considered. To analyze the computational complexity of the more generalized

minimization problems, we introduce two more conditions:

(4) The number of stops each driver is willing to make to pick-up passengers is at least its

capacity, that is, δi ≥ ni for every i ∈ R (stop constraint).

(5) All trips have the same earliest departure time and same latest arrival time, that is, for

every i ∈ R, αi = α and βi = β for some α < β (time constraint).

The polynomial-time exact algorithms in [17] can still apply to any ridesharing instance when

all of Conditions (1-5) and transitive serve relation are satisfied.
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3 Inapproximabilities for stop constraint condition

We first show the NP-hardness results for the stop constraint condition, that is, when Con-

ditions (1)-(3) and (5) are satisfied but Condition (4) is not. When Condition (1) is satisfied,

we assume all trips have the same destination (since it is symmetric to prove the case that all

trips have the same source). If all trips have distinct sources, one can solve both minimization

problems by using the polynomial-time exact algorithms in [17]: when Conditions (1-3) are

satisfied and each trip has a distinct source si, each trip is represented by a distinct vertex i

in the serve relation graph in [17]. Each time a driver i serves a trip j, i must stop at sj 6= si
to pick-up j. When Condition (4) is not satisfied (δi < ni), i can serve at most δi passengers.

Therefore, we can set the capacity ni to min{ni, δi} and apply the exact algorithms to solve

the minimization problems. In what follows, we assume trips have arbitrary sources (multiple

trips may have a same source).

3.1 Both minimization problems are NP-hard

We first prove both minimization problems are NP-hard. These proofs will provide a base

for proving the inapproximabilities for both minimization problems. The NP-hardness proofs

are a reduction from the 3-partition problem. The decision problem of 3-partition is that

given a set A = {a1, a2, ..., a3r} of 3r positive integers, where r ≥ 2,
∑3r

i=1 ai = rM and

M/4 < ai < M/2, whether A can be partitioned into r disjoint subsets A1, A2, ...., Ar such

that each subset has three elements of A and the sum of integers in each subset is M . Given

a 3-partition instance A = {a1, ..., a3r}, construct a ridesharing problem instance (G,RA) as

follows (also see Figure 1).

• G is a graph with V (G) = {D, u1, ..., u3r, v1, ..., vr} and E(G) having edges {ui, v1} for

1 ≤ i ≤ 3r, edges {vi, vi+1} for 1 ≤ i ≤ r − 1 and {vr, D}. Each edge {u, v} has

weight of 1, representing the travel distance from u to v. It takes r+1 units of distance

traveling from ui to D for 1 ≤ i ≤ 3r.

• RA = {1, ..., 3r + rM} has 3r + rM trips. Let α and β be valid constants representing

time.

– Each trip i, 1 ≤ i ≤ 3r, has source si = ui, destination ti = D,ni = ai, di = 0, δi =

1, αi = α and βi = β. Each trip i has a preferred path {ui, v1}, {v1, v2}, ..., {vr, D}
in G.

– Each trip i, 3r + 1 ≤ i ≤ 3r + rM , has source si = vj, j = d(i − 3r)/Me,
destination ti = D, ni = 0, di = 0, δi = 0, αi = α, βi = β and a unique preferred

path {vj, vj+1}, {vj+1, vj+2}, ..., {vr, D} in G.

8



Figure 1: Ridesharing instance based on a given 3-partition problem instance.

Lemma 3.1. Any solution for the instance (G,RA) has every trip i, 1 ≤ i ≤ 3r, as a driver

and total travel distance at least 3r · (r + 1).

Proof. Since Condition (2) is satisfied (detour is not allowed), every trip i, 1 ≤ i ≤ 3r,

must be a driver in any solution. A solution with exactly 3r drivers has total travel distance

3r · (r+ 1), and any solution with a trip i, 3r+ 1 ≤ i ≤ 3r+ rM , as a driver has total travel

distance greater than 3r · (r + 1).

Lemma 3.2. Minimizing the number of drivers in the ridesharing problem is NP-hard when

Conditions (1-3) and (5) are satisfied, but Condition (4) is not.

Proof. We prove the lemma by showing that an instance A = {a1, ..., a3r} of the 3-partition

problem has a solution if and only if the ridesharing problem instance (G,RA) has a solution

of 3r drivers.

Assume that instance A has a solution A1, ..., Ar where the sum of elements in each Aj is

M . For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, assign the three trips whose nj1 = aj1 , nj2 = aj2
and nj3 = aj3 as drivers to serve the M trips with sources at vertex vj. Hence, we have a

solution of 3r drivers for (G,RA).

Assume that (G,RA) has a solution of 3r drivers. By Lemma 3.1, every trip i, 1 ≤ i ≤ 3r,

is a driver in the solution. Then, each trip j for 3r + 1 ≤ j ≤ 3r + rM must be a passenger

in the solution, total of rM passengers. Since
∑

1≤i≤3r ai = rM , each driver i, 1 ≤ i ≤ 3r,

serves exactly ni = ai passengers. Since ai < M/2 for every ai ∈ A, at least three drivers

are required to serve the M passengers with sources at each vertex vj, 1 ≤ j ≤ 3r. Due to

δi = 1, each driver i, 1 ≤ i ≤ 3r, can only serve passengers with the same source. Therefore,

the solution of 3r drivers has exactly three drivers j1, j2, j3 to serve the M passengers with

sources at vertex vj, implying aj1 + aj2 + aj3 = M . Let Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, we get

a solution for the 3-partition instance.

The size of (G,RA) is polynomial in r. It takes a polynomial time to convert a solution

of (G,RA) to a solution of the 3-partition instance and vice versa.

9



Lemma 3.3. Minimizing the total travel distance of drivers in the ridesharing problem is

NP-hard when Conditions (1-3) and (5) are satisfied but Condition (4) is not.

Proof. Let dsum be the sum of travel distances of all trips i with 1 ≤ i ≤ 3r. Then the

total travel distances of drivers in any solution for (G,RA) is at least dsum = 3r(r + 1) by

Lemma 3.1. We show that an instance A = {a1, ..., a3r} of the 3-partition problem has a

solution if and only if instance (G,RA) has a solution with travel distance dsum.

Assume that the 3-partition instance has a solution. Then there is a solution of 3r drivers

for (G,RA) as shown in the proof of Lemma 3.2. The total travel distance of this solution is

dsum.

Assume that (G,RA) has a solution with total travel distance dsum. Trips i with 1 ≤ i ≤ 3r

must be drivers. From this, there is a solution for the 3-partition instance as shown in the

proof of Lemma 3.2.

3.2 Inapproximability results

Based on the results in Section 3.1, we extent our reduction to further show that it is NP-

hard to approximate both minimization problems within a constant factor if Condition (4) is

not satisfied. Let (G,RA) be the ridesharing problem instance constructed based on a given

3-partition instance A as described above for Lemma 3.2. We modify (G,RA) to get a new

ridesharing instance (G,R′) as follows. For every trip i, 1 ≤ i ≤ 3r, we multiply ni with rM ,

that is, ni = ai · rM , where r and M are given in instance A. There are now rM2 trips with

sources at vertex vj for 1 ≤ j ≤ r, and all such trips have the same destination, capacity,

detour, stop limit, earlier departure time, latest arrival time, and preferred path as before.

The size of (G,R′) is polynomial in r and M . Note that Lemma 3.1 holds for (G,R′) and∑3r
i=1 ni = rM

∑3r
i=1 ai = (rM)2.

Lemma 3.4. Let (G,R′) be a ridesharing problem instance constructed above from a 3-

partition problem instance A = {a1, . . . , a3r}. The 3-partition problem instance A has a

solution if and only if the ridesharing problem instance (G,R′) has a solution (σ, S) s.t.

3r ≤ |S| < 3r + rM , where S is the set of drivers.

Proof. Assume that instance A has a solution A1, . . . , Ar where the sum of elements in each Aj
is M . For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, we assign the three trips whose nj1 = aj1 · rM ,

nj2 = aj2 · rM and nj3 = aj3 · rM as drivers to serve the rM2 trips with sources at vertex vj.

Hence, we have a solution of 3r drivers for (G,R′).

Assume that (G,R′) has a solution with 3r ≤ |S| < 3r+ rM drivers. Let R′(1, 3r) be the

set of trips in R′ with labels from 1 to 3r. By Lemma 3.1, every trip i ∈ R′(1, 3r) is a driver

in S. Since ai < M/2 for every ai ∈ A, ni < rM ·M/2 for every trip i ∈ R′(1, 3r). From

10



this, it requires at least three drivers in R′(1, 3r) to serve the rM2 trips with sources at each

vertex vj, 1 ≤ j ≤ r. For every trip i ∈ R′(1, 3r), i can only serve passengers with the same

source due to δi = 1. There are two cases: (1) |S| = 3r and (2) 3r < |S| < 3r + rM .

(1) It follows from the proof of Lemma 3.2 that every three drivers j1, j2, j3 of the 3r drivers

serve exactly rM2 passengers with sources at vertex vj. Then similarly, let Aj = {aj1 , aj2 , aj3},
1 ≤ j ≤ r, we get a solution for the 3-partition problem instance.

(2) For every vertex vj, let Xj be the set of trips with source vj not served by drivers

in R′(1, 3r). Then 0 ≤ |Xj| < rM due to |S| < 3r + rM . For every trip i ∈ R′(1, 3r),

ni = ai · rM is a multiple of rM . Hence, the sum of capacity for any trips in R′(1, 3r) is

also a multiple of rM , and further, ni + ni′ = (ai + ai′) · rM < rM · (M − 1) for every

i, i′ ∈ R′(1, 3r) because ai < M/2 and ai′ < M/2. From these and |Xj| < rM , there are 3

drivers j1, j2, j3 ∈ R′(1, 3r) to serve trips with source vj and nj1 + nj2 + nj3 ≥ rM2. Because

nj1 + nj2 + nj3 ≥ rM2 for every 1 ≤ j ≤ r and
∑

1≤i≤3r ni = (rM)2, nj1 + nj2 + nj3 = rM2

for every j. Thus, we get a solution with Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, for the 3-partition

problem.

It takes a polynomial time to convert a solution of (G,R′) to a solution of the 3-partition

instance and vice versa.

Theorem 3.1. Let (G,R′) be the ridesharing instance stated above based on a 3-partition

instance. Approximating the minimum number of drivers for (G,R′) within a constant factor

is NP-hard. This implies that it is NP-hard to approximate the minimum number of drivers

within a constant factor for a ridesharing instance when Conditions (1-3) and (5) are satisfied

and Condition (4) is not.

Proof. Assume that there is a polynomial time c-approximation algorithm C for instance

(G,R′) for any constant c > 1. This means that C will output a solution (σC , SC) for (G,R′)

such that OPT (R′) ≤ |SC | ≤ c · OPT (R′), where OPT (R′) is the minimum number of

drivers for (G,R′). When the 3-partition instance is a “No” instance, the optimal value for

(G,R′) is OPT (R′) ≥ 3r + rM by Lemma 3.4. Hence, algorithm C must output a value

|SC | ≥ 3r + rM . When the 3-partition instance is a “Yes” instance, the optimal value for

(G,R′) is OPT (R′) = 3r. For any constant c > 1, taking M such that c < M/3 + 1. The

output |SC | from algorithm C on (G,R′) is 3r ≤ |SC | ≤ 3rc < 3r + rM for a 3-partition

“Yes” instance. Therefore, by running the c-approximation algorithm C on any ridesharing

instance (G,R′) and checking the output value |SC | of C, we can answer the 3-partition

problem in polynomial time, which contradicts that the 3-partition problem is NP-hard

unless P = NP .

Theorem 3.2. It is NP-hard to approximate the total travel distance of drivers within any

constant factor for a ridesharing instance when Conditions (1-3) and (5) are satisfied and

11



Condition (4) is not.

Proof. Let (G,R′) be the ridesharing problem instance used in Theorem 3.1, based on a given

3-partition instance A = {a1, ..., a3r}. Let d(S) be the sum of travel distances for a set S

of drivers. Let R′(1, 3r) be the set of trips in R′ with labels from 1 to 3r. By Lemma 3.1,

all of R′(1, 3r) must be drivers in any solution for (G,R′) and d(R′(1, 3r)) = 3r(r + 1).

Assume that there is a polynomial time c-approximation algorithm C for the ridesharing

problem (G,R′) for any constant c > 1. This means that C will output a solution (σC , SC)

for (G,R′) such that OPT (R′) ≤ d(SC) ≤ c · OPT (R′), where OPT (R′) is the minimum

total travel distance of drivers for (G,R′). By Lemma 3.4, when the 3-partition instance is a

“No” instance, the number of drivers in any solution for (G,R′) is at least 3r+ rM . All rM

trips (of the 3r + rM) can have source at vertex vr, so d(SC) ≥ 3r(r + 1) + rM . When the

3-partition instance is a “Yes” instance, the optimal value for (G,R′) is OPT (R′) = 3r(r+1).

For any constant c > 1, taking M and r such that c < M
3(r+1)

+ 1. The output d(SC) from

algorithm C on (G,R′) is 3r(r+ 1) ≤ d(SC) ≤ 3r(r+ 1)c < 3r(r+ 1) + rM for a 3-partition

“Yes” instance. Therefore, by running the c-approximation algorithm C on any ridesharing

instance (G,R′) and checking the output value d(SC) of C, we can answer the 3-partition

problem in polynomial time, which contradicts that the 3-partition problem is NP-hard unless

P = NP .

4 Inapproximabilities for time constraint condition

Assume that Conditions (1-4) are satisfied but Condition (5) is not, that is, trips can have

arbitrary departure time and arrival time. Recall that we assume all trips have the same

destination when Condition (1) is satisfied (the same reduction with simple modifications

can also be applied to all trips have the same source).

4.1 NP-hardness results

We first show that both minimization problems are NP-hard, and these proofs serve as part

of the inapproximability proofs. The NP-hardness proofs are a reduction from 3-partition

problem, which is similar to the one used in Lemma 3.2. Given a 3-partition minimization

problem instance, construct a ridesharing instance (G,RA) with G shown in Figure 1. The

only differences are the values of αi, βi and δi.

• For trips i, 1 ≤ i ≤ 3r, source si = ui, destination ti = D, ni = ai, di = 0, δi = ni,

αi = 0, βi = 2r. Each trip i has a preferred path {ui, v1}, {v1, v2}, ..., {vr, D} in G.
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• For trips i, 3r + 1 ≤ i ≤ 3r + rM , source si = vj, j = d(i − 3r)/Me, destina-

tion ti = D, ni = 0, di = 0, δi = 0. Each trip i has a unique preferred path

{vj, vj+1}, {vj+1, vj+2}, . . . , {vr, D} in G, αi = r and βi = 2r − j + 1, where j =

d(i− 3r)/Me.

Note that every trip i ∈ RA has the same travel distance from si to ti as previous construction

in Section 3. Since they have the same construction, Lemma 3.1 also holds for this ridesharing

instance (G,RA).

Lemma 4.1. In any solution for the instance (G,RA), all trips served by a driver i ∈ RA

(other than i itself), must have the same source vj, for some j ∈ [1, . . . , 3r].

Proof. By Lemma 3.1, every trip i, 1 ≤ i ≤ 3r, is a driver in any solution. Thus, only trips

with source vj, 1 ≤ j ≤ 3r, can be passengers. Let j be a trip with source vj. The travel

time from vj to D is r − j + 1. Since βj = 2r − j + 1, j must be picked-up no later than

time r. Otherwise, j cannot arrive at tj = D by time βj. From this and the fact that αj = r,

j must be picked-up at time r exactly. Suppose that driver i serves trip j. The travel time

from si to sj = vj is j ≤ r. i can arrive at D (after delivering j) no later than time 2r = βi.

Let j1 and j2 be two trips with sj1 = vj1 , sj2 = vj2 and j1 < j2. Then any trip i with

1 ≤ i ≤ 3r can serve only one of j1 and j2 due to the following reasons. Suppose i picks-up

j1 first. By the time i reaches vj2 after picking-up j1, it will pass time r, and from above, i

can no longer serve j2. Otherwise, j2 will not be arrive on time. Suppose i picks-up j2 first.

When i reaches vj1 by going back, it will also pass time r. Hence, i cannot serve j1 in this

case. Therefore, if i decides to serve a trip j with source vj, the only other trips i can serve

must also have source vj.

Lemma 4.1 actual implies that every driver i (1 ≤ i ≤ 3r) in any solution for (G,RA) will

only make at most one stop, effectively making δi = 1.

Lemma 4.2. Minimizing the number of drivers in the ridesharing problem is NP-hard when

Conditions (1-4) are satisfied but Condition (5) is not.

Proof. Assume that the 3-partition instance has a solution A1, ..., Ar where the sum of ele-

ments in each Aj is M . For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, we assign the three trips

whose nj1 = aj1 , nj2 = aj2 and nj3 = aj3 as drivers to serve the M trips with sources at vertex

vj. Hence, we have a solution of 3r drivers for (G,RA).

Assume that (G,RA) has a solution of 3r drivers. By Lemma 3.1, every trip i, 1 ≤ i ≤ 3r,

is a driver in the solution. Similarly, each driver i serves exactly ni = ai passengers, and

at least three drivers are required to serve the M passengers with sources at each vertex

vj, 1 ≤ j ≤ 3r. By Lemma 4.1, each driver i, 1 ≤ i ≤ 3r, can only serve passengers with
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the same source. Therefore, the solution of 3r drivers has exactly three drivers j1, j2, j3 to

serve the M passengers with sources at the vertex vj, implying aj1 + aj2 + aj3 = M . Let

Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ r, we get a solution for the 3-partition problem instance.

The size of (G,RA) is polynomial in r. It takes a polynomial time to convert a solution

of (G,RA) to a solution of the 3-partition instance and vice versa.

With a similar argument to that of Lemma 3.3, we have the following lemma.

Lemma 4.3. Minimizing the total travel distance of drivers in the ridesharing problem is

NP-hard when Conditions (1-4) are satisfied but Condition (5) is not.

4.2 Inapproximability results

It is NP-hard to approximate the minimum number of drivers and total travel distance

of drivers within a constant factor for the ridesharing problem when Conditions (1-4) are

satisfied but condition (5) is not. The proofs are identical to the inapproximability proof

of Theorem 3.1 and Theorem 3.2 respectively for each minimization problem. Let (G,RA)

be the ridesharing problem instance constructed based on a given 3-partition instance as

described in Section 4. Construct a ridesharing instance (G,R′) from (G,RA) as described

in Section 3.2. Then Lemma 3.4 and Lemma 4.1 can be applied to (G,R′). From this, the

analysis of Theorem 3.1 and Theorem 3.2 can be applied to (G,R′), and we have the following

theorems.

Theorem 4.1. It is NP-hard to approximate the minimum number of drivers within any

constant factor for a ridesharing instance satisfying Conditions (1-4) but not Condition (5).

Theorem 4.2. It is NP-hard to approximate the minimum total travel distance of drivers

within any constant factor for a ridesharing instance satisfying Conditions (1-4) but not

Condition (5).

5 Inapproximabilities for Conditions (2) and (3)

It is proved in [16] that the ridesharing minimization problems are NP-hard when all condi-

tions except Condition (2) or Condition (3) are satisfied. In this section, we show that for

each case, it is NP-hard to approximate both minimization problems within any constant

factor. The proof uses a similar method as described in Section 3.2.
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5.1 Inapproximability results for non-zero detour

Recall that the NP-hardness proof for this case is a reduction from the 3-partition problem

too [16]. For completeness, we show the construction of the slightly modified (G,RA) and

the inapproximability proof. Given a 3-partition instance A = {a1, ..., a3r}, the ridesharing

instance (G,RA) is constructed as follows (see Figure (2a)):

• G is a graph with V (G) = {I,D, u1, . . . , ur, v1, . . . , v3r} and E(G) having edges {ui, I}
of weight rM for 1 ≤ i ≤ r, edges {vi, I} of weight ai for 1 ≤ i ≤ 3r and edge {I,D}
of weight rM .

• RA = {1, ..., r+3rrM} has r+3rrM trips. Let α and β be valid constants representing

time.

– Each trip i, 1 ≤ i ≤ r, has source si = ui, destination ti = D,ni = 3rM, di =

2M, δi = ni, αi = α and βi = β. Each trip i has a preferred path {ui, I}, {I,D}
in G.

– Each trip i, r + 1 ≤ i ≤ r + 3rrM , has source si = vj, j = d(i − r)/rMe,
destination ti = D, ni = 0, di = 0, δi = 0, αi = α, βi = β and a unique preferred

path {vj, I}, {I,D} in G.

Figure 2: Ridesharing instance based on a given 3-partition problem instance: (a) Conditions

(1) and (3-5) are satisfied but not Condition (2); (b) Conditions (1-2) and (4-5) are satisfied

but not Condition (3).

First we re-state Lemma 3.1 in [16] as the following lemma.
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Lemma 5.1. Any solution for the instance (G,RA) has every trip i with 1 ≤ i ≤ r as a

driver and total travel distance at least 2rM(r + 1).

Proof. Any solution for the instance must have every trip i with 1 ≤ i ≤ r as a driver

because of the detour distance limit and the travel distance between the trips 1 ≤ i ≤ r.

Let S = {i | 1 ≤ i ≤ r} be the set of driver. The total travel distance of S is at least

2rM . For each trip j with source sj = vk (1 ≤ k ≤ 3r), the total travel distance of drivers

in S and trip j is at least 2rrM + 2ak if j is served by a driver in S, otherwise is at least

2rrM + ak + rM . Since ak < rM , the minimum total travel distance of any solution is to

have every j with source at vk, 1 ≤ k ≤ 3r, as a passenger served by S with total distance

2rrM +
∑

1≤k≤3r 2ak = 2rrM + 2rM = 2rM(r + 1).

Lemma 5.2. Let (G,RA) be a ridesharing problem instance constructed above from a 3-

partition problem instance A = {a1, . . . , a3r}. The 3-partition problem instance A has a

solution if and only if the ridesharing problem instance (G,RA) has a solution (σ, S) s.t.

r ≤ |S| < r + rM , where S is the set of drivers.

Proof. Assume that instance A has a solution A1, . . . , Ar where the sum of elements in each

Ai is M . For each Ai = {ai1 , ai2 , ai3}, 1 ≤ i ≤ r, we say trips with sources at vertex vk
(1 ≤ k ≤ 3r) correspond to Ai if the edge {vk, I} has weight ai1 , ai2 , or ai3 . By the definition

of 3-partition instance, one can uniquely identify the corresponding trips of Ai. Then for

each Ai, there are exactly 3rM corresponding trips with sources at three different vertices

vk. Recall that every trip i with source at ui has detour distance limit di = 2M and capacity

ni = 3rM . We assign a trip i with source at ui as a driver to serve the corresponding trips of

Ai for 1 ≤ i ≤ r. It requires exactly 2M detour distance for i to serve the 3rM corresponding

trips of Ai. Hence, we have a solution of r drivers for (G,RA).

Assume that (G,RA) has a solution with r ≤ |S| < r+ rM drivers. Let R(1, r) be the set

of trips in RA with labels from 1 to r. By Lemma 5.1, every trip i ∈ R(1, r) is a driver in S

(trips with source at ui are drivers). For every vertex vk, let Xk be the set of trips with source

at vk not served by drivers in R(1, r). Then 0 ≤ | ∪1≤k≤3r Xk| < rM due to |S| < r + rM .

From this and there are rM trips with source at each vertex vk, every driver in R(1, r) must

detour to some vertex vk (1 ≤ k ≤ 3r) to pick-up some passengers. In other words, every

vertex vk for 1 ≤ k ≤ 3r must have been visited by at least one driver in R(1, r). Assume

some driver i ∈ R(1, r) has detour distance less than 2M (i detours to at least 1 vertex and at

most 3 vertices because M/4 < ak < M/2 for 1 ≤ k ≤ 3r). Then from the fact that the sum

of elements in A is rM (
∑

1≤k≤3r ak = rM), some driver i′ must has detour distance greater

than 2M so that all vertices can be visited. This is a contradiction to di′ = 2M . Hence, the

detour distance of every driver in R(1, r) is exactly 2M . For each driver i, 1 ≤ i ≤ r, let Ai
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be the subset of the three integers of A corresponding to the detour distance traveled by i

(one way). Then A1, . . . , Ar is a solution for the 3-partition problem instance.

It takes a polynomial time to convert a solution of (G,RA) to a solution of the 3-partition

instance and vice versa.

With Lemma 5.2, the analysis of Theorem 3.1 can be applied to (G,RA), and we have

the following theorem.

Theorem 5.1. It is NP-hard to approximate the minimum number of drivers within any con-

stant factor for a ridesharing instance satisfying Conditions (1) and (3-5) but not Condition

(2).

Theorem 5.2. It is NP-hard to approximate the minimum total travel distance of drivers

within any constant factor for a ridesharing instance satisfying Conditions (1) and (3-5) but

not Condition (2).

Proof. With a similar argument to that of Theorem 3.2, we have the theorem.

5.2 Inapproximability results for no fixed preferred path

The NP-hardness proof for this case is also a reduction from the 3-partition problem [16].

Given a 3-partition instance A = {a1, ..., a3r}, the ridesharing instance (G,RA) is constructed

as follows (see Figure (2b)):

• G is a graph with V (G) = {D, u1, ..., u3r, v1, ..., vr} and E(G) having edges {ui, I} for

1 ≤ i ≤ 3r, edges {I, vi} for 1 ≤ i ≤ r and edges {vi, D} for 1 ≤ i ≤ r. Every edge in

E(G) has weight of 1.

• RA = {1, ..., 3r + (rM)2} has 3r + (rM)2 trips. Let α and β be valid constants repre-

senting time.

– Each trip i, 1 ≤ i ≤ 3r, has source si = ui, destination ti = D,ni = ai ·
rM, di = 0, δi = ni, αi = α and βi = β. Each trip i has r preferred paths

{ui, I}, {I, vi}, {vi, D} in G, 1 ≤ i ≤ r.

– Each trip i, 3r+1 ≤ i ≤ (rM)2, has source si = vj, j = d(i−3r)/rM2e, destination

ti = D, ni = 0, di = 0, δi = 0, αi = α, βi = β and a unique preferred path {vj, D}
in G.

Lemma 3.2 in [16] also holds for the instance (G,RA), which is stated as the following lemma.
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Lemma 5.3. Any solution for the instance (G,RA) has every trip i with 1 ≤ i ≤ r as a

driver and total travel distance at least 9r.

Lemma 5.4. Let (G,RA) be a ridesharing problem instance constructed above from a 3-

partition problem instance A = {a1, . . . , a3r}. The 3-partition problem instance A has a

solution if and only if the ridesharing problem instance (G,RA) has a solution (σ, S) s.t.

3r ≤ |S| < 3r + rM , where S is the set of drivers.

Proof. With Lemma 5.3 and Theorem 3.3 in [16], a similar analysis of Lemma 3.4 can be

applied to this lemma.

From Lemma 5.4, the analysis of Theorem 3.1 and Theorem 3.2 can be applied to (G,RA),

and we have the following theorems.

Theorem 5.3. It is NP-hard to approximate the minimum number of drivers within any

constant factor for a ridesharing instance satisfying Conditions (1-2) and (3-4) but not Con-

dition (5).

Theorem 5.4. It is NP-hard to approximate the minimum total travel distance of drivers

within any constant factor for a ridesharing instance satisfying Conditions (1-2) and (3-4)

but not Condition (5).

6 Approximation algorithms based on MCMP

For short, we call the ridesharing problem with all conditions satisfied except Condition (4)

as ridesharing problem with stop constraint. Let K = maxi∈R ni be the largest capacity

of all vehicles. Kutiel and Rawitz [24] proposed two 1
2
-approximation algorithms for the

maximum carpool matching problem. We show in this section that the algorithms in [24]

can be modified to K+2
2

-approximation algorithms for minimizing the number of drivers in

the ridesharing problem with stop constraint. Then in the next section, we propose a more

practical K+2
2

-approximation algorithm for the minimization problem.

An instance of the maximum carpool matching problem (MCMP) consists of a directed

graph H(V,E), a capacity function c : V → N, and a weight function w : E → R+, where

the vertices of V represent the individuals and an arc (u, v) ∈ E implies v can serve u. We

are only interested in the unweighted case, that is, w(u, v) = 1 for every (u, v) ∈ E. Every

v ∈ V can be assigned as a driver or passenger. The goal of MCMP is to find a set of drivers

S ⊆ V to serve all V such that the number of passengers is maximized. A solution to MCMP

is a set S of vertex-disjoint stars in H. Let Sv be a star in S rooted at center vertex v, and

leaves of Sv is denoted by Pv = V (Sv) \ {v}. For each star Sv ∈ S, vertex v has out-degree
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of 0 and every leave in Pv has only one out-edge towards v. The center vertex of each star

Sv is assigned as a driver and the leaves are assigned as passengers. The set of edges in S is

called a matching M . An edge in M is called a matched edge. Notice that |M | equals to the

number of passengers. For an arc e = (u, v) in H, vertices u and v are said to be incident

to e. For a matching M and a set V ′ ⊆ V of vertices, let M(V ′) be the set of edges in M

incident to V ′. The in-neighbors of a vertex v is defined as N in(v) = {u | (u, v) ∈ E}, and

the set of arcs entering v is defined as in-arcs Ein(v) = {(u, v) | (u, v) ∈ E}. Table 2 lists

the basic notation and definition for this section.

Notation Definition

S A set of vertex-disjoint stars in H (solution to MCMP)

Sv and Pv A Star Sv rooted at center vertex v

Pv Pv = V (Sv) \ {v}, the set of leaves of star Sv
c(v) Capacity of vertex v (equivalent to nv in Table 1)

Matching M The set of edges in S, namely E(S)

M(V ′) The set of edges in M incident to a set V ′ of vertices

N in(v) The set of in-neighbors of v, N in(v) = {u | (u, v) ∈ E}
Ein(v) The set of arcs entering v, in-arcs Ein(v) = {(u, v) | (u, v) ∈ E}
δPv The number of stops required for v to pick-up Pv

Table 2: Common notation and definition used in this section.

Two approximation algorithms (StarImprove and EdgeSwap) are presented in [24]; both

can achieve 1
2
-approximation ratio, that is, the number of passengers found by the algorithm

is at least half of that for the optimal solution.

EdgeSwap The EdgeSwap algorithm requires the input instance to have a bounded degree

graph (or the largest capacity K is bounded by a constant) to have a polynomial running

time. The idea of EdgeSwap is to swap i matched edges in M with i + 1 edges in E \M
for 1 ≤ i ≤ k and k is a constant integer. The running time of EdgeSwap is in the order

of O(|E|2k+1). EdgeSwap can directly apply to the minimization problem to achieve K+2
2

-

approximation ratio in O(l2K) time, which may not be practical even if K is a small constant.

StarImprove Let (H(V,E), c, w) be an instance of MCMP. Let S be the current set of

stars found by StarImprove and M be the set of matched edges. The idea of the StarImprove

algorithm is to iteratively check in a for-loop for every vertex v ∈ V (G):

• check if there exists a star Sv with E(Sv) ∩M = ∅ such that the resulting set of stars
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S \M(V (Sv)) ∪ Sv gives a larger matching.

Such a star Sv is called an improvement and |Pv| ≤ c(v). Given a ridesharing instance

(G,R) satisfying all conditions, except Condition (4). The StarImprove algorithm cannot

apply to (G,R) directly because the algorithm assumes a driver v can serve any combination

of passengers corresponding to vertices adjacent to v up to c(v). This is not the case for

(G,R) in general. For example, suppose v can serve u1 and u2 with nv = 2 and δv = 1.

The StarImprove assigns v as a driver to serve both u1 and u2. However, if u1 and u2 have

different sources (sv 6= su1 6= su2), this assignment is not valid for (G,R). Hence, we need

to modify StarImprove for computing a star. For a vertex v and star Sv, let N in
-M(v) = {i |

i ∈ N in \ V (M)} and δPv be the number of stops required for v to pick-up Pv. Suppose the

in-neighbors N in
-M(v) are partitioned into g1(v), . . . , gm(v) groups such that trips with same

source are grouped together. When stop constraint is considered, finding a star Sv with

maximum |Pv| is similar to solving a fractional knapsack instance using a greedy approach as

shown in Figure 3. The idea is, in each iteration, to select the largest group of in-neighbors

N in
-M(v) until the capacity c(v) is reached.

Algorithm 1 Greedy algorithm

1: Pv = ∅; c = c(v); δPv = 0;

2: if ∃ a group gj(v) s.t. su = sv for any u ∈ gj(v) then

3: Select gi(v) = max1≤i≤m:su=sv ,u∈gi(v){|gi(v) \ Pv|};
4: Let g′j(v) ⊆ gj(v) be a maximum subset of gj(v) such that |g′j(v)| ≤ c.
5: Pv = Pv ∪ g′j(v); c = c− |g′j(v)|;
6: end if

7: while c > 0 and δPv < δv do

8: Select gi(v) = max1≤i≤m{|gi(v) \ Pv|};
9: Let g′i(v) ⊆ gi(v) be a maximum subset of gi(v) such that |g′i(v)| ≤ c.

10: Pv = Pv ∪ g′i(v); c = c− |g′i(v)|; δPv = δPv + 1;

11: end while

12: return the star Sv induced by Pv ∪ {v};

Figure 3: Greedy algorithm for computing Sv.

Lemma 6.1. Let v be the trip being processed and Sv be the star found by Algorithm 1 w.r.t.

current matching M . Then |Pv| ≥ |P ′v| for any star S ′v s.t. P ′v ∩M = ∅.

Proof. Assume for contradiction, |P ′v| > |Pv| for some star S ′v s.t. P ′v ∩ M = ∅. Since

|P ′v| > |Pv|, c(v) > |Pv|. For any trip u ∈ N in
-M(v), let giu(v) be the group s.t. u ∈ giu(v). Let

u ∈ P ′v \ Pv. Note that su 6= sv; otherwise, u would have been included in Pv by the greedy
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algorithm, and hence, δv > 0. From c(v) > |Pv| and δv > 0, the greedy algorithm must

have executed the while-loop and checked all the groups in decreasing order of their size,

and δPv = δv at the end of the while-loop. Because c(v) > |Pv|, |Pv ∩ giw(v)| = |giw(v)| ≥
|P ′v ∩ giw(v)| for any w ∈ P ′v ∩ Pv. Since groups are checked in decreasing order of their size,

|Pv ∩ gi(v)| ≥ |P ′v ∩ giu(v)| for every group gi(v) and every u ∈ P ′v \Pv. Recall that δPv = δv.

Hence, |Pv| ≥ |P ′v|, which is a contradiction.

Definition 6.1. A star Sv rooted at v is an improvement with respect to matching M if

|Pv| ≤ c(v), δPv ≤ δv and |Sv| −
∑

(u,v)∈E(Sv) |M(u)| > |M(v)|.

Definition 6.1 is equivalent to the original definition in [24], except the former is for the

unweighted case and stop constraint. When an improvement is found, the current matching

M is increased by exactly |Sv| −
∑

(u,v)∈E(Sv) |M(u)| edges. For a vertex v and a subset

S ⊆ Ein(v), let N in
S (v) = {u | (u, v) ∈ S}.

Lemma 6.2. Let M be the current matching and v be a vertex with no improvement. Let

Sv ⊆ Ein(v) s.t. |Sv| ≤ c(v) and δPv ≤ δv, then |Sv| ≤ |M(v)| + |M(N in
Sv

(v))|. Further, if

the star Sv found by Algorithm 1 w.r.t. M is not an improvement, then no other S ′v is an

improvement.

Proof. When no improvement exists for a vertex v, we get |Sv| − |M(N in
Sv

(v))| = |Sv| −∑
(u,v)∈Sv

|M(u)| ≤ |M(v)| by Definition 6.1.

To maximize |Sv|, we need to maximize |Sv| −
∑

(u,v)∈Sv
|M(u)|, which can be done by

selecting only in-neighbors of v that are not in matching M . This is because for any (u, v) ∈
Sv s.t. u is incident to a matched edge, |M(u)| ≥ 1. In other words, including such a

vertex u cannot increase |Sv| −
∑

(u,v)∈Sv
|M(u)|. Algorithm 1 considers only in-neighbors

N in
-M(v) = {i | i ∈ N in \ V (M)}. By Lemma 6.1, |Pv| is maximized among all stars rooted at

v w.r.t. M . Hence, lemma holds.

Lemma 6.2 is equivalent to Lemma 5 of [24], except the former is for the unweighted case

and stop constraint. By Lemma 6.2 and the same argument of Lemma 6 in [24], we have the

following lemma.

Lemma 6.3. The modified StarImprove algorithm computes a solution to an instance of

ridesharing problem with stop constraint with 1
2
-approximation.

Theorem 6.1. Let (G,R) be a ridesharing instance satisfying all conditions, except condition

(4). Let |S∗| be the minimum number of drivers for (G,R), l = |R| and K = maxi∈R ni.

Then,
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• The EdgeSwap algorithm computes a solution (σ, S) for (G,R) s.t. |S∗| ≤ |S| ≤ K+2
2
|S∗|

with running time O(M + l2K).

• The modified StarImprove algorithm computes a solution (σ, S) for (G,R) s.t. |S∗| ≤
|S| ≤ K+2

2
|S∗| with running time O(M + K · l3), where M is the size of a ridesharing

instance which contains a road network and l trips.

Proof. First, we need to construct a directed graph HR to represent the serve relation of the

trips in R as described in [17], which takes O(M) time. Then reverse the direction of all arcs

in HR, and this gives an instance can be solved by the EdgeSwap and modified StarImprove

algorithms. Then, the first bullet point of the Lemma is due to the EdgeSwap paragraph

stated above. The rest of the proof is for the second bullet point.

By Lemma 6.3, the modified StarImprove algorithm finds a solution to (G,R) with at

least (l− |S∗|)/2 passengers, and hence, at most |S| ≤ l− (l− |S∗|)/2 = (l+ |S∗|)/2 drivers.

There are l−|S∗| passengers in the optimal solution, implying |S∗| ≥ (l−|S∗|)/K = l/(K+1),

so l ≤ (K + 1)|S∗|. Therefore,

|S| ≤ (l + |S∗|)/2 ≤ ((K + 1)|S∗|+ |S∗|)/2 = (K + 2)|S∗|/2

The original StarImprove algorithm has a for-loop to check each vertex v to see if an im-

provement can be found, that is, it takes O(l) time to check all in-neighbors of v to see if a

star Sv that can increase |M | exists, where M is the current matching. In total, the for-loop

takes O(l2) time. Then for the modified StarImprove, it takes O(K · l2) time; O(K · l) time

for computing Sv if it exists. After an improvement is made each time, StarImprove scans

every vertex again to check for another improvement until no improvement can be found,

and this takes O(l) time due to at most O(l) improvements can be made for the unweighted

case. Thus, in total, the modified StarImprove has a running time of O(M +K · l3).

7 A more practical new approximation algorithm

In this section, we present our new approximation algorithm for the ridesharing problem with

stop constraint; our algorithm has a better running time than the approximation algorithms

based on MCMP. For our proposed algorithm, we assume the serve relation is transitive, that

is, trip i can serve trip j and j can serve trip k imply i can serve k. In general, if each trip has

a unique preferred path and trip i can serve trip j implies j’s preferred path is a subpath of

i’s preferred path, then the serve relation is transitive. For the scenarios we described in the

paragraph Application of ridesharing in Section 1, each driver always wants to use a unique

preferred path P . In most cases, such a path P is a shortest path. For school commute, the
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length of P is usually not too long. There is a high chance that the shortest path of any two

points within P is a subpath of P . In practice, drivers may not even specify a preferred path,

so a ridesharing instance satisfying the transitive serve relation may consist of trips with

the preferred paths computed by a coordinator, or the road network has a unique shortest

path between every pair of nodes and each trip uses the shortest path from the source to

destination as the preferred path.

7.1 New approximation algorithm

Given a ridesharing instance (G,R), we construct a directed meta graph Γ(V,E) to express

the serve relation, where V (Γ) represents the start locations of all trips in (G,R). Each node

µ of V (Γ) contains all trips with the same start location µ. There is an arc (µ, ν) in E(Γ)

if a trip in µ can serve a trip in ν. Since Conditions (1-3) and (5) are satisfied, if one trip

in µ can serve a trip in ν, any trip in µ can serve any trip in ν. We say node µ can serve

node ν. An arc (µ, ν) in Γ is called a short cut if after removing (µ, ν) from Γ, there is a

path from µ to ν in Γ. We simplify Γ by removing all short cuts from Γ. The graph Γ may

contain a number of connected components. However, a trip in a node µ from one component

cannot serve a trip in ν from another component and vice versa. Hence, the solution for a

component is independent from another component in Γ. In what follows, we assume Γ is

a single connected component and use Γ for the simplified meta graph. Notice that Γ is an

inverse tree and for every pair of nodes µ and ν in Γ, if there is a path from µ to ν then

µ can serve ν. We label the nodes of Γ as V (Γ) = {µp, µp−1, ..., µ1}, where p = |V (Γ)|, in

such a way that for every arc (µb, µa) of Γ, b > a, and we say µb has a larger label than µa.

The labeling is done by the procedure in [17] (see Figure 4). Figure 5 shows an example of

a graph Γ(V,E). Each node in Γ without an incoming arc is called an origin, and µ1 is the

unique sink. For a node µ in V (Γ), the set of trips contained in mode µ is denoted by R(µ).

For a set U of nodes in V (Γ), R(U) =
⋃
µ∈U R(µ). Similarly, given a set S of drivers, we

denote the set of drivers in the nodes of U by S(U) and the set of drivers in a node µ by

S(µ). For a trip i ∈ R, the node that contains i is denoted by node(i), that is, if i ∈ R(µ)

then node(i) = µ. Table 3 contains the basic notation and definition for this section.

We divide all trips of R into two sets W and X as follows:

W = {i ∈ R | ni = 0} ∪ {i ∈ R(µ) | δi = 0 and |R(µ) = 1| for every node µ ∈ V (Γ)} and

X = R \W.

For a node µ in Γ, let X(µ) = X ∩ R(µ) and W (µ) = W ∩ R(µ). Our algorithm tries to

minimize the number of drivers that only serve itself. There are three phases in the algorithm.

In Phase-I, it serves all trips of W and tries to minimize the number of trips in W that are
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Procedure Label-Inverse-Tree

Input: An inverse tree Γ of l trips and p nodes.

Output: Distinct integer labels µp, . . . , µ1 for nodes in Γ.

begin

let ST be a stack and push the sink of Γ into ST;

i := p and mark every arc in Γ un-visited;

while ST6= ∅ do
let µ be the node at the top of ST;

if there is an arc (ν, µ) in Γ un-visited then

push ν into ST and mark (ν, µ) visited;

else

remove µ from ST; assign µ integer label µi; i := i− 1;

endif

endwhile

end.

Figure 4: Procedure for assigning integer labels to nodes in Γ [17].

Figure 5: (a) A set R of 10 trips with same destination D in the road network graph G. (b)

The directed meta graph expressing the serve relation of these trips with shortcuts in dashed

arcs. (c) The simplified meta graph, which is an inverse tree.
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Notation Definition

Γ(V,E) and p A directed graph expressing the serve relation and p = |V (Γ)|
µ is an ancestor of ν If ∃ a nonempty path from µ to ν in Γ (ν is a descendant of µ)

Aµ and A∗µ Set of ancestors of µ and A∗µ = Aµ ∪ {µ} respectively

Dµ and D∗µ Set of descendants of µ and D∗µ = Dµ ∪ {µ} respectively

R(µ) and R(U) Set of trips in a node µ and in a set U of nodes respectively

S(µ) and S(U) Set of drivers in a node µ and in nodes U respectively

node(i) The node that contains trip i (if i ∈ R(µ) then node(i) = µ)

free(i) The remaining seats (capacity) of i w.r.t. current solution (S, σ)

stop(i) The number of stops i has to made to serve all trips assigned to i

Table 3: Basic notation and definition used in this section.

assigned as drivers since each trip of W can serve only itself. Let Z be the set of unserved

trips after Phase-I such that for every i ∈ Z, δi = 0. In Phase-II, it serves all trips of Z

and tries to minimize the number of trips in Z to be assigned as drivers, each only serves

itself. In Phase III, it serves all remaining trips. Let (S, σ) be the current partial solution

and i ∈ R be a driver. Denoted by free(i) = ni − |σ(i)|+ 1 is the remaining seats (capacity)

of i with respect to solution (S, σ). Denoted by stop(i) is the number of stops i has to

made in order to serve all trips in σ(i) w.r.t. (S, σ). For the initial solution (S, σ) = (∅, ∅),
free(i) = ni and stop(i) = 0 for all i ∈ R. For a driver i and node µ, we define R(i, µ, S)

as the set of min{free(i), |R(µ) \ σ(S)|} trips in R(µ) \ σ(S) and W (i, µ, S) as the set of

min{free(i), |W (µ) \ σ(S)|} trips in W (µ) \ σ(S), and similarly for Z(i, µ, S). The three

phases of the approximation algorithm (Algorithm 2) are described in following, and the

pseudo code is given in Figure 6.

(Phase-I) In this phase, the algorithm assigns a set of drivers to serve all trips of W , and it

ends once all trips of W are served. Let Γ(W ) = {µ ∈ V (Γ) | W (µ) \ σ(S) 6= ∅}, and in each

iteration, a node of Γ(W ) is processed. In each iteration, the node µ = argmaxµ∈Γ(W )|W (µ)\
σ(S)| is selected and a subset of trips in W (µ) \ σ(S) is served by a driver as follows:

• Let X̂1 = {i ∈ S(Aµ) | free(i) > 0 ∧ stop(i) < δi} and X̄ = {i ∈ X ∩ R(A∗µ) \ σ(S) |
stop(i) < δi ∨ i ∈ R(µ)}. The algorithm finds and assigns a trip x as a driver to serve

W (x, µ, S) such that x = argminx∈X̂1∪X̄ : nx≥|W (µ)\σ(S)|δx − stop(x).

– If such a trip x does not exist, it means that nx < |W (µ)\σ(S)| for every x ∈ X̂1∪X̄
assuming X̂1 ∪ X̄ 6= ∅. Then, x = argmaxx∈X̂1∪X̄ free(x) is assigned as a driver

to serve W (x, µ, S). If there is more than one x with same free(x), the trip with

smallest δx − stop(x) is selected.
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• When X̂1 ∪ X̄ = ∅, assign every w ∈ W (µ) \ σ(S) as a driver to serve itself.

(Phase-II) In the second phase, all trips of Z = {i ∈ R \ σ(S) | δi = 0} are served. Let

Γ(Z) = {µ ∈ Γ | Z(µ) = (Z∩R(µ)) 6= ∅}. Each node µ of Γ(Z) is processed in the decreasing

order of their node labels.

• If |Z(µ)| ≥ 2, trip x = argmaxx∈Z(µ)nx is assigned as a driver and serves Z(x, µ, S)

consists of trips with smallest capacity among trips in Z(µ) \ σ(S).

• This repeats until |Z(µ)| ≤ 1. Then next node in Γ(Z) is processed.

After all nodes of Γ(Z) are processed, each non-empty node µ of Γ(Z) is processed again;

note that every µ contains exactly one z ∈ Z(µ) now, that is, |Z(µ)| = 1.

• A driver x ∈ X̂2 = {i ∈ S(A∗µ) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ R(µ))} with largest

free(x) is selected to serve z = Z(µ) if X̂2 6= ∅.

• If X̂2 = ∅, a trip x ∈ X̄ = {i ∈ X ∩R(A∗µ) \σ(S) | stop(i) < δi ∨ i ∈ R(µ)} with largest

δx is selected to serve z = Z(µ).

(Phase-III) To serve all remaining trips, the algorithm processes each node of Γ in decreasing

order of node labels from µp to µ1. Let µj be the node being processed by the algorithm.

Suppose there are trips in R(µj) that have not be served, that is, R(µj) * σ(S).

• A driver x ∈ X̂2 = {i ∈ S(A∗µj) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ R(µj))} with largest

free(x) is selected if X̂2 6= ∅.

• If X̂2 = ∅, a trip x = argmaxx∈X(µj)\σ(S)nx is assigned as a driver. If the largest nx is

not unique, the trip with the smallest δx is selected.

• In either case, x is assigned to serve R(x, µj, S). This repeats until all of R(µj) are

served. Then, next node µj−1 is processed.

7.2 Analysis of new approximation algorithm

A driver in a solution is called a solo driver if it serves only itself. Algorithm 2 tries to

minimize the number of solo drivers. Recall that W is the set of trips, each of which can

serve only itself. The algorithm, in Phase-I, computes a partial solution to serve all trips of

W and tries to assign as few trips of W to be drivers as possible. In Phase-II, the set Z of

unserved trips after Phase-I (every i ∈ Z has δi = 0) is served. The rationale to serve such

set of trips is that many trips of Z can become solo drivers if all trips of R(node(i)) \ {i}
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Algorithm 2 New approximation algorithm

Input: A ridesharing instance (G,R) and the meta graph Γ (inverse tree) for (G,R).

Output: A solution (S, σ) for (G,R) with K+2
2 -approximation ratio.

1: (S, σ) = (∅, ∅). Let Γ(W ) = {µ ∈ V (Γ) |W (µ) \ σ(S) 6= ∅}.
2: while Γ(W ) 6= ∅ do /* Beginning of Phase-I */

3: Compute µ = argmaxµ∈Γ(W )|W (µ)\σ(S)|. Let X̂1 = {i ∈ S(Aµ) | free(i) > 0∧ stop(i) < δi}
4: and X̄ = {i ∈ X ∩R(A∗µ) \ σ(S) | stop(i) < δi ∨ i ∈ R(µ)}.
5: if X̂1 ∪ X̄ 6= ∅ then
6: Compute x = argminx∈X̂1∪X̄ : nx≥|W (µ)\σ(S)|δx − stop(x).

7: if x == ∅ then x = argmaxx∈X̂1∪X̄ free(x) with the smallest δx − stop(x).

8: if x /∈ S then S = S ∪ {x}; σ(x) = {x};
9: σ(x) = σ(x) ∪W (x, µ, S); update free(x) and stop(x);

10: else

11: for each w ∈W (µ) \ σ(S), S = S ∪ {w}, σ(w) = {w}; update free(w);

12: end if

13: end while /* End of Phase-I. Below is Phase-II */

14: Let Z = {i ∈ R \ σ(S) | δi = 0} and Γ(Z) be the set of nodes containing Z.

15: for each node µ ∈ Γ(Z) in decreasing order of the node labels do

16: while |Z(µ)| ≥ 2 do

17: Compute x = argmaxx∈Z(µ)nx. S = S∪{x}; σ(x) = {x}; σ(x) = σ(x)∪Z(x, µ, S) where

18: Z(x, µ, S) consists of trips with smallest capacity; update free(x) and stop(x); update Z.

19: end while

20: end for

21: for each node µ ∈ Γ(Z) in decreasing order of node labels do /* implying |Z(µ)| = 1 */

22: Let X̂2 = {i ∈ S(A∗µ) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ R(µ))}.
23: if X̂2 6= ∅ then Compute x = argmaxx∈X̂2

free(x).

24: else Let X̄ = {i ∈ X ∩R(A∗µ) \σ(S) | stop(i) < δi ∨ i ∈ R(µ)}. Compute x = argmaxx∈X̄δx.

25: if x /∈ S then S = S ∪ {x}; σ(x) = {x};
26: σ(x) = σ(x) ∪ Z(x, µ, S); update free(x) and stop(x);

27: end for /* End of Phase-II. Below is Phase-III */

28: for each node µ from µp to µ1 do

29: while R(µ) * σ(S) do

30: Let X̂2 = {i ∈ S(A∗µ) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ R(µ))}.
31: if X̂2 6= ∅ then Compute x = argmaxx∈X̂2

free(x).

32: else Compute x = argmaxx∈X(µ)\σ(S)nx (with smallest δx as a tiebreaker)

33: if x /∈ S then S = S ∪ {x}; σ(x) = {x};
34: σ(x) = σ(x) ∪R(x, µ, S); update free(x) and stop(x);

35: end while

36: end for

Figure 6: Algorithm for approximating the minimum number of drivers.
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for i ∈ Z are served before i is processed or considered. This can cause Z to have the

same characteristic as W , so we need to treat Z separately. Let λ be the number of solo

drivers in a solution computed by Algorithm 2 and λ∗ be the number of solo drivers in any

optimal solution. Then there are at most (|R|−λ)/2 +λ drivers in the solution computed by

Algorithm 2 and at least (|R| − λ∗)/(K + 1) + λ∗ drivers in the optimal solution. A central

line of the analysis is to show that λ∗ is close to λ which guarantees the approximation ratio

of Algorithm 2

We now introduce some notation used in our analysis. Denoted by (S, σ) is the complete

solution computed by Algorithm 2. Denoted by (SI, σI) is the partial solution computed at

the end of Phase-I, so all trips of W are served by drivers in SI. For every driver i ∈ SI,

(σI(i) \ {i}) ∩ (R \W ) = ∅. Let SI(X) = SI ∩X and SI(W ) = SI ∩W = SI \ SI(X). Note

that each driver i ∈ SI(X) must serve at least one trip from W and σI(SI(X)) \ SI(X) ⊆ W

if SI(X) 6= ∅. Let W = {W1, . . . ,We} such that each Wj (1 ≤ j ≤ e) is the set of trips served

by a driver (or drivers when Wj ⊆ W ) in SI for iteration j, where e is the last iteration

of Phase-I. For each Wj, Wj is a subset of W (µaj) for some node µaj (indexed at aj), and

let (Sj, σj) be the partial solution just after serving Wj, 1 ≤ j ≤ e. For a driver i ∈ Sj,

freej(i) = ni − |σj(i)| + 1 is the remaining available seats (capacity) of i w.r.t. (Sj, σj), and

stopj(i) is the number of stops i has to made in order to serve all trips in σj(i) w.r.t. (Sj, σj).

Property 7.1. For every trip i that is assigned as a driver, i remains a driver until the

algorithm terminates and free(i) is non-increasing throughout the algorithm.

Recall that each set Wj of trips either are served by one driver or Wj ⊆ SI(W ). For clarity,

we denote each set Wj ⊆ SI(W ) by W̃j. When trips of W̃j are assigned as drivers to serve

themselves, all other trips W (µaj)\W̃j must have been served by drivers in Sj−1 such that no

driver in Sj−1 or trip in X\σj−1(Sj−1) can serve W̃j. In other words, W̃j = W (µaj)\σj−1(Sj−1)

and X̄1 ∪ X̂ = ∅ w.r.t. (Sj−1, σj−1), so the algorithm has the following property.

Property 7.2. For every pair W̃i and W̃j (i 6= j), µai 6= µaj .

Suppose (S∗, σ∗) is an optimal solution for (G,R) with |S∗| minimized. We first show, in

Lemma 7.1, that the number of trips in SI(W ) served by S∗ is at most that of the passengers

served by σI(SI(X)). The proof idea is as follows. Let U ⊆ S∗ be the set of drivers such that

for every u ∈ U , σ∗(u) ∩ SI(W ) 6= ∅ and U ∩W = ∅. We prove that U are also drivers in SI

(specifically, U ⊆ SI(X)) and σI(u) serves at least |σ∗(u)∩SI(W )| passengers for each u ∈ U .

Lemma 7.1. Let (S∗, σ∗) be an optimal solution for (G,R) and S∗(W ) = W ∩ S∗. Let

U ⊆ S∗ be the set of drivers that serve all trips of W \ S∗(W ). Then |σI(SI(X)) \ SI(X)| ≥
|σ∗(U) ∩ SI(W )|.

28



Proof. Let Uj be the set of drivers in S∗ that serve (W1 ∪ . . . ∪Wj) \ S∗(W ) for 1 ≤ j ≤ e.

Note that W = W1 ∪ . . . ∪We and Ue = U . Let W̃a1 , . . . , W̃ad be the sets computed by the

algorithm such that W̃ab ⊆ SI(W ), 1 ≤ b ≤ d, and for 1 ≤ b < c ≤ d, W̃ab is computed

before W̃ac . For each W̃ab , the drivers of Uab that serve W̃ab \ S∗(W ) can be partitioned into

two sets: (1) U ′ab = {u ∈ Uab | σ∗(u) ∩ W̃ab 6= ∅ and u ∈ R(µab)} and (2) U ′′ab = {u ∈ Uab |
σ∗(u) ∩ W̃ab 6= ∅ and u ∈ R(Aµab )}. We consider them separately.

(1) Due to W (µab) 6= ∅ (µab ∈ Γ(W )), the algorithm must have already assigned every

u ∈ U ′ab as a driver in Sab−1
(X) when µab is processed since such a trip u must be included

in X̄ w.r.t. the partial solution just before µab is processed. Further, it must be that

freeab−1
(u) = 0. Otherwise, σab−1

(u) would have served trips from W̃ab , a contradiction to

the algorithm. From freeab−1
(u) = 0, |σab(u) ∩W | ≥ |σ∗(u) ∩W | for every u ∈ U ′ab , that is,

|
⋃
u∈U ′ab

σab(u) ∩W | ≥ |
⋃
u∈U ′ab

σ∗(u) ∩W |.
(2) Every u ∈ U ′′ab must also be a driver in Sab−1

(X) with freeab(u) < nu. Otherwise, u

would have been assigned (from unassigned) as a driver in Sab to serve trips from W̃ab . We

further divide U ′′ab into two subsets: U ′′ab(0) = {u ∈ U ′′ab | freeab(u) = 0} and U ′′ab(1) = {u ∈
U ′′ab | freeab(u) ≥ 1}. We consider U ′′ab(0) in case (2.1) and U ′′ab(1) in case (2.2).

(2.1) For every u ∈ U ′′ab(0), |σab(u) ∩W | ≥ |σ∗(u) ∩W | since freeab(u) = 0. This implies

that |
⋃
u∈U ′′ab (0) σab(u) ∩W | ≥ |

⋃
u∈U ′′ab (0) σ

∗(u) ∩W |. (2.2) Consider any driver u ∈ U ′′ab(1).

Let Wj be a non-empty set of passengers served by σab(u) where j < ab. In other words, Wj

is computed before W̃ab . Recall that Wj ⊆ W (µaj), Wj are the only passengers in W (µaj)

served by u, and (Sj−1, σj−1) is the partial solution just before trips of Wj are served. From

freej−1(u) > freeab(u) > 0, Wj = W (µaj) \ σj−1(Sj−1) must be served by σj(u), implying

|Wj| < freej−1(u). Since Wj is computed before W̃ab , |W̃ab| ≤ |W (µab) \ σj−1(Sj−1)| ≤
|W (µaj) \ σj−1(Sj−1)| < freej−1(u), meaning |Wj| ≥ |W̃ab| for every set Wj of passengers

served by σab(u). From the proofs of Cases (1) and (2), we have the following property.

Property 7.3. Every u ∈ U ′ab ∪ U
′′
ab

is also a driver in SI(X), that is, U ⊆ SI(X).

Consider any pair ub ∈ U ′′ab(1) and uc ∈ U ′′ac(1) with ub 6= uc for any 1 ≤ b < c ≤ d.

Since ub 6= uc, the analysis of Case (2.2) can be applied to ub and uc independently, that is,

|Wjb| ≥ |W̃ab| for every set Wjb of passengers served by σjb(ub), and |Wjc | ≥ |W̃ac | for every

set Wjc served by σjc(uc). Now, consider the case ub = uc. Assume that U ′′ab(1) ∩ U ′′ac(1) 6= ∅
for some 1 ≤ b < c ≤ d. Consider any driver u ∈ U ′′ab(1) ∩ U ′′ac(1). By definition, u

serves trips from both W̃ab and W̃ac . Since freeac(u) > 0, stopac(u) = δu. It must be that

freeab(u) ≥ freeac(u) > 0 and stopab(u) = δu (otherwise, σab(u) would have served trips

from W̃ab). From this and µab 6= µac (by Property 7.2), δu ≥ 2 and σac(u) serves at least

two sets Wjb and Wjc of passengers before W̃ab is computed. By the conclusion of previous

paragraph (Case 2.2), |Wjb| ≥ |W̃ab| and |Wjc | ≥ |W̃ac |. This can be generalized to all
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sets W̃a1 , . . . , W̃ad ⊆ SI(W ) such that trips of W̃ab \ S∗(W ) are served by Uab for 1 ≤ b ≤
d. We get |

⋃
u∈U ′ab∪U

′′
ab
,1≤b≤d σab(u) ∩ W | ≥ |

⋃
u∈U ′ab∪U

′′
ab
,1≤b≤d σ

∗(u) ∩ W̃ab|. By definition,⋃
u∈U ′ab∪U

′′
ab
,1≤b≤d σab(u)∩W = σI(U) \U and

⋃
u∈U ′ab∪U

′′
ab
,1≤b≤d σ

∗(u)∩ W̃ab = σ∗(U)∩ SI(W ).

Since U ⊆ SI(X) (Property 7.3), |σI(SI(X)) \ SI(X)| ≥ |σI(U) \ U | ≥ |σ∗(U) ∩ SI(W )|.

Lemma 7.2. Let (S∗, σ∗) be any optimal solution for (G,R). Let FI be the set of drivers in

S∗ that serve all trips of σI(SI) in (S∗, σ∗) . Then, |FI| ≥
2|SI∪FI|
K+2

.

Proof. Three sets U,B1, B2 of drivers in S∗ are considered, each of which serves a portion

of trips of σI(SI) in (S∗, σ∗), and altogether σ∗(U ∪ B1 ∪ B2) ∪ S∗(W ) ⊇ σI(SI), where

S∗(W ) = S∗ ∩W . Let U be the set of drivers in S∗ that serve all trips of SI(W ) \ S∗(W ) in

(S∗, σ∗). By Property 7.3 and Lemma 7.1, all of U must be drivers in SI(X) and |σI(U)\U | ≥
|σ∗(U) ∩ SI(W )|. In this proof, the drivers in SI are partitioned into three sets: SI(W ), U ,

and SX = SI \ (SI(W ) ∪ U).

It requires another set B1 of drivers in S∗ to serve all trips of (σI(U) \ U) ⊆ W in

(S∗, σ∗) because σI(U) ∩ SI(W ) = ∅ and |σI(U) \ U | ≥ |σ∗(U) ∩ SI(W )|. From |σI(U) \ U | ≥
|σ∗(U) ∩ SI(W )|, σI(U) ∩ SI(W ) = ∅ and that σ∗(U) ∩ SI(W ) = SI(W ) \ S∗(W ), we have

|(SI(W )\S∗(W ))∪(σI(U)\U)| ≥ 2|SI(W )\S∗(W )|. Therefore, |U∪B1| ≥ 2|SI(W )\S∗(W )|/K
is the minimum number of drivers required in S∗ to serve all of (SI(W )\S∗(W ))∪(σI(U)\U).

In the worst case, the algorithm can assign each trip v ∈ B1 to be a driver in S \SI such that

v serves only itself.

Consider the remaining set of drivers SX = SI \ (SI(W ) ∪ U). For each driver x ∈ SX ,

σI(x) must serve at least one trip from W , meaning |σI(x)| ≥ 2 and |σI(SX)| ≥ 2|SX |. Let B2

be the set of drivers in S∗ that serve all trips of σI(SX) in (S∗, σ∗). We now consider the size

of B2. Note that B2∩SX may or may not be empty. In the worst case, each trip v ∈ B2 \SX
can be assigned as a driver in S \ SI s.t. v serves itself only. Hence, the ratio between the

number of drivers in S that serve σI(SX)∪B2 and B2 is (|SX |+ |B2\SX |)/|B2|. This function

is monotone increasing in |B2 \ SX |. Thus, B2 ∩ SX = ∅ gives the worst case. From this and

|σ∗(v) ∩ σI(SX)| ≤ K for each driver in v ∈ B2, |B2| ≥ 2|SX |/K. Since σI(SX) ∩ σI(U) = ∅
and σI(SX)∩σI(W ) = ∅, |(SI(W )\S∗(W ))∪(σI(U)\U)∪σI(SX)| ≥ 2|SI(W )\S∗(W )|+2|SX |.
Thus, |U ∪B1 ∪B2| ≥ 2(|SI(W ) \ S∗(W )|+ |SX |)/K.

Let FI = U∪B1∪B2∪S∗(W ), which is the set of drivers in S∗ required to serve all of σI(SI)

in (S∗, σ∗). Then |FI| = |U ∪B1 ∪B2|+ |S∗(W )| ≥ 2(|SI(W ) \S∗(W )|+ |SX |)/K + |S∗(W )|.
Recall that SI = SI(W ) ∪ U ∪ SX . The ratio between the number of drivers in S to serve
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σI(SI) ∪B1 ∪B2 and FI is

|SI ∪B1 ∪B2|
|FI|

≤ |SI ∪ FI|
|FI|

≤ |SI(W ) \ S∗(W )|+ |SX |+ |U ∪B1 ∪B2 ∪ S∗(W )|
|U ∪B1 ∪B2 ∪ S∗(W )|

(7.1)

≤ |SI(W ) \ S∗(W )|+ |SX |
2(|SI(W ) \ S∗(W )|+ |SX |)/K + |S∗(W )|

+ 1

≤ |SI(W ) \ S∗(W )|+ |SX |
2(|SI(W ) \ S∗(W )|+ |SX |)/K

+ 1

=
K

2
+ 1 =

K + 2

2
.

Hence, it requires at least |FI| ≥ 2|SI∪FI|/(K+2) drivers in S∗ to serve all trips of σI(SI).

Notice that Equation (7.1) holds when each driver in u ∈ FI serves at most K trips of

σI(SI), that is, |σ∗(u)| ≤ K + 1. Next, we consider the minimum number of drivers in S∗

that is required to serve all trips of σII(SII) in (S∗, σ∗), where (SII, σII) is the partial solution

computed at the end of Phase-II. Recall that Z = {i ∈ R \ σI(SI) | δi = 0} and all of Z are

served in σII(SII).

Lemma 7.3. Let (S∗, σ∗) be any optimal solution for (G,R). Let FII be the set of drivers in

S∗ that serve all trips of σII(SII) in (S∗, σ∗). Then, |FII| ≥ 2|SII∪FII|
K+2

.

Proof. We consider FII = FI∪C ′∪V ′∪C ′′, each of C ′, V ′ and C ′′ is a set of drivers in S∗ that

serves a portion of trips of σII(SII \ SI) in (S∗, σ∗). Let S ′ = {x ∈ SII \ SI | |σII(x)| = 1} be

the set of solo drivers in SII \SI. Since S ′ ⊆ X, nx > 0 for every x ∈ S ′. Each x ∈ S ′ belongs

to a distinct node of Γ since otherwise, one of them can serve the other. This implies that

S ′ ⊆ Z. Let C ′ = C ′0 ∪ C ′1 be the set of drivers in S∗ that serve all of S ′ in (S∗, σ∗), where

C ′0 = {v ∈ S∗ | σ∗(v) ∩ S ′ 6= ∅ and δv = 0} and C ′1 = {v ∈ S∗ | σ∗(v) ∩ S ′ 6= ∅ and δv ≥ 1}.
By definition and S ′ ⊆ Z, C ′ ⊆ X and C ′1 ∩ Z = ∅. Let S ′ = S ′0 ∪ S ′1, where S ′0 is served by

C ′0 and S ′1 is served by C ′1. Then |C ′0| = |S ′0| because each x ∈ S ′0 belongs to a distinct node

and δv = 0 for all v ∈ C ′0.

Consider any driver z ∈ S ′1. Let (Sz, σz) be the partial solution just before z is assigned as

a driver by the algorithm. All trips in C ′1 ∩R(A∗node(z)) must have been assigned as drivers in

Sz. Otherwise, any v ∈ C ′1 ∩R(A∗node(z)) would have been assigned as a driver in SII to serve

z when node(z) is processed. Hence, C ′1 ⊆ SII, and for every driver v ∈ C ′1 ∩ R(A∗node(z)),

freez(v) = 0 or freez(v) > 0 with stopz(v) = δv. From these and each z ∈ S ′1 belongs to a

distinct node, |
⋃
v∈C′1

σz(v) \ {v}| ≥ |
⋃
v∈C′1

σ∗(v)∩S ′1| = |S ′1|, and |C ′1| ≥ |S ′1|/K to serve all

of S ′1 ⊆ Z since S ′1 ∩ C ′1 = ∅. Recall that for every driver v ∈ C ′1, each passenger served by

σII(v) is either in W or Z. For any v ∈ C ′1 such that σII(v)∩W 6= ∅, v ∈ SI and v is included

in the calculation of Equation (7.1). For any such v (regardless if σII(v) ∩ Z 6= ∅), the ratio
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|SII \ SI|/|FII| decreases because v ∈ SI and v ∈ FII. To get the approximation ratio for the

worst case, we assume that all C ′1 ⊆ (SII\SI), that is, σII(v)∩W = ∅ and σII(v)∩Z 6= ∅ for all

v ∈ C ′1. Let V ′ be the set of drivers in S∗ that serve all of
⋃
v∈C′1

σII(v)∩Z in (S∗, σ∗). By the

algorithm (Phase-II part 2 specifically), each passenger z ∈ σII(v) ∩ Z belongs to a distinct

node, implying |
⋃
v∈C′1

σII(v) ∩ Z| ≥ |S ′1|. From these, each driver in V ′ ⊆ S∗ can serve at

most K trips of
⋃
v∈C′1

σII(v)∩Z, and hence, |V ′| ≥ |S ′1|/K. Since S ′1∩(
⋃
v∈C′1

σII(v)∩Z) = ∅,
|V ′∪C ′1| ≥ 2|S ′1|/K. In the worst case, the algorithm can assign all of C ′ and V ′ to be drivers

in S. From |S ′0| = |C ′0|, the ratio between |S ′ ∪ C ′ ∪ V ′| and |C ′ ∪ V ′| is

|S ′ ∪ C ′ ∪ V ′|
|C ′ ∪ V ′|

≤ |S
′|+ |C ′ ∪ V ′|
|C ′ ∪ V ′|

=
|S ′0|+ |S ′1|

|C ′0|+ |C ′1 ∪ V ′|
+ 1 =

|C ′0|+ |S ′1|
|C ′0|+ |C ′1 ∪ V ′|

+ 1.

Since |S ′1| ≥ |C ′1|, (|C ′0|+ |S ′1|)/(|C ′0|+ |C ′1 ∪ V ′|) is monotone decreasing in |C ′0|. Therefore,

|S ′ ∪ C ′ ∪ V ′|
|C ′ ∪ V ′|

≤ |C ′0|+ |S ′1|
|C ′0|+ |C ′1 ∪ V ′|

+ 1 ≤ |S ′1|
|C ′1 ∪ V ′|

+ 1 ≤ |S ′1|
2|S ′1|/K

+ 1 =
K + 2

2
. (7.2)

Consider the remaining drivers in S ′′ = SII \ (SI ∪ S ′ ∪ C ′). Since each driver x ∈ S ′′

serves at least one passenger, |σII(S
′′)| ≥ 2|S ′′|. Let C ′′ = C ′′0 ∪ C ′′1 be the set of drivers in

S∗ that serve all of σII(S
′′) in (S∗, σ∗), where C ′′0 = {v ∈ S∗ | σ∗(v)∩ σII(S

′′) 6= ∅ and v ∈ Z}
and C ′′1 = {v ∈ S∗ | σII(S

′′) 6= ∅ and v ∈ X \ Z}. Note that C ′′0 ⊆ σII(SII) by definition.

From the algorithm (Phase-II), σII(S
′′) ⊆ Z and σII(S

′′) ∩ σII(S
′) = ∅. In the worst case,

each trip v ∈ C ′′ can be assigned as a driver in S such that v serves itself only. From this,

C ′′0 ⊆ σII(SII) and that every v ∈ C ′′ can serve at most K trips of σII(S
′′), the ratio between

the number of drivers in S that serve σII(S
′′) ∪ C ′′ and C ′′ is

|S ′′ ∪ C ′′|
|C ′′|

≤ |S
′′|+ |C ′′|
|C ′′|

≤ |S ′′|
2|S ′′|/K

+ 1 ≤ K

2
+ 1 =

K + 2

2
. (7.3)

Next, we combine Equations (7.2) and (7.3) with Equation (7.1). Let FII = FI∪C ′∪V ′∪
C ′′, which is the set of drivers in S∗ required to serve all trips of σII(SII) in (S∗, σ∗). Note

that FI ⊆ S∗ is the minimum set of drivers that serve all of σI(SI) ⊆ W and (C ′ ∪ V ′) ⊆ S∗

is the minimum set of drivers that serve all of S ′ ∪ (
⋃
v∈S′ σII(v) ∩ Z), and C ′′ ⊆ S∗ is the

minimum set of drivers that serve all of σII(S
′′) ⊆ Z such that σII(S

′′) ∩ σII(S
′) = ∅. The

minimum number of drivers in each set of FI, C
′ ∪ V ′ and C ′′ is calculated based on each

driver u ∈ FII serving K trips of σII(SII), as stated in Equations (7.1), (7.2) and (7.3). Hence,

|FII| ≥ 2|SI ∪ FI|/(K + 2) + 2|S ′ ∪ C ′ ∪ V ′|/(K + 2) + 2|S ′′ ∪ C ′′|/(K + 2)

= 2(|SI ∪ FI|+ |S ′ ∪ C ′ ∪ V ′|+ |S ′′ ∪ C ′′|)/(K + 2).
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The ratio between SII ∪ FII and FII is at most

|SII ∪ FII|
|FII|

≤ |SI ∪ S ′ ∪ S ′′ ∪ FI ∪ C ′ ∪ V ′ ∪ C ′′|
|FI ∪ C ′ ∪ V ′ ∪ C ′′|

(7.4)

≤ |SI ∪ FI|+ |S ′ ∪ C ′ ∪ V ′|+ |S ′′ ∪ C ′′|
2(|SI ∪ FI|+ |S ′ ∪ C ′ ∪ V ′|+ |S ′′ ∪ C ′′|)/(K + 2)

=
K + 2

2
.

Therefore, it requires at least |FII| ≥ 2|SII ∪ FII|/(K + 2) ≥ 2|SII|/(K + 2) drivers in S∗ to

serve all of σII(SII).

Again, Equation (7.4) holds if each driver u ∈ FII serves at most K trips of σII(SII),

that is, |σ∗(u)| ≤ K + 1. Recall that B1 and B2 are subsets of FI defined in the proof of

Lemma 7.2, and C ′, V ′ and C ′′ are subsets of FII defined in the proof of Lemma 7.3. Each

trip v in B1 ∪B2 ∪C ′ ∪ V ′ ∪C ′′ can be a driver in S that serves itself only. This can happen

if before v ∈ B1∪B2∪C ′∪V ′∪C ′′ is processed by the algorithm, R(D∗node(v)) \ {v} ⊆ σv(Sv)

for δv > 0 or R(node(v)) \ {v} ⊆ σv(Sv) for δv = 0, where (Sv, σv) is the partial solution just

before v is processed. In other words, all trips that can be served by v are already served

w.r.t. (Sv, σv).

Remark 7.1. Let B1 and B2 be the set of trips defined in the proof of Lemma 7.2. Let S ′

and S ′′ be the sets of drivers defined in the proof of Lemma 7.3. Trips of B1 ∪ B2 can be

assigned as drivers in Phase-II or Phase-III. Suppose v ∈ B1 ∪B2 is assigned as a driver in

Phase-II. If σ(v) serves only itself, v is included in S ′. If σ(v) serves more than one trip, v

is included in S ′′. For either case, Equation (7.4) holds.

From Remark 7.1, let B′1 ∪ B′2 ⊆ B1 ∪ B2 be the trips assigned as drivers in Phase-III.

Let S̄ = S \ (SII ∪B′1 ∪B′2 ∪C ′ ∪ V ′ ∪C ′′) be the set of drivers found during Phase-III of the

algorithm.

Lemma 7.4. It requires at least 2|S|
K+2

drivers in S∗ to serve all trips of σ(S) in (S∗, σ∗).

Proof. Any trip x in R \ σII(SII) has nx > 0 and δx > 0 since all of W and Z are served in

σII(SII). Consider the moment a trip x ∈ S̄ is assigned as a driver. Let (Sx, σx) be the partial

solution just before x is processed by the algorithm. Since nx > 0 and δx > 0, x will serve

at least one passenger (|σ(x)| ≥ 2) if there exists an un-assigned trip in R(D∗node(x)) \ {x},
that is, R(D∗node(x)) \ {x} * σx(Sx). Let X(1) = {x ∈ S̄ | |σ(x)| = 1}. For every pair

x, x′ ∈ X(1), x /∈ R(D∗node(x′)) ∪ R(A∗node(x′)). Otherwise, one of them can serve the other.

For every x ∈ X(1), any driver x′ ∈ S̄(A∗node(x)) \ {x} must serve at least two trips, where

S̄(A∗node(x)) = S̄ ∩R(A∗node(x)). For any x ∈ X(1), let Yx be the set of drivers in S∗ that serve

33



all of
⋃
x′∈S̄(A∗

node(x)
) σ(x′) in (S∗, σ∗). For a driver y ∈ Yx, σ∗(y) \ {y} can contain at most

K trips of
⋃
x′∈S̄(A∗

node(x)
) σ(x′). If y ∈

⋃
x′∈S̄(A∗

node(x)
) σ(x′), y can serve at most K + 1 trips of⋃

x′∈S̄(A∗
node(x)

) σ(x′). Hence, |Yx| ≥ (2|S̄(Anode(x))| + 1)/(K + 1). For any pair x, x′ ∈ X(1)

with x 6= x′, since drivers in Yx cannot serve any trip of
⋃
x′′∈S̄(A∗

node(x′))
σ(x′′), it must be that

Yx ∩ Yx′ = ∅. Let Y =
⋃
x∈X(1) Yx, S̄X(1) =

⋃
x∈X(1) S̄(A∗node(x)) and σ(S̄X(1)) =

⋃
x∈S̄X(1)

σ(x).

Note that |Y | ≥ |X(1)|. Then,

|Y | =
∑

x∈X(1)

|Yx| ≥
∑

x∈X(1)

(2|S̄(Anode(x))|+ 1)/(K + 1)

= (
∑

x∈X(1)

2|S̄(Anode(x))|+ |X(1)|)/(K + 1).

The above can be rewritten as

(K + 1) · |Y | − |X(1)|
2

≥
∑

x∈X(1)

|S̄(Anode(x))| =
∑

x∈X(1)

|S̄(A∗node(x))| −X(1),

and hence, ∑
x∈X(1)

|S̄(A∗node(x))| ≤
(K + 1) · |Y |+ |X(1)|

2
.

Consider the remaining drivers in S̄X(1) = S̄ \ S̄X(1). Each driver x ∈ S̄X(1) serves at

least two trips, implying |σ(S̄X(1))| ≥ 2|S̄X(1)|. Let Y ′ be the set of drivers in S∗ that serve

all of
⋃
x∈S̄

X(1)
σ(x) in (S∗, σ∗). Any driver x ∈ S̄X(1) is not in σ(S̄X(1)) by the definition of

S̄X(1), and x is not in R(D∗node(x′)) for any x′ ∈ X(1) since otherwise, x′ would have served x.

From these, for every y′ ∈ Y ′, y′ /∈ R(D∗node(x)) ∪ R(A∗node(x)) for all x ∈ S̄X(1), which implies

that |Y ∪ Y ′| = |Y | + |Y ′|. Similar to Y , each driver in Y ′ can serve at most K + 1 trips of⋃
x∈S̄

X(1)
σ(x). Hence, |Y ′| ≥ 2|S̄X(1)|/(K + 1), implying ((K + 1) · |Y ′|)/2 ≥ |S̄X(1)|. Each

y ∈ Y ∪ Y ′ must be in either σ(S \ SII) or σ(SII) since all trips must be served at the end by

the algorithm. In other words, if y ∈ S \ S̄, y has been considered in Equation (7.4). This

means that we only need to consider S̄, and the ratio between |S̄| and |Y ∪ Y ′| is

|S̄|
|Y ∪ Y ′|

=
|S̄X(1)|+ |S̄X(1)|
|Y |+ |Y ′|

≤ ((K + 1) · |Y |+ |X(1)|)/2 + ((K + 1) · |Y ′|)/2
|Y |+ |Y ′|

(7.5)

=
(K + 1) · (|Y |+ |Y ′|) + |X(1)|

2(|Y |+ |Y ′|)

=
K + 1

2
+

|X(1)|
2(|Y |+ |Y ′|)

≤ K + 1

2
+

1

2
=
K + 2

2
.
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Finally, we calculate the ratio between S and S∗, where FII ∪ Y ∪ Y ′ ⊆ S∗. Recall that

S = S̄ ∪ SII ∪ FII and all trips served by each driver x ∈ S̄ are in X. From this and the

same reason stated in the proof of Lemma 7.4 for Equation (7.4), the minimum number of

drivers in each set of FII, Y and Y ′ is calculated based on using all capacity K of every driver

u ∈ FII ∪ Y ∪ Y ′. Hence, with Equations (7.4) and (7.5),

|FII ∪ Y ∪ Y ′| ≥ 2|SII ∪ FII|/(K + 2) + 2|S̄|/(K + 2)

= 2(|SII ∪ FII|+ |S̄|)/(K + 2)

The ratio between S and S∗ is

|S|
|S∗|
≤ |S|
|FII ∪ Y ∪ Y ′|

≤ |S̄|+ |SII ∪ FII|
|FII ∪ Y ∪ Y ′|

(7.6)

≤ |S̄|+ |SII ∪ FII|
2(|SII ∪ FII|+ |S̄|)/(K + 2)

=
K + 2

2

Therefore, it requires at least 2|S|
K+2

drivers in S∗ to serve all of σ(S).

Next, we show that Algorithm 2 always computes a valid solution to any instance of the

ridesharing problem with stop constraint, followed by its running time. Let (S ′, σ′) be the

partial solution computed by Algorithm 2 for a given time point.

Lemma 7.5. Let (S, σ) be a solution found by Algorithm 2 after processing all trips in R.

Then for each pair i, j ∈ S, σ(i) ∩ σ(j) = ∅ and σ(S) = R, implying (S, σ) is indeed a valid

solution to the ridesharing instance (G,R).

Proof. Phase-I of the algorithm ends until all trips of W are served, that is, Γ(W ) = ∅. In

each iteration of Phase-I, a node µ ∈ Γ(W ) containing trips of W is chosen w.r.t. (S ′, σ′). A

trip x is selected from X̂1 ∪ X̄, where X̂1 = {i ∈ S ′(Aµ) | free′(i) > 0 and stop′(i) < δi} and

X̄ = {i ∈ X ∩ R(A∗µ) \ σ′(S ′) | stop′(i) < δi or i ∈ R(µ)}. By the definition of X̂1 and X̄, x

is either a driver or an un-assigned trip that can still serve other trips in R(D∗µ). From this,

x is a valid assignment for serving W (x, µ, S ′). If X̂1 ∪ X̄ = ∅, each trip of W (µ) \ σ′(S ′) is

assigned as a driver to serve itself.

Phase-II of the algorithm ends until all trips of Z are served, where Z = {i ∈ R \ σ′(S ′) |
δi = 0}. Since all of W are served before Phase-II starts, ni ≥ 1 for every i ∈ R \ σ′(S ′),
that is, Z ⊆ X. From this, every x ∈ Z \ σ′(S ′) that is assigned as a driver to serve other

trips in Z(x, node(x), S ′) is valid, as described in the first part (first for-loop) of Phase-II.

The second part of Phase-II is similar to Phase-I. A node µ ∈ Γ(Z) is chosen, where Γ(Z)
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is the set of nodes containing the rest of Z w.r.t. (S ′, σ′). Either a driver x ∈ X̂2 or an

unassigned trip x ∈ X̄ is selected to serve Z(x, µ, S ′), where X̂2 = {i ∈ S(A∗µ) | free(i) >

0 and (stop(i) < δi or i ∈ R(µ))} and X̄ is the same as defined above. The assignment of x

is valid as mentioned above.

In Phase-III of the algorithm, the rest of X \Z are served. The algorithm processes each

node from µp to µ1. All trips in R(µj) must be served before µj−1 is processed. In each

iteration, either a driver x ∈ X̂2 (as defined above) or an unassigned trip x ∈ X(µ) \ σ′(S ′)
is selected to serve R(x, µ, S ′). The assignment of x is valid as mentioned above. Therefore,

Algorithm 2 produces a valid solution after all trips in R are processed.

Theorem 7.1. Given a ridesharing instance (G,R) of size M and l trips satisfying Con-

ditions (1-3) and (5). Algorithm 2 computes a solution (S, σ) for (G,R) such that |S∗| ≤
|S| ≤ K+2

2
|S∗|, where (S∗, σ∗) is any optimal solution and K = maxi∈R ni, with running time

O(M + l2).

Proof. By Lemma 7.4 and Lemma 7.5, Algorithm 2 computes a solution (S, σ) for R with
K+2

2
-approximation ratio. It takes O(M) time to construct the meta graph Γ(V,E) using the

preprocessing described in [17]. The labeling of nodes in Γ takes O(l) time. Sorting the trips

in a node µ according to their capacity takes O(K · |R(µ)|) time for each node µ, so in total

O(K · l) to sort all trips in R.The total time for the preprocessing is O(M +K · l); we assume

K < l. For Phase-I, there are at most O(l) iterations (in the while-loop). In each iteration,

it takes O(l) time to pick the required node µ from Γ(W ) and O(l) time to select a trip x

from X̂1∪ X̄. To serve all of W (x, µ, S ′) or W (µ), |W (µ)| ≤ O(l) is required. Hence, Phase-I

runs in time O(l2). For Phase-II, we can first scan the tree Γ following the node labels in

decreasing order, which takes O(l) time. Whenever a node µ with |Z(µ)| ≥ 2 is encountered,

a trip x ∈ Z(µ) \ σ′(S ′) is selected to serve Z(x, µ, S ′) repeated until |Z(µ)| ≤ 1. This takes

O(l) time since the trips in R(µ) are sorted according to their capacity. Hence, it takes O(l2)

time for the first for-loop in Phase-II. The second for-loop in Phase-II is similar to Phase-I,

which requires O(l) time for each iteration. Thus, it requires O(l2) time for Phase-II. For

Phase-III, in each iteration when processing a node µ, it takes O(l) time to select a trip x from

X̂2 or X(µ)\σ′(S ′). Then in total, it requires O(l+K) time to serve R(x, µ, S ′). Collectively,

Phase-III may require O(l) iterations to process trips of all nodes in V (Γ). Thus, it requires

O(l2) time for Phase-III. Therefore, the running time of Algorithm 2 is O(M + l2).

8 Conclusion

We proved that it is NP-hard to approximate with a constant factor each problem of min-

imizing the number of drivers and minimizing the total travel distance of drivers if one of
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Conditions (2)-(5) is not satisfied. Our results together with the results in [16] imply that

both minimization problems are NP-hard if one of Conditions (1)-(5) is not satisfied. We

also presented K+2
2

-approximation algorithms for minimizing number of drivers for problem

instances satisfying all conditions except Condition (4), where K is the largest capacity of

all vehicles. It is worth developing approximation algorithms for other NP-hard cases; for

example, two or more of the five conditions are not satisfied. It is interesting to study ap-

plications of the approximation algorithms for other related problems, such as multimodal

transportation with ridesharing (integrating public and private transportation).
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