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Abstract. We study the online maximum coverage problem on a line,
in which, given an online sequence of sub-intervals (which may inter-
sect among each other) of a target large interval and an integer k, we
aim to select at most k of the sub-intervals such that the total covered
length of the target interval is maximized. The decision to accept or
reject each sub-interval is made immediately and irrevocably (no pre-
emption) right at the release timestamp of the sub-interval. We com-
prehensively study different settings of this problem regarding both the
length of a released sub-interval and the total number of released sub-
intervals. We first present lower bounds on the competitive ratio for the
settings concerned in this paper, respectively. For the offline problem
where the sequence of all the released sub-intervals is known in advance
to the decision-maker, we propose a dynamic-programming-based opti-
mal approach as the benchmark. For the online problem, we first propose
a single-threshold-based deterministic algorithm SOA by adding a sub-
interval if the added length exceeds a certain threshold, achieving com-
petitive ratios close to the lower bounds, respectively. Then, we extend to
a double-thresholds-based algorithm DOA, by using the first threshold
for exploration and the second threshold (larger than the first one) for
exploitation. With the two thresholds solved by our proposed program,
we show that DOA improves SOA in the worst-case performance. More-
over, we prove that a deterministic algorithm that accepts sub-intervals
by multi non-increasing thresholds cannot outperform even SOA.

Keywords: Maximum k-Coverage Problem· Budgeted Maximum Cov-
erage Problem· Interval Coverage · Online Algorithm

1 Introduction

In the classical Maximum k-Coverage Problem, we are given a universal
set of elements U = {U1, · · · , Um} in which each is associated with a weight
w : U → R, a collection of subsets S = {S1, · · · , Sn} of U and an integer k,
and we aim to select k sets from S that maximize the total weight of covered
elements in U. Hochbaum et al. [1] showed that this problem is NP-hard and

? An extended abstract of this paper is to appear in COCOA 2020.
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2 S. Li et al.

presented a (1 − 1
e )-approximation algorithm that greedily selects a set that

maximally increases the current overall coverage. The Budgeted Maximum
Coverage (BMC) problem generalizes the classical coverage problem above by
further associating each Si ∈ S with a cost c : S→ R and relaxing the budget k
from an integer to a real number, in which the goal is replaced by selecting a sub-
collection of the sets in S that maximizes the total weight of the covered elements
in U while adhering to the budget k. Clearly, the BMC problem is also NP-hard
and actually has a (1− 1

e )-approximation algorithm [3]. In the online version of
the above maximum coverage problems, where at each timestamp i a set Si ∈ S
is released together with its elements and associated values, an algorithm must
decide whether to accept or reject each set Si at its release timestamp i and
may also drop previously accepted sets (preemption). However, each rejected or
dropped set cannot be retrieved at a later timestamp.

In this paper, we consider the online maximum k-coverage problem on a
line without preemption. Given an online sequence of sub-intervals of a target
interval, we aim to accept k of the sub-intervals irrevocably such that the total
covered length of the target interval is maximized. We refer to this variant as
the Online Maximum k-Interval Coverage Problem as formally defined
in Section 2. Regarding the length of a sub-interval, we generally consider the
Unit-Length (UL), the Flexible-Length (FL), and the Arbitrary-Length (AL)
settings, respectively. We consider the Unique-Number (UN) and the Arbitrary-
Number (AN) settings, respectively, regarding the total number of released sub-
intervals. In particular, our problem under the UN setting is essentially the
classical maximum k-coverage problem (or say, the BMC with unit-cost sets only
and an integer budget k) without preemption, by the following reduction method:
we partition the target interval of our problem into discrete small intervals by
the boundary points of all the released sub-intervals, then, the small intervals
are equivalent to the elements of a universal set U in which each element has a
weight equal to the length of its corresponding small interval, and the released
sub-intervals are equivalent to the sets in the collection S = {S1, · · · , Sn}. The
objective remains the same.

Related Works. We survey relevant researches along two threads. The first
thread is about the Online Budgeted Maximum Coverage (OBMC) problem,
Saha et al. [6] presented a 4-competitive deterministic algorithm for the setting
where sets have unit costs. Rawitz and Rosén [5] showed that the competitive
ratio of any deterministic online algorithm for the OBMC problem must depend
on the maximum ratio r between the cost of a set and the total budget, and also
presented a lower bound of Ω( 1√

1−r ) and a 4
1−r -competitive deterministic algo-

rithm. Ausiello et al. [2] studied a special variant of online maximum k-coverage
problem, the maximum k-vertex coverage problem, where each element belongs
to exactly two sets and the intersection of any two sets has size at most one.
They presented a deterministic 2-competitive algorithm and gave a lower bound
of 3

2 . The second thread is about the online k-secretary problem [7,12,13], which
was introduced by Kleinberg [11] and aimed to select k out of n independent
values for maximizing the expected sum of individual secretary values. Bateni
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et al. [4] studied a more general version called the submodular secretary prob-
lem, which aims to maximize the expectation of a submodular function that
defines the efficiency of selected candidates based on their overlapping skills.
Our problem is similar to theirs as the objective function of our problem is also
submodular (see Len(·) of our model in Section 2). However, we focus on the
adversarial release order of sub-intervals (secretaries) in the worst-case analysis
of deterministic algorithms while [4] focused on a random release order of sec-
retaries in the average-case analysis of algorithms. Other works related to this
paper include the interval scheduling problem, the set cover problem, and the
online knapsack problem. Interested readers may refer to [8, 9, 14–17].

Settings Lower bounds Upper bounds

UL
UN

√
2 for k = 2

decrease as k ≥ 3 increase
(Theorem 2)

< 2
(Theorems 4 & 8)

AN

√
2 for k = 2

decrease as k ≥ 3 increase
(Corollary 1)

√
9k2−14k+9−k−1

2(k−1)
+ 1

(Corollary 4)

FL
UN

2km
2km+(1−m)min{k,n−k} (< 2)

(Theorem 3)
< 1 + k

k−1

√
1+8m

4

(Theorem 6)

AN
2m
m+1

(Corollary 2)

√
(1+8m)k2−(6+8m)k+9−k−1

2(k−1)
+ 1

(Corollary 5)

AL UN or AN +∞ (Theorem 1) -

US UN

√
2 for k = 2

decrease as k ≥ 3 increase
(Corollary 3)

< 2
(Theorem 5)

Table 1. Main results in this Paper

Our contribution. Results of this paper are three-fold. First, we show that
no online deterministic algorithm can achieve a bounded competitive ratio in
the AL setting, and present lower bounds on the competitive ratio for the other
settings, respectively, in a constructive way. Second, we give an O(kn+n log n)-
time optimal solution to the offline problem where the sequence of all the released
sub-intervals is known in advance to the decision-maker, by applying a dynamic
programming-based approach. Third, for the online problems, we propose two
O(n)-time deterministic algorithms, SOA and DOA, with their competitive ra-
tios proved to be close to the lower bounds in the settings, respectively. We also
extend our results in UL to a generalized unit-sum (US) setting, where at each
timestamp, a batch of a finite number of disjoint sub-intervals is released instead
and accordingly one can accept at most k released batches. In addition, we show
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that any deterministic algorithm, that accepts sub-intervals by non-decreasing
thresholds, cannot achieve better performance even than the SOA does.

Main results of this paper are summarized in Table 1, in which, for ease of
understanding, some complicated parameter-dependent results are approximated
by formulations in bold. For precise results, please refer to the corresponding
theorems or corollaries.

2 Preliminaries

Notations Descriptions

[0, a] The target interval;

k The maximum number of sub-intervals to accept;

Vi = [oi, di] The ith released sub-interval;

Vi = {V1, V2, · · · , Vi} The sequence of the first i released sub-intervals;

χ(Vn, k) The optimal solution for the offline problem, given
both the set V of offline sub-intervals and the
quota k beforehand;

Λ(Vi, Vj) The length of the intersection between sub-
intervals Vi and Vj , i.e., Λ(Vi, Vj) = |Vi ∩ Vj |;

Φ(Vi) The subset of Vi that are accepted by our algo-
rithm;

Len(U) The cumulative length of the parts of [0, a] that
are covered by sub-intervals in a given set U ,
i.e., Len(U) = |

⋃
Vi∈U Vi|. Also, we use Len(Vi)

to denote the length of a sub-interval Vi, i.e.,
Len(Vi) = |Vi|.

Table 2. Notations in this paper.

The Model. Table 2 summarizes key notations in this paper. An online
sequence V = {V1, V2, · · · } of sub-intervals of a large target interval [0, a] are
released in an adversarial order to the decision-maker, in which Vi = [oi, di] ⊆
[0, a] for each Vi ∈ V. Upon the arrival of each Vi ∈ V, the decision-maker must
make a decision whether to accept or reject Vi immediately and irrevocably.
For example, when recruiting at most k employees across different domains of
expertise in the target interval, each released sub-interval represents a candidate’s
expertise domain. The hiring decision on each sub-interval is irrevocable and
must be made on candidate arrival without knowing future sub-intervals. Due
to the quota limitation, the decision-maker can accept no more than k (≥ 2)
sub-intervals 3. Any two different sub-intervals Vi, Vj ∈ V may intersect (i.e.,

3 When k = 1, our problem degenerates to the classical secretary problem without
expertise sub-interval overlap.
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[oi, dj ] ∩ [oj , dj ] 6= ∅) considering that the expertise of candidates may overlap
in reality. Now, we formally define the settings studied in this paper: with respect
to the length (di − oi) of each Vi ∈ V, we consider three settings.

– Unit Length (UL): |di − oi| = 1 is normalized with regard to a;
– Flexible Length (FL): |di − oi| varies in a known range [1,m], in which
m > 1 as m = 1 degenerates the case to the UL setting;

– Arbitrary Length (AL):|di − oi| varies arbitrarily in [0, a];

In addition, we also consider a generalized version of the UL setting, which is
the Unit Sum (US) setting: each Vi ∈ V is no longer restricted to contain only
one sub-interval, but a batch of a finite number of disjoint sub-intervals of [0, a]
whose sum length is equal to 1. This tells that a candidate masters different
domains of expertise. We keep the same unit-sum for all the sub-intervals to tell
similar strength of all the job candidates. Accordingly, k batches of sub-intervals
can be accepted in the US setting. With respect to the number |V| of total
released sub-intervals, we consider the following two settings respectively.

– Unique Number (UN): |V| is known in advance as a constant n ∈ N∗.
We further restrict n ≥ k+ 1 as otherwise (when n ≤ k) an optimal solution
can be easily achieved by just accepting all sub-intervals;

– Arbitrary Number (AN): |V| is not known;

When two settings are linked by a ”-”, we refer to the case that the two settings
hold together. For example, we use UL-UN to refer to the setting where all
sub-intervals have unit length and the total number of released sub-intervals are
known in advance. Whenever we specify a single setting in one dimension, we
do not distinguish among settings in the other dimension. For example, when
specifying the UN setting only, we actually refer to the context as any setting in
{UL-UN, FL-UN, AL-UN}.

Given a sequence V = {V1, V2, · · · } of online sub-intervals of [0, a], the ob-
jective is to accept a subset U ⊆ V of sub-intervals such that |U | ≤ k and the
cumulative length Len(U) of the parts of [0, a] that are covered by accepted sub-
intervals in U is maximized. Denote ALG(V) and OPT(V) as the covered length
by an online algorithm ALG and by an optimal offline solution with complete in-
formation of all sub-intervals known beforehand, respectively. We slightly abuse
notations by rewriting ALG(V) and OPT(V) to ALG and OPT, respectively.
For ρ ≥ 1, a deterministic online algorithm ALG is called ρ-competitive for the
problem if OPT(V)≤ ρALG(V) for every instance V. Alternatively, we also say
the competitive ratio of ALG is ρ for the problem. Further, when a number γ ≥ 1
ensures that γ ≤ ρ holds for all deterministic online algorithms, we say γ is a
lower bound the on competitive ratio for the problem.

3 Lower Bounds

We construct lower bounds on the competitive ratio for the settings studied in
this paper, respectively.
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Theorem 1. In the AL setting, no online deterministic algorithm can achieve
a bounded competitive ratio.

Proof. Let ε be a small positive number, i.e., 0 < ε << 1. Suppose the first k
sub-intervals released as Vk = {[0, εk+1−i]|i = 1, 2, · · · , k}. We discuss two cases.
Case 1. Online algorithm (ALG) rejects some sub-interval Vj = [0, εk+1−j ] ∈
Vk. Afterwards, the adversary only release sub-intervals as [0, εk+1−j+1] instead.
This way, the optimal solution (OPT) is able to achieve an overall length at
least εk+1−j by accepting Vj , while ALG can achieve an overall length at most

εk+1−j+1 by sub-intervals in Vj−1, we have ρ ≤ εk+1−j

εk+1−j+1 = 1
ε → +∞ when

ε→ 0;
Case 2. ALG accepts all the k sub-intervals in Vk and hence runs out of its
quota. Afterward, the adversary only release sub-intervals as [0, 1]. Then, OPT is
able to achieve an overall length 1 by accepting some [0, 1], while ALG achieves
an overall length exactly equal to ε by Vk, we have ρ ≤ 1

ε → +∞ when ε→ 0.

Theorem 2. In the UL-UN setting, no online deterministic algorithm can

achieve a competitive ratio better than (1), in which α =

⌊
1− log(k

1
k−1)

log(k
1
k )

⌋

√

2, if k = 2

min{k
1
k , k

α
k +k−α−1

k
α
k +k−α−2

, k

k
α
k +k−α−1

}, if 3 ≤ k ≤ n− α− 1

min{k
1
k , k

α
k +k−α−1

k
α
k +k−α−2

, n−α+2+k
α
k −k

n−k
k

k
α
k +k−α−1

}, if n− α ≤ k ≤ n− 1

(1)

Proof. Given the number k of quota (i.e., the maximum number of sub-intervals
to accept), the number n (≥ k + 1) of released sub-intervals of the target in-
terval [0, a] with the right endpoint a chosen as a large number, we prove this
theorem for k = 2 and 3 ≤ k ≤ n − 1, respectively. Note that sub-intervals in
V = {V1, · · · , Vn} arrive in increasing order of their subscripts.
Case 1. k = 2. We prove the lower bound by the following constructed in-
stance. Considering that V1 = [0, 1] and V2 = [

√
2 − 1,

√
2], we discuss it in the

following three cases.
Case 1.1. ALG accepts both V1 and V2. Then, the future (n− 2) sub-intervals
are released as {Vj = [1, 2]|Vj ∈ {V3, ..., Vn}}. This way, ρ = 2√

2
=
√

2 as OPT

can accept V1 and V3.
Case 1.2. ALG accepts V2 and rejects V1. Then, the future (n−2) sub-intervals

arrive as {Vj = [
√

2− 1,
√

2]|Vj ∈ {V3, ..., Vn}}. Hence, ρ =
√
2
1 as OPT accepts

V1 and V2;
Case 1.3. ALG accepts V1 and rejects V2, or ALG rejects both V2 and V1. Then,
the future (n − 2) sub-intervals arrive as {Vj = [0, 1]|Vj ∈ {V3, ..., Vn}}. Hence,

ρ =
√
2
1 as OPT accepts V1 and V2.

Case 2. 3 ≤ k ≤ n − 1. We show the lower bound by the following construc-
tive policy: (1) the n sub-intervals in {V1, V2, V3, ..., Vn} are initially supposed to
arrive in increasing order of their subscripts (see Figure 1); (2) if ALG rejects
V1, sub-intervals in {V2, V3, ..., Vn} are replaced by another (n − 1) new sub-
intervals {V ′2 , V ′3 , ..., V ′n} with the same range from 1 to 2, i.e., V ′i = [1, 2] for each
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V ′i ∈ {V ′2 , V ′3 , ..., V ′n}; (3) if ALG rejects some sub-interval Vj ∈ {V2, V3, ..., Vk},
all the future sub-intervals are replaced by another (n−j) new ones {V ′j+1, ..., V

′
n}

that have the same range as Vj−1.

V1 = [θ0, θ0 + 1]

V2 = [θ0 + θ1, θ0 + θ1 + 1]

· · ·

Vj = [

j−1∑
i=0

θi,

j−1∑
i=0

θi + 1]

· · ·

Vn = [

n−1∑
i=0

θi,

n−1∑
i=0

θi + 1]

in which,

θi =


0, i = 0

k
i
k − k i−1

k , 1 ≤ i ≤ α
1, α+ 1 ≤ i ≤ n− 1

(2)

in which α =

⌊
1− k log(k

1
k−1)

log k

⌋
with 3 ≤ α ≤ k for 3 ≤ k, and r1 < r2 < · · · <

rk. We let the right-side endpoint a of the target interval [0, a] be larger than

1 +
∑n−1
i=0 θi, which guarantees the above V1, · · · , Vn are all sub-intervals of the

target interval [0, a]. By Equation (2), we have

i∑
m=0

θm = 1 +

i−1∑
m=0

θm,∀i ∈ {α+ 1, ..., n− 1} (3)

i.e., the end point di (= 1+
∑i−1
m=0 θm) of each sub-interval Vi ∈ {Vα+1, ..., Vn−1}

is just the start point oi+1 (=
∑i
m=0 θm) of the next sub-interval Vi+1 to be

released. Under the above policy, We show the lower bound by the following
three cases.

Fig. 1. Configuration of the sub-intervals in the lower bound of the unit-length case.
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Case 2.1. ALG rejects V1. ALG can achieve an overall covered length at most
1 from future sub-intervals in {V ′2 , ..., V ′n}, implying ρ = 2 as OPT can get an
overall length of 2 by accepting both V1 and another k − 1 sub-intervals in
{V ′2 , ..., V ′n}.
Case 2.2. ALG accepts {V1, V2, ..., Vj−1} and rejects Vj (∈ {V2, ..., Vk}). As all
the future sub-intervals have the same range as Vj−1, ALG can get an overall

length of 1+
∑j−2
i=0 θi by the first (j−1) sub-intervals {V1, ..., Vj−1}. In contrast,

OPT can get an overall length of 1 +
∑j−1
i=0 θi by accepting all the first j sub-

intervals in {V1, ..., Vj}, implying the ratio ρ =
1+θ1+···+θj−2+θj−1

1+θ1+···+θj−2
. We further

discuss the ratio in two sub-cases.

Case 2.2.1. j ≤ α (=

⌊
1− k log(k

1
k−1)

log k

⌋
). By Equation (2),

ρ = 1+(k
1
k−1)+···+(k

j−1
k −k

j−2
k )+(k

j
k−k

j−1
k )

1+(k
1
k−1)+···+(k

j−1
k −k

j−2
k )

= k
j
k

k
j−1
k

= k
1
k < 1.5 < 2.

Case 2.2.2. α+ 1 ≤ j ≤ k. By Equation (2), we have

ρ = 1+(k
1
k−1)+···+(k

α
k −k

α−1
k )+j−α−1

1+(k
1
k−1)+···+(k

α
k −k

α−1
k )+j−α−2

= k
α
k +j−α−1

k
α
k +j−α−2

≥ k
α
k +k−α−1

k
α
k +k−α−2

in which the inequality holds by the basic condition of this case.
Case 2.3. ALG accepts the first k sub-intervals {V1, V2, V3, ..., Vk}. This implies
ALG gets an overall length of (k

α
k + k − α − 1). Later, the future sub-intervals

are released as {Vk+1, ..., Vn}. We then discuss two cases.
Case 2.3.1. α + k + 1 ≤ n. By Equation (3) and n − k + 1 ≥ α + 2, we know
OPT can get an overall length of k by the last k sub-intervals released, i.e.,
{Vn−k+1, ..., Vn}. This implies the ratio ρ = k

k
α
k +k−α−1

.

Case 2.3.2. 1 + k ≤ n ≤ α + k. By Equation (2), we have θ0 < · · · < θα+1 =
· · · = θn = 1. As OPT performs no worse than accepting the last k sub-intervals
{Vn−k+1, ..., Vn}, we know OPT can get an overall length no less than

Len(

n⋃
i=n−k+1

Vi)

= Len(

n⋃
i=α+2

Vi) + Len(

α+1⋃
i=n−k+1

Vi)

= Len(

n⋃
i=α+2

Vi) + Len(

α+1⋃
i=1

Vi)−
n−k∑
i=1

θi

= (n− α+ 1) + k
α
k −

n−k∑
i=1

θi

= n− α+ 2 + k
α
k − k

n−k
k

in which the first equation holds by Equation (3) and the second equation holds
by Equation (2) (see Figure 1). This further implies the ratio
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ρ ≥ n−α+2+k
α
k −k

n−k
k

k
α
k +k−α−1

= k
α
k +k−α−1+(n−k+3−k

n−k
k )

k
α
k +k−α−1

.

Therefore, no online algorithm can beat a competitive ratio

min{k 1
k , k

α
k +k−α−1

k
α
k +k−α−2

, β

k
α
k +k−α−1

}

in which β = min{k, n− α+ 2 + k
α
k − k n−k

k }.

Corollary 1. For UL-AN, no online deterministic algorithm can achieve a com-

petitive ratio better than (4), in which α =

⌊
1− log(k

1
k−1)

log(k
1
k )

⌋
.

{√
2, if k = 2

min{k
1
k , k

α
k +k−α−1

k
α
k +k−α−2

, k

k
α
k +k−α−1

}, if 3 ≤ k
(4)

Proof. Note that in UL-AN, online algorithm does not know the number (|V|) of
all the sub-intervals to be released in advance and can only learn a sub-interval
upon its release timestamp. This implies that the adversary can control |V| to
release an arbitrary number of sub-intervals. By using a similar release policy
of sub-intervals as in the proof of Theorem 2 with the n = |V| discarded, the
sub-case 2.3.2 of Theorem 2 is further removed since the total covered length
achieved by OPT is bounded just by quota k in this unit-length setting, while
the other cases of Theorem 2 does not change significantly. Hence, we have the
lower bound of UL-AN as{√

2, if k = 2

min{k 1
k , k

α
k +k−α−1

k
α
k +k−α−2

, k

k
α
k +k−α−1

}, if 3 ≤ k

in which α =

⌊
1− k log(k

1
k−1)

log k

⌋
.

Theorem 3. For FL-UN, no online deterministic algorithm can achieve a com-
petitive ratio better than 2km

2km+(1−m)min{k,n−k} which is strictly smaller than 2.

Proof. In FL-UN, the length of each sub-interval Vi = [oi, di] belongs to a known
range [1,m], i.e., |di − oi| ∈ [1,m]. We show the lower bound by the following
constructive policy: the first τ = min{k, n − k} sub-intervals are released as
{Vi = [i − 1, i]|i ∈ {1, 2, ..., τ}}. Suppose ALG accepts x ∈ N out of the τ sub-
intervals.
Case 1. 0 < x ≤

⌊
τ
2

⌋
. Then, all the future sub-intervals have the same range

[0, 1]. This way, ALG can get an overall length at most
⌊
τ
2

⌋
, implying ρ ≥ τ

b τ2 c
≥

2;
Case 2.

⌈
τ
2

⌉
≤ x ≤ τ . Then, the remaining (n− τ) sub-intervals arrive as

{Vj = [τ + (j − τ − 1)m, τ + (j − τ)m]|j ∈ {τ + 1, τ + 2, ..., n}}.
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This way, ALG can get an overall length at most x + (k − x)m, which is by
accepting x out of the first τ sub-intervals and (k − x) out of the last (n − τ)
sub-intervals. Since n − τ ≥ k, OPT is able to get an overall length km by
accepting k out of n− τ sub-intervals in {Vτ+1, ..., Vτ+k}. Hence,

ρ ≥ km

km+ x(1−m)
≥ 2km

2km+ (1−m) min{k, n− k} .

Therefore, no online algorithm can beat a competitive ratio of

min{2, 2km
2km+(1−m)min{k,n−k}} = 2km

2km+(1−m)min{k,n−k}

Corollary 2. For FL-AN, no online deterministic algorithm can achieve a com-
petitive ratio better than 2m

m+1 which is strictly smaller than 2.

Proof. In FL-AN, the total number |V| of sub-intervals is not limited to n any
more. By setting τ = k and removing n = |V| in the release policy of sub-intervals
in Theorem 3, the overall length of OPT is bounded by km (in which the k is
the quota constraint and m denotes the largest length of a released sub-interval
in V) only. Further, We get the lower bound of FL-AN as km

km+ k
2 (1−m)

= 2m
m+1 .

Corollary 3. For US-UN, no online deterministic algorithm can achieve a com-

petitive ratio better than (1), where α =

⌊
1− log(k

1
k−1)

log(k
1
k )

⌋
.

Proof. By partitioning each sub-interval Vi ∈ V of the unit-length case arbi-
trarily into a finite number of disjoint sub sub-intervals, we can get an instance
of the unit-sum case. Hence, the lower bound, which is showed in Theorem 2,
applies to the unit-sum case as well.

4 Upper bounds

We present two online deterministic algorithms in subsections 4.2 and 4.3 re-
spectively. Before that, we give an O(kn + n log n) time dynamic programming
approach as a benchmark, which optimally solves the offline problem where the
sequence of all the released sub-intervals are given beforehand.

4.1 Dynamic Programming Based Optimal Offline Solution

Since both the UL and the FL settings are special cases of the AL setting, we
present our offline solution in the AL setting4. Suppose, without loss of generality,
that the total number of released sub-intervals in the offline problem equals n.
First. We sort sub-intervals in Vn = {V1, V2, · · · , Vn} in non-decreasing order
of their end locations (i.e., the di of each Vi), which runs in O(n log n) time.
We abuse notations, in this offline solution only, to denote (V1, V2, · · · , Vn) as

4 We do not distinguish our offline solution in the other dimension since our solution
performs optimally in either the UN or the AN.
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the sequence of sorted sub-intervals, i.e., d1 ≤ d2 ≤ · · · ≤ dn, and further Vi =
{V1, · · · , Vi} as the first i sub-intervals in the sequence. Suppose the decision-
maker accepts sub-intervals in Vn in decreasing order of their subscripts as well.

Definition 1. Vψ(i) = arg max
{Vj∈Vi−1|oj<oi≤dj}

{oi − oj} indicates the sub-interval in

Vi−1 that intersects with Vi and has the left-most start location.

Definition 2. Vφ(i) = arg min
{Vj∈Vi−1|dj<oi}

{oi−dj} indicates the sub-interval in Vi−1

that is disjoint from but is closest to Vi.

Proposition 1. Once an offline OPT accepts Vi, OPT accepts either Vψ(i) or
a sub-interval in {V1, V2, · · · , Vφ(i)}.

Proof. When Vi is accepted by offline OPT, the next sub-interval to accept
(denoted as V←,i) lies in set Vi−1 = {V1, · · · , Vi−1} as OPT is supposed to
accept sub-intervals in decreasing order of their subscripts. Obviously, V←,i either
intersects or does not intersect with Vi. When V←,i intersects with Vi, we know
V←,i should be the sub-interval in Vi−1 that contributes the most additional
length to Vi, which is Vψ(i) in Proposition 1, as accepting any sub-interval in
{Vψ(i), · · · , Vi−1} cannot increase the overall length of OPT; As the sub-interval
Vφ in Proposition 1 indicates the sub-interval in Vi−1 that is the nearest one to
Vi and not intersect with Vi, we know V←,i lies in {V1, V2, · · · , Vφ(i)} when V←,i
does not intersect with Vi.

Second. Since OPT, denoted as χ(Vn, k), accepts sub-intervals in Vn in decreas-
ing order of their subscripts as well, we write the Bellman Equation in our
dynamic programming as (5) and (6) by setting i = n and j = k initially.
Specifically, we discuss the following cases when handling an arbitrary Vi ∈ Vi.

1. OPT rejects Vi. Then, we have χ(Vi, j) = Len(Vi) if OPT has enough quota,
i.e, i ≤ j, to accept all sub-intervals in Vi; or χ(Vi, j) = χ(Vi−1, j) otherwise;

2. OPT accepts Vi and hence runs out of quota (j = 0). Then, χ(Vi, j) = 0;
3. OPT accepts Vi and remains quota (j ≥ 1). By Proposition 1,

(a) OPT further accepts someone in {V1, V2, · · · , Vφ(i)}. Since Vi is disjoint
from the next accepted sub-interval, χ(Vi, j) = Len(Vi)+χ(Vφ(i), j−1);

(b) OPT further accepts Vψ(i). To calculate χ(Vi, j), we introduce an inter-
mediate function κ(Vi, j) given in Equation (6)5, which always accepts
the last sub-interval Vi in Vi and totally accepts j out of i sub-intervals
in Vi such that the overall covered length of the interval [0, a] is maxi-
mized. Then, we count the length contributed by Vi as the part without
intersection with Vψ(i), which is Len(Vi) − Λ(Vi, Vψ(i)), and transit the
remaining part of OPT’s overall length to κ(Vψ(i), j − 1). This way,
χ(Vi, j) = Len(Vi)− Λ(Vi, Vψ(i)) + κ(Vψ(i), j − 1).

5 The major difference between κ(Vi, j) and χ(Vi, j) is that κ(Vi, j) always accepts
the last sub-interval Vi in Vi while χ(Vi, j) does not necessarily.
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Algorithm 1 Single-threshold Online Algorithm (SOA)

Input: A sequence V = {V1, V2, ..., Vn} of n sub-intervals of the target interval [0, a],
in which Vi = [oi, di] for each Vi ∈ V, the quota k (2 ≤ k ≤ n− 1);
Output: A set of accepted sub-intervals, i.e., Φ(Vn);

1: Φ(V1) = {V1}; {always accept V1}
2: for i = 2; i+ +; i ≤ n do
3: if |Φ(Vi−1)| = k then
4: Φ(Vn) = Φ(Vi−1);
5: break; {Complete accepting as SOA runs out of the quota}
6: else if k − |Φ(Vi−1)| ≥ n− i+ 1 then
7: Φ(Vi) = Φ(Vi−1)∪Vi; {accept Vi by the quota-enough condition}
8: else
9: if Len(Φ(Vi−1) ∪ Vi)− Len(Φ(Vi−1)) ≥ θ with θ given in (7) then

10: Φ(Vi) = Φ(Vi−1) ∪ Vi; {accept Vi by threshold-meeting condition}
11: else
12: Φ(Vi) = Φ(Vi−1); {reject Vi}
13: end if
14: end if
15: end for

χ(Vi, j) =


Len(Vi), i ≤ j

max{χ(Vi−1, j), Len(Vi) + χ(Vφ(i), j − 1),
Len(Vi)− Λ(Vi, Vψ(i)) + κ(Vψ(i), j − 1)}, 1 ≤ j < i

0, j = 0

(5)

κ(Vi, j) =


max{Len(Vi) + χ(Vφ(i), j − 1),

Len(Vi)− Λ(Vi, Vψ(i)) + κ(Vψ(i), j − 1)
}, j > 1

Len(Vi), j = 1
0, j = 0

(6)

Note that our dynamic programming solution totally generates O(kn) interme-
diate states in which each state runs in O(1) time. Together with the preliminary
sorting step, our offline solution totally runs in O(kn+ n log n) time.

4.2 Single-threshold Online Algorithm

We first propose an online algorithm, named the Single-threshold based Online
Algorithm (SOA), for the UN setting. Then, we extend SOA to SOAAN to tackle
the AN setting. Note that SOA and SOAAN can achieve competitive ratios
strictly smaller than 2 for the UN and the AN settings, respectively.

In the UN setting, SOA always accepts the first released sub-interval V1.
On the arrival of each future sub-interval Vi ∈ {V2, ..., Vn}, SOA accepts Vi if
and only if it meets one of the following two conditions: (i) Quota-enough
condition, after accepting Vi, SOA has enough quota to accept all the future
sub-intervals, i.e., k − |Φ(Vi−1)| ≥ n − i + 1; (ii) Threshold-accepting con-
dition, SOA still has quota (i.e., |Φ(Vi−1)| ≤ k − 1) and Vi contributes an
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additional length of at least

θ = min{
√

1 + 2(k − 1)(n− k)− 1

2k − 2
,

√
9k2 − 14k + 9− k − 1

4(k − 1)
} (7)

to the covered length of [0, a] by previously accepted sub-intervals, i.e.,

Len(Φ(Vi−1) ∪ Vi)− Len(Φ(Vi−1)) ≥ θ (8)

We summarize SOA in Algorithm 1 and we note that

– Once some sub-interval is accepted by the quota-enough condition, all later-
released sub-intervals are accepted by SOA;

– SOA always uses up its quota to accept k sub-intervals and only breaks (in
the Step 5 of Algorithm 1) when it accepts k sub-intervals according to the
threshold θ from the first (n− 1) released sub-intervals.

Proposition 2. In SOA, we have threshold θ =

√
1+2(k−1)(n−k)−1

2k−2 if
⌈
667n
1000

⌉
≤

k ≤ n− 1, or θ =
√
9k2−14k+9−k−1

4(k−1) if 2 ≤ k ≤
⌈
667n
1000

⌉
− 1.

Proof. First, we notice the following two inequalities by calculations,√
1+2(d 667n

1000 e−1)(n−d 667n
1000 e)−1

2d 667n
1000 e−2

≤
√

9d 667n
1000 e2−14d 667n

1000 e+9−d 667n
1000 e−1

4(d 667n
1000 e−1)

and√
1+2(d 667n

1000 e−2)(n−d 667n
1000 e+1)−1

2d 667n
1000−1e−2

≥
√

9(d 667n
1000 e−1)2−14(d 667n

1000 e−1)+9−d 667n
1000 e−2

4(d 667n
1000−1e−1)

.

Further, we know

√
1+2(k−1)(n−k)−1

2k−2 decreases as k increases within {2, 3, ..., n−
1}, while

√
9k2−14k+9−k−1

4(k−1) increases as k increases, given the number n of online

sub-intervals. Then, we get the proposition 2.

Theorem 4. For UL-UN, SOA runs in O(n) time and achieves a competitive

ratio no larger than min{
√

1+2(k−1)(n−k)−1
k−1 + 1,

√
9k2−14k+9−k−1

2(k−1) + 1}.

Proof. SOA runs in O(n) time as it runs in no more than n iterations in which
each iteration runs in O(1) time. To show the upper bound of SOA, we discuss
in the following two cases.
Case 1. SOA accepts Vn (the last released sub-interval).

This shows that SOA triggers the quota-enough condition when accepting
some Vi ∈ {V2, V3, ..., Vn}, i.e., k − |Φ(Vi−1)| ≥ n − i + 1. Then, the algorithm
accepts all the sub-intervals {Vi, Vi+1, ..., Vn} that are released later than Vi.
Further, Len(Φ(Vn)) = Len(Φ(Vi−1)∪{Vi, Vi+1..., Vn}). In the worst case, none
of the accepted sub-intervals in {Vi, Vi+1, ..., Vn} contributes additional length
to the algorithm since these accepted sub-intervals are also available to OPT.
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Suppose, without loss of generality, that
⋃

V ∈Φ(Vi−1)

V consists of a number x

of disjoint intervals, which are denoted by A1, A2,..., Ax respectively. Clearly,
1 ≤ x ≤ k. Namely, Len(A1),..., Len(Ax) respectively denote the length of
disjoint intervals of Φ(Vi−1). Hence, Len(Φ(Vi−1)) =

∑x
i=1 Len(Ai).

Note that each rejected sub-interval can contribute an additional length no
more than θ to Len(Φ(Vi−1)), as otherwise it would have been accepted. On
one hand, Len(OPT ) ≤ Len(Φ(Vn)) + θ(n − k) holds naturally since SOA to-
tally rejects (n − k) sub-intervals in Vi−1. On the other hand, Len(OPT ) ≤
Len(Φ(Vn)) + 2θx because there are totally x disjoint intervals formed by the
sub-intervals accepted by SOA, which implies there are at most 2x chances that
sub-interval could be missed/rejected by SOA, and each rejected sub-interval
can contribute less than θ to SOA (by Step 9 of SOA). In summary, the overall
length achieved by the OPT is bounded by the following Inequality (9).

Len(OPT ) ≤ Len(Φ(Vn)) + min{2θx, θ(n− k)} (9)

Hence, we get the ratio

ρ =
Len(OPT )

Len(Φ(Vn))
≤ 1 +

min{2θx, θ(n− k)}
Len(Φ(Vn))

≤ 1 +
2θx∑x

i=1 Len(Ai)

≤ 1 + min{
√

1 + 2(k − 1)(n− k)− 1

k − 1
,

√
9k2 − 14k + 9− k − 1

2(k − 1)
}

in which the first inequality holds by (9), the second inequality holds by
Len(Φ(Vn)) ≥ Len(Φ(Vi−1)) =

∑x
i=1 Len(Ai), and the last inequality holds

by
∑x
i=1 Len(Ai) ≥ x and (7).

Case 2. SOA does not accept Vn.
This implies the quota-enough condition is not triggered during the execu-

tion and SOA accepts k sub-intervals by the threshold-accepting condition. This
implies the following Inequality (10) because each accepted sub-interval, except
V1 (which contributes 1 to SOA), contributes at least θ to SOA, see Step 9 of
SOA.

Len(Φ(Vn)) ≥ 1 + (k − 1)θ (10)

Suppose that Vi ∈ {Vk, ..., Vn−1} is the last accepted sub-interval by SOA, i.e.,
|Φ(Vi)| = k and Len(Φ(Vn)) = Len(Φ(Vi)). In other words, SOA misses all sub-
intervals in {Vi+1, ..., Vn} which can be accepted by OPT. Since the algorithm
can miss at most n−k sub-intervals, OPT can get an accumulating length at most
n− k more than that accepted by SOA, i.e., Len(OPT ) ≤ Len(Φ(Vn)) + n− k.
Also, OPT cannot get a length over its quota k in this unit-length case. In
summary, the overall length accepted by the OPT is bounded by (11).

Len(OPT ) ≤ min{k, Len(Φ(Vn)) + n− k} (11)

We further discuss two sub-cases.

Case 2.1.
⌈
667n
1000

⌉
≤ k ≤ n−1. We have θ =

√
1+2(k−1)(n−k)−1

2k−2 by Proposition 2.
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Algorithm 2 SOAAN

The SOAAN remains the same as the Algorithm 1 by discarding the else if branch of

the quota-enough condition in Lines 6-7 and setting θ =

√
9k2−14k+9−k−1

4(k−1)
;

Note that
∂( θ

2k−n−1
k−1

)

∂k = 8k2−(8n+10)k+9n−3
4(2k−n−1)2

√
1+2(k−1)(n−k)

< 0 for each k ∈ [
⌈
667n
1000

⌉
, n] ⊆

(
8n+10−

√
(8n−8)2+132

16 ,
8n+10+

√
(8n−8)2+132

16 ). Further, we have

θ
2k−n−1
k−1

≤ θ
2k−n−1
k−1

|k=d 667n
1000 e < 1 (12)

Hence,

ρ =
Len(OPT )

Len(Φ(Vn))

≤ min{ k

Len(Φ(Vn))
, 1 +

n− k
Len(Φ(Vn))

} by (11)

≤ min{ k

1 + (k − 1)θ
, 1 +

n− k
1 + (k − 1)θ

} by (10)

=

√
1 + 2(k − 1)(n− k)− 1

k − 1
+ 1 by (12) and θ =

√
1 + 2(k − 1)(n− k)− 1

2k − 2

Case 2.2. 2 ≤ k ≤
⌈
667n
1000

⌉
−1. We have θ =

√
9k2−14k+9−k−1

4(k−1) ≤
√

1+2(k−1)(n−k)−1
2k−2

by Proposition 2. Hence,

ρ =
Len(OPT )

Len(Φ(Vn))

≤ min{ k

Len(Φ(Vn))
, 1 +

n− k
Len(Φ(Vn))

} by (11)

≤ min{ k

1 + (k − 1)θ
, 1 +

n− k
1 + (k − 1)θ

} by (10)

≤ k

1 + (k − 1)θ
=

√
9k2 − 14k + 9− k − 1

2(k − 1)
+ 1 by θ =

√
9k2 − 14k + 9− k − 1

4(k − 1)

By Case 1 and Case 2, the proof completes.

Corollary 4. For UL-AN, SOAAN runs in O(n) time and achieves a competi-

tive ratio no larger than
√
9k2−14k+9−k−1

2(k−1) + 1 for any limited time frame.

Proof. In the UL-AN setting, where the number |V| of total released sub-intervals
is unknown to the online algorithm in advance, we discuss two cases in any
limited time period T for acceptance.
Case 1. SOAAN runs out of its quota k in time frame T and accepts k sub-

intervals by the single threshold θ =
√
9k2−14k+9−k−1

4(k−1) . This implies the overall
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covered length by SOAAN as Len(Φ(V)) ≥ 1 + (k − 1)θ. On the other hand, we
have a trivial upper bound on the covered length of OPT as Len(OPT ) ≤ k.
Hence, we have the ratio

ρ ≤ k

1 + (k − 1)θ
=

√
9k2 − 14k + 9− k − 1

2(k − 1)
+ 1.

Case 2. SOAAN still remains quota (≥ 1) after the time frame T . We get the

ratio as ρ ≤ 1 + 2θ =
√
9k2−14k+9−k−1

2(k−1) + 1 by a similar proof idea as in the Case

1 of Theorem 4.
By Cases 1-2, we get the upper bound of SOAAN as

√
9k2−14k+9−k−1

2(k−1) + 1.

The SOA algorithm can solve the the flexible-length case. Using a similar analysis
idea as in Theorem 4, we have the following Theorem 5 and Theorem 6.

Theorem 5. For US-UN, SOA runs in O(n) time and achieves a competitive

ratio no larger than min{
√

1+2(k−1)(n−k)−1
k−1 + 1,

√
9k2−14k+9−k−1

2(k−1) + 1}.

Proof. SOA runs in O(n) time since it runs in no more than n iterations in which
each runs in O(1) time. In the US-UN setting, the sum of length of sub-intervals
in each Vi ∈ V is a unit. We also discuss two cases.
Case 1. SOA accepts Vn (the last candidate released). Suppose, without loss of
generality, that

⋃
V ∈Φ(Vi−1)

V consists of a number x of disjoint interval, denoted

by A1, A2,..., Ax respectively. Note that each rejected candidate can contribute
an additional length at most θ to Len(Φ(Vi−1)), as otherwise it would have been
accepted. On one hand, Len(OPT ) ≤ Len(Φ(Vn))+θ(n−k) holds naturally since
SOA totally rejects (n−k) candidates in Vi−1. On the other hand, Len(OPT ) ≤
Len(Φ(Vn))+2θx because there are x disjoint intervals formed by the candidates
accepted by SOA. In summary,

Len(OPT ) ≤ Len(Φ(Vn)) + min{2θx, θ(n− k)} (13)

Following the proof idea of the Case 1 in Theorem 4, we also get

ρ ≤ 1 + 2θ ≤ min{
√

1 + 2(k − 1)(n− k)− 1

k − 1
+ 1,

√
9k2 − 14k + 9− k − 1

2(k − 1)
+ 1}

Case 2. SOA does not accept Vn. This implies the quota-enough condition is not
triggered during the execution and SOA accepts k candidates by the threshold-
accepting condition. One one hand, we have Len(SOA) ≥ 1 + (k − 1)θ as each
accepted candidate by SOA (excluding the first accepted one, which actually
contributes a length of 1) contributes at least θ to the overall covered length
of the target interval [0, a] in the worst case. On the other hand, it naturally
holds that Len(OPT ) ≤ min{k, Len(Φ(Vn)) + (n − k)} as a similar analysis in
Theorem 5. By Proposition 2 and Theorem 4, we have

ρ =
Len(OPT )

Len(Φ(Vn))

≤ min{
√

1 + 2(k − 1)(n− k)− 1

k − 1
+ 1,

√
9k2 − 14k + 9− k − 1

2(k − 1)
+ 1}
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By Case 1 and Case 2, the proof completes.

Theorem 6. For FL-UN, SOA runs in O(n) time and achieves a competitive

ratio no larger than min{
√

1+2(k−1)(n−k)m−1
k−1 +1,

√
(1+8m)k2−(6+8m)k+9−k−1

2(k−1) +1}
in which m indicates the maximum possible length of a sub-interval.

Proof. The running time of SOA is proved to be O(n) in Theorem 4.
In the FL-UN setting, the length of each sub-interval varies in a fixed range

[1,m]. Given the value m of the maximum length of a sub-interval the total
number n of potential sub-intervals and the quota k, we take

θ = min{
√

1 + 2(k − 1)(n− k)m− 1

2k − 2
,

√
(1 + 8m)k2 − (6 + 8m)k + 9− k − 1

4(k − 1)
}

Notice that

√
1+2(k−1)(n−k)m−1

2k−2 decreases in k, while

√
(1+8m)k2−(6+8m)k+9−k−1

4(k−1)
increases in k, when k ∈ {2, 3, · · · , n− 1}. We show the competitive ratio by the
following two cases.
Case 1. SOA accepts Vn (the last sub-interval released). Following the proof

idea of Case 1 in Theorem 4, we have ρ ≤ 1 + 2θ ≤ min{
√

1+2(k−1)(n−k)m−1
k−1 +

1,

√
(1+8m)k2−(6+8m)k+9−k−1

2(k−1) + 1}
Case 2. SOA does not accept Vn. This means the quota-enough condition is not
triggered during the execution and SOA accepts k sub-intervals by the threshold-
accepting condition. Suppose that Vi ∈ {Vk, ..., Vn−1} is the last accepted sub-
interval by SOA, i.e., |Φ(Vi)| = k and Len(Φ(Vn)) = Len(Φ(Vi)). In other
words, SOA misses all sub-intervals in {Vi+1, ..., Vn} which can be accepted by
OPT. Since the algorithm can miss at most n − k sub-intervals, OPT can get
an overall length less than Len(Φ(Vn)) + (n − k)m. Also, OPT cannot get an
overall length over km by its quota k in this unit-length case.

Len(OPT ) ≤ min{km,Len(Φ(Vn)) + (n− k)m} (14)

Following the proof idea of Case 2 in Theorem 4, we have

ρ =
Len(OPT )

Len(Φ(Vn))

≤ min{km, 1 + (k − 1)θ + (n− k)m}
1 + (k − 1)θ

≤ min{
√

1 + 2(k − 1)(n− k)m− 1

k − 1
+ 1,

√
(1 + 8m)k2 − (6 + 8m)k + 9− k − 1

2(k − 1)
+ 1}

By Case 1 and Case 2, the proof completes.

Corollary 5. For FL-AN, SOAAN runs in O(n) time and achieves a competitive

ratio no larger than

√
(1+8m)k2−(6+8m)k+9−k−1

2(k−1) +1 for any limited accepting time

frame, in which m indicates the maximum possible length of a sub-interval.
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Proof. Since the n = |V| is discarded in the FL-AN setting, we can upper bound
the overall covered length by OPT as km. Further, by a similar proof idea as in
Theorem 6, one can derive the upper bound of this corollary.

4.3 Double-threshold Online Algorithm

Built upon SOA, we now present the Double-threshold Online Algorithm (DOA)
under the UN setting, which remains the same as Algorithm 1 but extends the
single threshold θ in the threshold-meeting condition to two thresholds θ1 and θ2
(by using θ1 for exploration and θ2 for exploitation). Specifically, SOA changes
the threshold from θ1 to θ2 once accepting ω sub-intervals, in which the values of
(ω, θ1, θ2) are given later by solving the non-linear program (i-viii). Before that,
we first give the competitive analysis of DOA.

Denote j as the number of disjoint intervals formed by the sub-intervals
accepted by DOA. When DOA accepts less than k sub-intervals by threshold,
the overall length achieved by OPT is no more than Len(Φ(Vn)) + 2jθ and
certainly no more than the quota k, implying Lemma 1. When DOA accepts k
sub-intervals by threshold, the overall length of OPT should be no more than
(n−k+ 1 + (ω−1)θ1 + (k−ω)θ2) and also no more than k, implying Lemma 2.

Lemma 1. In UL-UN, when DOA accepts i (1 ≤ i ≤ k − 1) sub-intervals
by threshold and quota-enough accepts k − i sub-intervals, OPT can achieve an

overall length at most min{k,j+(i−j)θ1+2jθ1}
j+(i−j)θ1 times of DOA length for 1 ≤ i ≤ ω−1

or at most min{k,j+(ω−1)θ1+(i−ω+2j)θ2}
j+(ω−1)θ1+(i−ω)θ2 times of DOA length for ω ≤ i ≤ k − 1.

Lemma 2. In UL-UN, when DOA threshold-accepts k sub-intervals, OPT can

achieve an overall length at most min{k,n−k+1+(ω−1)θ1+(k−ω)θ2}
1+(ω−1)θ1+(k−ω)θ2 times of DOA’s.

Theorem 7. In UL-UN, the competitive ratio of DOA is upper bounded by

C = max{1 + 2θ1, 1 +
2θ2

1 + ω−s
s
θ1
,

k

s+ 1 + (ω − s− 1)θ1
,

min{k, n− k + q}
q

} (15)

where q = 1 + (ω − 1)θ1 + (k − ω)θ2, s = k+(1−ω)θ1−2θ2
1+2θ2−θ1 .

Proof. Suppose, w.l.o.g., that DOA threshold-accepts i sub-intervals and quota-
enough accepts the other (k−i) sub-intervals. Let j denote the number of disjoint
intervals formed by the k accepted sub-intervals. In the worst case scenario, the
k−i quota-enough accepted sub-intervals only contribute an additional length of
zero to the covered length of the interval [0, a] by previously threshold-accepted
sub-intervals. We discuss in three cases,
Case 1. 1 ≤ i ≤ ω − 1. By Lemma 1, we have the ratio

ρ ≤ min{k,Len(Φ(Vn))+2jθ1}
Len(Φ(Vn)) ≤ min{k,j+(i−j)θ1+2jθ1}

j+(i−j)θ1 ≤ 1 + 2θ1.

Case 2. ω ≤ i ≤ k−1. Denote s+1 as the minimum number of disjoint intervals
formed by the accepted sub-intervals in an optimal solution. Suppose w.l.o.g.,
OPT achieves its maximum overall length k in the worst-case scenario. We have
s+ 1 + (ω− s)θ1 + 2(s+ 1)θ2 ≥ k and s+ (ω− s)θ1 + 2sθ2 < k in the worst case,
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k+(1−ω)θ1−2θ2
1+2θ2−θ1 ≤ s ≤ k−ωθ1

1−θ1+2θ2

Further, we get s = k+(1−ω)θ1−2θ2
1+2θ2−θ1 ∈ [1, ω − 1] satisfying Inequality (4.3).

Case 2.1. j ≤ s. By Lemma 1, the ratio is upper bounded by

j+(ω−j)θ1+(i−ω)θ2+2jθ2
j+(ω−j)θ1+(i−ω)θ2 ≤ s+(ω−s)θ1+2sθ2

s+(ω−s)θ1 = 1 + 2θ2
1+ω−s

s θ1

Case 2.2. j ≥ s+ 1. By Lemma 1, the ratio is upper bounded by

k
j+(ω−j)θ1+(i−j)θ2 ≤

k
s+1+(ω−s−1)θ1

Case 3. i = k. By Lemma 2, the competitive ratio of DOA is upper bounded

by min{k,n−k+1+(ω−1)θ1+(k−ω)θ2}
1+(ω−1)θ1+(k−ω)θ2 .

By Cases 1, 2, 3, competitive ratio of DOA is upper bounded by (15).

To find the timing ω and the thresholds (θ1, θ2) that optimize the competitive
ratio of DOA, we propose the following nonlinear program to minimize the max-
imum value (denoted by C) of the competitive ratio in Equation (15), where
constraints (ii)-(vi) are transformed from Equation (15) respectively and con-
straints (vii) 6 and (viii) are naturally required.

min
(ω,θ1,θ2)

C (i)

s.t. C ≥ 1 + 2θ1, (ii)

C ≥ 1 +
2θ2

1 + ω−s
s
θ1

(iii)

C ≥ k

s+ 1 + (ω − s− 1)θ1
(iv)

C ≥ min{k, n− k + 1 + (ω − 1)θ1 + (k − ω)θ2}
1 + (ω − 1)θ1 + (k − ω)θ2

(v)

s =
k + (1− ω)θ1 − 2θ2

1 + 2θ2 − θ1
(vi)

1 ≤ ω ≤ k (vii)

0 < θ1 < θ2 ≤ 1, (viii)

Theorem 8. DOA with (ω, θ1, θ2) returned by program (i)-(viii) achieves the
best worst-case performance of online algorithms with two thresholds.

Since the program (i-viii) is nonlinear and is complicated when transformed into
a linear programming, we search its approximated solution under the UL-UN
setting by giving the precision of θ as 0.01 and n = 100. According to the
searching result, we observe that the ω value should be set at around 0.8k and
θ1 < θ2. The double-threshold algorithm DOA improves the performance of the
single-threshold based algorithm (see Figure 2 below). What is worth noting is
that, when the ratio k

n of the quota over the total number of online sub-intervals

6 Constraint (vii) actually can be restricted, by calculation, to
⌈
k+1
5

⌉
≤ ω ≤ k.
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Fig. 2. Performance among DOA, SOA and the lower bound in UL-UN.

is relatively small (resp. large), we find that more quota induces worse (resp.
better) performances of both SOA and DOA since OPT has more chances to
gain values from those missed sub-intervals by our algorithms (resp. since online
algorithms have fewer chances to miss values from OPT). The turning point of
k
n is around 2

3 in SOA since the two items of the competitive ratio in Theorem 4
are monotone decreasing and increasing, respectively, with regard to k, and meet
when k

n ≈
2
3 . Interestingly, the turning point of k

n is also around 2
3 in DOA, see

the example in Figure 2. We can also extend to more than two thresholds, yet the
analysis will be more involved with only mild improvement. Particularly, when
the thresholds in an algorithm are non-increasing as accepting sub-intervals, we
have the following theorem.

Theorem 9. SOA outperforms any online deterministic algorithm that accepts
sub-intervals by non-increasing thresholds.

Proof. We discuss the competitive ratio of such ALG in the UL setting in a
limited time frame T in this proof. First, we define the online algorithm (ALG)
concerned in this theorem as follows.

An online algorithm with non-increasing thresholds: uses threshold
θj for the ith sub-interval to be accepted, satisfying that θ1 ≥ θ2 · · · ≥ θk.
Specifically, suppose the ALG accepts a set of i sub-intervals already, then,
ALG accepts a new sub-interval if and only if the new sub-interval contributes
an additional length to ALG equal to or larger than θi+1. The algorithm stops
only when either it runs out of the quota k or the time frame concerned ends.

For ease of understanding, we recall the following notations used in the proof.

– Len(Φ(V)) denote the overall covered length of the target interval [0, a] by
accepted sub-intervals in ALG in the given time period T ;

– Len(OPT ) denotes the overall covered length of the target [0, a] by accepted
sub-intervals in OPT in the time frame T ;
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Suppose, w.l.o.g., that ALG finally accepts y sub-intervals within the given time
frame T , formulating a number x of disjoint intervals of the target [0, a]. Now,
we discuss k cases with regard to y, in each of which we further discuss a number
y of subcases with regard to x.
Case 1. y = 1. Clearly, we have x = 1. Note that Len(OPT ) can not exceed
over Len(Φ(V)) by 2θ2 as otherwise ALG can accept another sub-interval by
θ2 ≤ θ1, we have ρcase 1.1 = 1+2θ2

1 = 1 + 2θ2;
Case 2. y = 2. We have two subcases.

– Case 2.1. x = 1. We have Len(Φ(V)) ≥ 1+θ2 and Len(OPT ) ≤ 1+θ2+2θ3
as otherwise ALG can accept the third sub-interval by threshold θ3 ≤ θ2.

Hence, ρcase 2.1 = Len(OPT )
Len(Φ(V)) = 1+θ2+2θ3

1+θ2
= 1 + 2θ3

1+θ2
;

– Case 2.2. x = 2. We have Len(Φ(V)) = 2 in this unit-length setting and
Len(OPT ) ≤ 2 + 4θ3 as otherwise ALG can accept the third sub-interval by

threshold θ3 ≤ θ2. Hence, ρcase 2.2 = Len(OPT )
Len(Φ(V)) ≤

2+4θ3
2 = 1 + 2θ3 which is

larger than ρcase 2.1 = 1 + 2θ3
1+θ2

.

overall, the ratio of Case 2 is upper bounded by ρcase 2.2 = 1 + 2θ3 < 1 + θ2
...

Case [k
2
]. y = [k2 ]. We have [k2 ] subcases.

– Case [k2 ].1. x = 1. We have Len(Φ(V)) ≥ 1 +
∑[ k2 ]
i=2 θi and

Len(OPT ) ≤ Len(Φ(V)) + 2θ[ k2 ]+1 = 1 +

[ k2 ]∑
i=2

θi + 2θ[ k2 ]+1

in which the inequality holds as otherwise ALG can accept the ([k2 ] + 1)th
sub-interval by threshold θ[ k2 ]+1 ≤ θ[ k2 ]. Hence,

ρcase [ k2 ].1.
=
Len(OPT )

Len(Φ(V))
≤ 1 +

2θ[ k2 ]+1

1 +
∑[ k2 ]
i=2

θi

– Case [k2 ].2. x = 2. We have Len(Φ(V)) ≥ 2 +
∑[ k2 ]
i=3 θi and

Len(OPT ) ≤ Len(Φ(V)) + 4θ[ k2 ]+1 = 2 +

[ k2 ]∑
i=3

θi + 4θ[ k2 ]+1

in which the inequality holds as otherwise ALG can accept the ([k2 ] + 1)th
sub-interval by threshold θ[ k2 ]+1 ≤ θ[ k2 ]. Hence,

ρcase [ k2 ].2.
=
Len(OPT )

Len(Φ(V))
≤ 1 +

4θ[ k2 ]+1

2 +
∑[ k2 ]
i=3 θi

= 1 +
2θ[ k2 ]+1

1 +
∑[ k

2
]

i=3 θi
2

...
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– Case [k2 ].j-1. x = j − 17. We have Len(Φ(V)) ≥ j − 1 +
∑[ k2 ]
i=j θi and

Len(OPT ) ≤ Len(Φ(V)) + 2(j − 1)θ[ k2 ]+1

in which the inequality holds as otherwise ALG can accept the ([k2 ] + 1)th
sub-interval by threshold θ[ k2 ]+1 ≤ θ[ k2 ]. Hence,

ρcase [ k2 ].j−1.
=
Len(OPT )

Len(Φ(V))
≤ 1 +

2(j − 1)θ[ k2 ]+1

j − 1 +
∑[ k2 ]
i=j θi

= 1 +
2θ[ k2 ]+1

1 +
∑[ k

2
]

i=3 θi
j−1

note that ρcase [ k2 ].j−1.
≥ ρcase [ k2 ].1.

= 1 +
2θ

[ k
2
]+1

1+
∑[ k

2
]

i=3 θi

.

– Case [k2 ].j. x = j. We have Len(Φ(V)) ≥ j +
∑[ k2 ]
i=j+1 θi and

Len(OPT ) ≤ Len(Φ(V)) + (k − j)θ[ k2 ]+1

in which the inequality holds as OPT can exceed over ALG by at most
(k − j)θ[ k2 ]+1 by k < 3j and the budget k. Hence,

ρcase [ k2 ].j.
=
Len(OPT )

Len(Φ(V))
≤ 1 +

(k − j)θ[ k2 ]+1

j +
∑[ k2 ]
i=j+1 θi

= 1 +
2θ[ k2 ]+1

2j
k−j +

2
∑[ k

2
]

i=j+1 θi

k−j

note that ρcase [ k2 ].j.
≤ ρcase [ k2 ].1.

= 1 +
2θ

[ k
2
]+1

1+
∑[ k

2
]

i=3 θi

≤ ρcase [ k2 ].j−1.
, in which

the first inequality holds by k ≤ 3k.

– Case [k2 ].j+1. x = j + 1. We have Len(Φ(V)) ≥ j + 1 +
∑[ k2 ]
i=j+2 θi and

Len(OPT ) ≤ Len(Φ(V)) + kθ[ k2 ]+1

in which the inequality holds as OPT can exceed over ALG by at most
kθ[ k2 ]+1 since k < 3j. Hence,

ρcase [ k2 ].j+1. =
Len(OPT )

Len(Φ(V))
≤ 1 +

kθ[ k2 ]+1

j + 1 +
∑[ k2 ]
i=j+2 θi

note that ρcase [ k2 ].j+1. ≤ ρcase [ k2 ].j.
as θ ≤ 1.

...

We note that the ratios subcases of this Case [k2 ] increase as the x increases
within {1, · · · , j − 1} and further decrease as the x increases within {j, · · · , y}.
7 Here, the j is chosen such that 2j + 2 ≤ k < 3j.
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Overall, we have the ratio of this case as

ρcase[ k2 ]
= max

1≤x≤[ k2 ]
{ρcase[ k2 ].x} = ρcase[ k2 ].j−1

= 1 +
2θ[ k2 ]+1

1 +
∑[ k

2
]

i=3 θi
j−1

< 1 + 2θ[ k2 ]+1

≤ ρcase1 = 1 + 2θ2.

...
Case k. y = k. Clearly, Len(OPT ) ≤ k while Len(Φ(V)) ≥ 1 + θ1 + · · · + θk.
Hence, we have ρcase k ≤ k

1+
∑k
i=2 θi

Notice the the ratios of the cases decreases as the y increase till y = k − 1.
Therefore, the competitive ratio of ALG is upper bounded by

max{ k

1 +
∑k
i=2 θi

, 1 + 2θ2}

≥ max{ k

1 + (k − 1)θ2
, 1 + 2θ2}

≥
√

9k2 − 14k + 9− k − 1

2(k − 1)
+ 1 ratio of SOA in AN

≥ min{
√

1 + 2(k − 1)(n− k)− 1

k − 1
+ 1,

√
9k2 − 14k + 9− k − 1

2(k − 1)
+ 1} ratio of SOA in UN

in which the first inequality holds by θ1 ≥ θ2 · · · ≥ θk, and the second inequality

holds by
√
9k2−14k+9−k−1

4(k−1) = min
θ2

max{ k
1+(k−1)θ2 , 1 + 2θ2}.

The proof completes.

5 Concluding Remarks

This paper studies the online maximum k-coverage problem on a line without
preemption. With regard to the length of each sub-interval and the number of
totally released sub-intervals, we comprehensively consider different settings in
this paper. Our contribution is three-fold.

First, we present lower bounds on the competitive ratio for the settings
respectively. Second, we propose an optimal solution for the offline problem
where the sequence of offline sub-intervals is given to the decision-maker at
the very beginning. Third, we present two online algorithms, including a single-
threshold-based algorithm SOA and a double-threshold-based algorithm (DOA).
DOA uses its first threshold (which is usually set below 0.5) for exploration in
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accepting the first [0.8k] released sub-intervals and its second threshold (which is
set larger than the first threshold) for exploitation in accepting the last k− [0.8k]
sub-intervals. We prove that SOA achieves competitive ratios close to the lower
bounds, respectively, and DOA, with its parameters computed by our proposed
program, improves the performance of SOA slightly. In addition, we show that
any online deterministic algorithm that accepts sub-intervals by non-increasing
thresholds, cannot achieve a competitive ratio better than SOA no matter how
many thresholds the algorithm uses.

For the future work, we may consider the case that different sub-intervals
are associated with different costs instead of unit costs in this paper, considering
that candidates may call for different payments in crowding-sourcing activities.
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A Dynamic Programming Solution to The Unit-length
Setting

Both the unit-length case and the flexible-length case can be regarded as a special
case of the arbitrary-length case. Hence, our dynamic programming-based offline
solution can be easily applied to the other two cases. Here, we take the unit-
length case as an example.

To solve the offline problem, we first sort offline sub-intervals in V in non-
decreasing order of their end locations, which runs in O(kn+n log n) time in the
worst case. In the following solution, we abuse notation to denote {V1, V2, ..., Vn}
as the sub-interval set we got after sorting, i.e., d1 ≤ d2 ≤ · · · ≤ dn, and
hence their start locations satisfy o1 ≤ o2 ≤ · · · ≤ on. Suppose, without loss of
generality, that the optimal offline solution (i.e., OPT) accepts sub-intervals in
Vn in decreasing order of the subscripts. Note that the overall length of OPT
would not decrease when replacing the right-most sub-interval by Vn, implying
the following Observations 1 & 2.
Observation 1. In an optimal offline solution, Vn is accepted.
Observation 2. Once Vi ∈ V is accepted by OPT, one of the following two
sub-intervals is accepted by OPT.

Vλ(i) = arg max
{Vj∈V|di−1≤dj≤di}

{|di − dj |} (16)

or

Vµ(i) = arg min
{Vj∈V|di−dj≥1}

{|di − dj |} (17)

in which λ(i) and µ(i) indicate the corresponding subscripts of the sub-intervals
in V respectively.

To see why, we give an example in Figure 3, in which Vλ(i) = Vi−2 since Vi−2
contributes an additional length to OPT more than Vi−1 does, and Vµ(i) = Vi−3
since Vi−3 contributes an additional length to OPT no less than Vi−4 or Vi−5
does.

Fig. 3. An explanation of Observation 2

Dynamic programming approach. Given the offline sub-intervals in Vn,
the optimal solution χ(Vn, k) can be obtained via the following equations by
Observations 1-2: when both Vλ(n) and Vµ(n) exist, we have Equation (18); when
Vµ(n) exists but Vλ(n) does not, we have Equation (19); when Vλ(n) exists but
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Vµ(n) does not, we have Equation (20); when neither Vλ(n) nor Vµ(n) exists, we
have Equation (21). For base cases, we have Equation (22) when k = 0 for
arbitrary set Vi, and Equation (23) when k = 1 for arbitrary set Vi.

Since our dynamic programming approach generates O(kn) different inter-
mediate states in which each state is calculated in O(1) time, our offline optimal
solution totally runs in O(kn + n log n) time, including the preliminary sorting
step. We have

χ(Vn, k) = max{χ(Vµ(n), k − 1) + 1, χ(Vλ(n), k − 1) + 1− Λ(Vn, Vλ(n))} (18)

χ(Vn, k) = χ(Vµ(n), k − 1) + 1, (19)

χ(Vn, k) = χ(Vλ(n), k − 1) + 1− Λ(Vn, Vλ(n)) (20)

χ(Vn, k) = 1 (21)

χ(Vi, 1) = 1 (22)

χ(Vi, 0) = 0 (23)
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