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Abstract

We study a participatory budgeting problem of aggregating the preferences of agents and
dividing a budget over the projects. A budget division solution is a probability distribution
over the projects. The main purpose of our study concerns the comparison between the system
optimum solution and a fair solution. We are interested in assessing the quality of fair solutions,
i.e., in measuring the system efficiency loss under a fair allocation compared to the one that
maximizes (egalitarian) social welfare. This indicator is called the price of fairness. We are
also interested in the performance of several aggregation rules. Asymptotically tight bounds are
provided both for the price of fairness and the efficiency guarantee of aggregation rules.

Keywords: Participatory budgeting; Fairness; Probabilistic voting

1 Introduction

Suppose there is a list of possible projects that require funding, and some self-interested agents
(citizens, parties or players) have their preferences over the projects. Participatory budgeting is
a process of aggregating the preferences of agents, and allocating a fixed budget over projects
[12, 18, 11]. It allows citizens to identify, discuss, and prioritize public spending projects, and gives
them the power to make real decisions about how to allocate part of a municipal or public budget,
and how money is spent. These problems consist in sharing resources so that the agents have high
satisfaction, and at the same time the budget should be utilized in an efficient way from a central
point of view.

We consider participatory budgeting as a probabilistic voting process [17], which takes as input
agents’ preferences and returns a probability distribution over projects. That is, a budget division
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outcome is a vector of non-negative numbers, one for each project, summing up to 1. We focus on an
important special case of dichotomous preferences: each agent either likes or dislikes each project,
and her utility is equal to the fraction of the budget spent on projects she likes. Dichotomous
preferences are of practical interest because they are easy to elicit. This process is also referred to
as approval voting, as each voter (agent) specifies a subset of the projects that she “approves”.

The decision-maker is confronted with a system objective of social welfare maximization, and
looks for a budget division solution that performs well under the objective. A system optimum
is any solution maximizing the social welfare. The utilitarian social welfare is defined as the sum
of utilities over all agents, and the egalitarian social welfare is the minimum among the utilities
of agents. On the other hand, it is desirable for a budget division solution to achieve the fairness
among agents. Fairness usually concerns comparing the utility gained by one agent to the others’
utilities. The concept of fairness is not uniquely defined since it strongly depends on the specific
problem setting and also on the agents perception of what a fair solution is. For example, the
Individual Fair Share requires that each one of the n agents receives a 1/n share of decision power,
so she can ensure an outcome she likes at least 1/n of the time (or with probability at least 1/n).

The system optimum may be highly unbalanced, and thus violate the fairness axioms. For
instance, it could assign all budget to a single project and this may have severe negative effects in
many application scenarios. Thus, it would be beneficial to reach a certain degree of agents’ satis-
faction by implementing some criterion of fairness. Clearly, the maximum utility of fair solutions
in general deviates from the system optimum and thus incurs a loss of system efficiency. In this
paper, we want to analyze such a loss implied by a fair solution from a worst-case point of view.

We are interested in assessing the quality of fair solutions, i.e., in measuring the system efficiency
loss under a fair allocation compared to the one that maximizes the system objective. This indicator
is called the price of fairness. Michorzewski et al. [20] study the price of fairness in participatory
budgeting under the objective of maximizing the utilitarian social welfare. We consider this problem
from an egalitarian perspective.

Fairness axioms. Given a budget equal to 1 and n agents, there are some well-studied fairness
criteria for a budget division solution (or simply, a distribution) [7, 15, 16, 2]. Individual Fair
Share (IFS) requires that the utility of each agent is at least 1/n. Stronger fairness properties
require that groups are fair in a sense. Unanimous Fair Share (UFS) gives to every group of agents
with the same approval set an influence proportional to its size, that is, each agent in this kind
of group will obtain a utility at least the group’s related size (its size divided by n). Group Fair
Share (GFS) requires that for any group of agents, the total fraction of the projects approved by
the agents of this group is at least its relative size. Core Fair Share (CFS) reflects the incentive
effect in the voting process. It says that for any group, each agent of the group cannot obtain a
higher utility under another mixture with a probability proportional to the group size. Average
Fair Share (AFS) requires that the average utility of any group with a common approved outcome
is at least its relative size. A distribution satisfies implementability (IMP) if it can be decomposed
into individual distributions such that no agent is asked to spend budgets on projects she considers
as valueless. We remark that all other axioms mentioned above are stronger than IFS. Besides,
CFS, AFS and IMP implies GFS, which implies UFS [2].

Voting rules. The input of voting rules, also called participatory budgeting rules, includes a list
of possible projects, the total available budget, and the preferences of agents. The output is a
partition of budget among the projects - determining how much budget to allocate to each project-
which can be seen as a distribution. We say a voting rule satisfies a certain fairness axiom, if any
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distribution induced by this rule satisfies that. We study the following voting rules that have been
proposed for this setting.

Utilitarian (UTIL) rule selects a distribution maximizing the utilitarian social welfare, which
focus only on efficiency. Conditional Utilitarian (CUT) rule is its simple variant, maximizing util-
itarian welfare subject to the constraint that the returned distribution is implementable. Random
Priority (RP) rule averages the outcomes of all deterministic priority rules. Nash Max Product
(NASH) rule balances well the efficiency and fairness, which selects the distribution maximizing
the product of agents’ utilities. Egalitarian (EGAL) rule selects a distribution maximizing the min-
imum utility of agents. Though it is fair to individuals, it does not attempt to be fair to groups,
and the egalitarian objective even treats different voters with the same approval set as if they were
a single voter. Point Voting (PV) rule assigns each project a fraction of budget proportional to its
approval score, which does not satisfy any of our fairness properties. Uncoordinated Equal Shares
(ES) rule allocates each agent a 1/n share of the budget to spend equally on her approval projects.

1.1 Our results

In this paper, we study the participatory budgeting problem under the objective of maximizing the
egalitarian social welfare, i.e., the minimum utility among all agents. Two questions are considered
in a worst-case analysis framework: how well can a distribution perform on the system efficiency,
subject to a fairness constraint, and how much social welfare can be achieved by a certain voting
rule. Suppose there are n agents and m projects, and the total budget is 1.

For the former question, we measure the system efficiency loss under a fair distribution by
the price of fairness, defined as the ratio of the social welfare of the best fair distribution to the
social welfare of the system optimum, under the worst-case instance. We study six fairness axioms
concerning the price of fairness, and provided asymptotically tight bounds in Section 3. Because
every system optimum satisfies IFS, the price of IFS is trivially 1. By constructing an example, we
show that no distribution satisfying UFS (or GFS, IMP, AFS, CFS) can do better than 2

n for this
example, and prove (almost) tight lower bounds. Our results are summarized in Table 1.

Table 1: The price of fairness for 6 axioms.

Fairness axioms IFS UFS GFS IMP AFS CFS

Lower bounds 1 2
n

2
n

2
n − 1

n2
2
n − 1

n2
2
n − 1

n2

Upper bounds 1 2
n

2
n

2
n

2
n

2
n

For the latter question, we study seven voting rules in Section 4. The efficiency guarantee [19]
of a voting rule is the worst-case ratio between the social welfare induced by the rule and the
system optimum. We provide asymptotically tight bounds for their efficiency guarantees, as shown
in Table 2. Obviously EGAL is optimal, but it is not fair enough. CUT, NASH, ES and RP have
a guarantee of Θ( 1n), and in particular, NASH is very fair in the sense that it satisfies all axioms
mentioned above.

1.2 Related work

Participatory budgeting (PB), introduced by Cabannes [12], is a process of democratic deliberation
and decision-making, in which an authority allocates a fixed budget to projects, according to the
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Table 2: Efficiency guarantees for 7 voting rules

Voting rules UTIL CUT NASH EGAL PV ES RP

Lower bounds 0 1
n

2
n − 1

n2 1 0 1
n

2
n

Upper bounds 0 1
n−3

2
n 1 O( 1

mn)
1
n+O( 1

nk )
2
n

preferences of multiple agents over the projects. Goel et al. [18] and Benade et al. [4] mainly focus
on aggregation rules of PB for social welfare maximization. In the setting where the budget is
perfectly divisible, it can be regarded as a probabilistic voting process [17, 11], where a voting rule
takes as input agents’ (aka voters’) preferences and returns a probability distribution over projects.

An important consideration on PB is what input format to use for preference elicitation - how
each voter should express her preferences over the projects. While arbitrary preferences can be
complicated and difficult to elicit, dichotomous preferences are simple and practical [6, 7], where
agents either approve or disapprove a project. For the dichotomous preference, there have been
works both for divisible projects (e.g., [7, 2]) and indivisible projects (e.g., [3, 23]). This divisible
approval-based setup is a popular input format in many settings, for which many fairness notions
and voting rules have been proposed [15, 2, 10]. The fair share guarantee principles (e.g., IFS, GFS
and AFS) are central to the fair division literature [21, 8]. IMP is discussed in [10]. Brandl et.al
[9] give a formal study of strict participation in probabilistic voting. Recently, Aziz et.al [2] give a
detailed discussion of the above fairness notions.

For the voting rules (sometimes referred to as PB algorithms), EGAL rule maximizes the egal-
itarian social welfare, and is used as the lead rule in related assignment model with dichotomous
preferences in [6]. NASH rule maximizes a classic collective utility function, and has featured
prominently in researches [2, 13, 14, 16]. CUT rule was first implicitly used in [15] and studied in
more detail by Aziz et al. [2]. RP rule is discussed in [7].

Our work takes direct inspiration from Michorzewski et al. [20], who study the price of fairness
in the divisible approval-based setting for maximizing utilitarian social welfare (while we consider
the egalitarian one). Price of fairness quantifies the trade-off between fairness properties and
maximization of egalitarian social welfare, and is widely studied [5, 1, 22].

2 Preliminaries

An instance is a triple I = (N,P,A), where N = {1, . . . , n} is a set of agents and P = {p1, . . . , pm}
is a set of projects. Each agent i ∈ N has an approval set Ai ⊆ P over the projects, and A =
{A1, . . . , An} is the profile of approval sets. Let In be the set of all instances with n agents. For
each project pj ∈ P , let N(pj) = {i ∈ N : pj ∈ Ai} be the set of agents who approve pj, and
|N(pj)| be the approval score of pj.

A budget division solution is a distribution x ∈ [0, 1]m over the projects set P , where xj indicates
the budget assigned to project pj, and

∑m
j=1 xj = 1. Let ∆(P ) be the set of such distributions.

The utility of agent i ∈ N under distribution x is the amount of budget assigned to her approved
projects, that is, ui(x) =

∑

pj∈Ai
xj . The (egalitarian) social welfare of x is

sw(I,x) = min
i∈N

ui(x).
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Define the normalized social welfare of x as

ŝw(I,x) =
sw(I,x)

sw∗(I)
,

where sw∗(I) is the optimal social welfare of instance I. Clearly, ŝw(I,x) ∈ [0, 1]. Though the
system optimum (that maximizes the minimum utility of agents) is fair in some sense, it is not fair
enough. We consider six fairness axioms. Given an instance I = (N,P,A), a distribution x satisfies

• Individual Fair Share (IFS) if ui(x) ≥ 1/n for all agent i ∈ N ;

• Unanimous Fair Share (UFS) if for every S ⊆ N such that Ai = Aj for all i, j ∈ S, we have
ui(x) ≥ |S|/n for any i ∈ S.

• Group Fair Share (GFS) if for every S ⊆ N , we have
∑

pj∈∪i∈SAi
xj ≥ |S|/n;

• Implementability (IMP) if we can write x = 1
n

∑

i∈N xi for some distribution xi such that
xi,j > 0 only if pj ∈ Ai;

• Average Fair Share (AFS) if for every S ⊆ N such that
⋂

i∈S Ai 6= ∅, we have 1
|S|

∑

i∈S ui(x) ≥

|S|/n;

• Core Fair Share (CFS) if for every S ⊆ N , there is no vector z ∈ [0, 1]m with
∑m

j=1 zj = |S|/n
such that ui(z) > ui(x) for all i ∈ S.

IFS is the weakest one among the above axioms. Besides, each of CFS, AFS and IMP implies
GFS, which implies UFS.

A voting rule f is a function that maps an instance I to a distribution f(I) ∈ ∆(P ). We
consider the following voting rules:

• Utilitarian (UTIL) rule selects x maximizing
∑

i∈N ui(x).

• Conditional Utilitarian (CUT) rule selects the distribution 1
n

∑

i∈N xi, where xi is the uniform
distribution over the projects in Ai with the highest approval score.

• Nash Max Product (NASH) rule selects x maximizing
∏

i∈N ui(x).

• Egalitarian (EGAL) rule selects x maximizing mini∈N ui(x).

• Point Voting (PV) rule selects x, where xj =
|N(pj)|∑
p∈P |N(p)| for pj ∈ P .

• Uncoordinated Equal Shares (ES) rule selects distribution 1
n

∑

i∈N xi, where xi is the uniform
distribution over Ai, for any i ∈ N .

• Random Priority (RP) rule selects 1
n!

∑

σ∈Θ(N) f
σ(I), where Θ(N) is the set of all strict

orderings of N , and fσ(I) ∈ argmaxx∈∆(P ) ≻
σ
lexico is a distribution maximizing the utilities

of agents lexicographically with ordering σ.

A voting rule f satisfies a fairness axiom if distribution f(I) satisfies it for all instances I. Table
3 shows the fairness axioms satisfied by the above voting rules.

As a warm-up, we give some properties on the optimal social welfare.
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Table 3: Fairness axioms satisfied by voting rules

UTIL CUT NASH EGAL PV ES RP

IFS + + + + +

UFS + + + +

GFS + + + +

IMP + + +

AFS +

CFS +

Proposition 2.1. Let m∗ be the minimum possible number such that there is an optimal distribution
giving positive budget to exactly m∗ projects. If m∗ > 1, the optimal social welfare is at most m∗−1

m∗ .
If m∗ = 1, the optimal social welfare is 1.

Proof. Consider an optimal distribution x that gives positive budget to m∗ > 1 projects. For
each project pj ∈ P , there must exist an agent (say aj ∈ N) who does not approve pj ; otherwise,
a distribution allocating budget 1 to this project is optimal, and thus m∗ = 1, a contradiction.
Further, because x distributes budget 1 among the m∗ projects, there is a project pk receiving a
budget at least 1

m∗ , and agent ak has a utility at most 1− 1
m∗ , establishing the proof.

Proposition 2.2. Let m′ = minS⊆P :∪p∈SN(p)=N |S| be the minimum possible number of projects

that cover all agents. Then the optimal social welfare is at least 1
m′ .

Proof. Consider m′ projects that cover all agents, i.e., each agent approves at least one of the m′

projects. A distribution that allocates 1
m′ to each of the m′ projects induces a utility of at least 1

m′

for every agent, implying the optimal social welfare at least 1
m′ .

Proposition 2.3. For an instance (N,P,A), if the optimal social welfare is k
n for some k ≤ n,

then there exists a project pj ∈ P such that at least ⌊k⌋ agents approve it, i.e., N(pj) ≥ ⌊k⌋.

Proof. Suppose for contradiction that for every pj ∈ P , N(pj) ≤ ⌊k⌋ − 1. Let x be an optimal
distribution. Each project pj can provide totally at most (⌊k⌋ − 1)xj utility for the n agents. As
∑

pj∈P
xj = 1, the total utility that the m projects can provide for the n agents is at most ⌊k⌋− 1.

Hence, there exists at least one agent whose utility is at most ⌊k⌋−1
n < k

n , a contradiction with the
optimal social welfare.

3 Guarantees for fairness axioms

Given an instance I, the price of fairness (POF) of IFS with respect to I is defined as the ratio of
the social welfare of the best IFS distribution to the optimal social welfare, that is,

POFIFS(I) = sup
x∈∆IFS

sw(I,x)

sw∗(I)
= sup

x∈∆IFS

ŝw(I,x),

where ∆IFS is the set of distributions satisfying IFS.
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The POF of IFS is the infimum over all instances, that is,

POFIFS = inf
I∈In

POFIFS(I).

The POFs of other fairness axioms are similarly defined.
By the definition of IFS (that every agent receives a utility at least 1/n), it is easy to see that

every instance admits an IFS distribution, and thus an optimal distribution must satisfy IFS. We
immediately have the following theorem.

Theorem 3.1. For any instance I, there exists an IFS distribution x such that ŝw(I,x) = 1. That
is, POFIFS = 1.

Also, we can give a tight lower bound for the normalized social welfare of IFS distributions.
Recall that GFS implies IFS.

Theorem 3.2. For any instance I and any IFS (or GFS) distribution x, we have ŝw(I,x) ≥ 1
n .

Further, there exists an instance I and a GFS distribution x such that ŝw(I,x) = 1
n .

Proof. The first claim is straightforward from the definition. For the second claim, we consider an
instance I with n agents and m = 2n+1 projects. For any i ∈ N \{n}, the approval set of agent i is
Ai = {p2i−1, p2i, p2i+1, p2n+1}, and An = {p2n−1, p2n, p1, p2n+1}. That is, all agents have a common
approval project p2n+1, and each agent i has an approval project p2i, which is not approved by
other agents. The optimal social welfare is sw∗(I) = 1, attained by placing all budget to common
project p2n+1. Consider a distribution x where x2i =

1
n for each i ∈ N , and xj = 0 for any other

project pj. The utility of every agent is 1
n , and it is easy to check that x satisfies GFS, because for

any group S ⊆ N we have
∑

pj∈∪i∈SAi
xj = |S|/n. Then the social welfare induced by distribution

x is sw(I,x) = 1
n , which implies ŝw(I, x) = sw(I,x)

sw∗(I) = 1
n . This completes the proof.

In the following we give a universal upper bound 2
n on the POFs of all other fairness axioms.

Theorem 3.3. There exists an instance I such that for every distribution x satisfying UFS (or
GFS, IMP, AFS, CFS), we have ŝw(I,x) ≤ 2

n . That is, the POF of UFS (or GFS, IMP, AFS,
CFS) is at most 2

n .

Proof. Consider an instance I with n agents and 2 projects. Agents 1, 2, . . . , n− 1 approve project
p1, and agent n approves p2. That is, N(p1) = {1, 2, . . . , n−1} andN(p2) = {n}. The optimal social
welfare is sw∗(I) = 1/2, attained by giving each project half of the budget. For any distribution
x satisfying UFS for instance I, let the utility of each agent in N(p1) be x1, and the utility of
agent n be x2. Applying UFS to coalition N(p1) and N(p2), respectively, we have x1 ≥ n−1

n and
x2 ≥ 1

n . Since x1 + x2 = 1, it must be x1 = n−1
n , x2 = 1

n . Then sw(I,x) = min{x1, x2} = 1
n , and

ŝw(I, x) = sw(I,x)
sw∗(I) = 2

n . This completes the proof for UFS. Since each of GFS, IMP, AFS and CFS
implies UFS, this conclusion also holds for GFS, IMP, AFS and CFS.

4 Guarantees for voting rules

In this section, we consider seven voting rules (UTIL, CUT, NASH, EGAL, PV, ES and RP), and
analyze their performance on the system objective in the worst case. Further, these analysis turn
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back to provide POF results for fairness axioms, as the voting rules satisfy some certain fairness
axioms (see Table 3). Define the efficiency guarantee (or simply, guarantee) of voting rule f as the
worst-case normalized social welfare:

keff (f) = min
I∈In

ŝw(I, f(I)).

Theorem 4.1. The efficiency guarantee of UTIL is 0, and that of EGAL is 1. The efficiency
guarantees of CUT, NASH, ES, and RP are all in [ 1n ,

2
n ].

Proof. The efficiency guarantee of EGAL is trivial. Consider the instance constructed in the proof
of Theorem 3.3, where N(p1) = {1, . . . , n − 1} and N(p2) = {n}. The optimal social welfare is 1

2 ,
attained by allocating x1 = x2 =

1
2 . Rule UTIL returns x1 = 1 and x2 = 0, inducing a utility 0 for

agent n. So the guarantee of UTIL is 0. Rules CUT, NASH, PV, ES all return x1 = 1 − 1
n and

x2 = 1
n , inducing a utility 1

n for agent n. So the guarantee of these four rules is at most 1/n
1/2 = 2

n .

(Indeed, this claim simply follows from Theorem 3.3, since all the four rules satisfy UFS.)
On the other hand, for any instance I and the distribution x returned by CUT (resp., NASH,

ES, RP), we have ui(I) ≥
1
n for any i ∈ N , since the rule satisfies IFS. Then sw(I,x) ≥ 1

n , which
implies ŝw(I,x) ≥ 1

n . Therefore, the efficiency guarantees of CUT (resp., NASH, ES, RP) is at
least 1

n .

Theorem 4.2. The efficiency guarantee of ES is no better than 1
n +O( 1

nk ), for all k ∈ N
+.

Proof. Consider an instance with n agents and m = nk+1+1 projects. Each agent approves nk +1
projects. The intersection of every two approval sets is project pm, implying that pm is approved by
all agents, and the approval score of every other project is 1. It is easy to see that (by Proposition
2.1), the optimal social welfare is 1, attained by allocating all budget to pm. The outcome of ES is
xm = 1

nk+1
, and xj =

1
n · 1

nk+1
for any pj 6= pm. Thus, ES gives each agent a utility of

1

n(nk + 1)
· nk +

1

nk + 1
=

nk−1 + 1

nk + 1
=

1

n
+O(

1

nk
),

which completes the proof.

Theorem 4.3. The efficiency guarantee of PV is O( 1
mn ).

Proof. Consider an instance I with n agents and m projects. Each agent in N \ {n} approves
p1, . . . , pm−1, and agent n approves pm. That is, the first m − 1 projects are approved by the
first n − 1 agents, and the last project is approved by the remaining agent. The optimal social
welfare is sw∗(I) = 1

2 , attained by a distribution with x1 = xm = 1
2 . However, PV allocates each

project in P \ {pm} a budget of n−1
(m−1)(n−1)+1 , and project pm a budget of 1

(m−1)(n−1)+1 . Then

the social welfare induced by PV is 1
(m−1)(n−1)+1 , which implies the guarantee of PV is at most

2
(m−1)(n−1)+1 = O( 1

mn).

Theorem 4.4. The efficiency guarantee of CUT is no better than 1
n−3 .

Proof. Consider an instance with m =
(n−1

2

)

+ 1. Each of the first
(n−1

2

)

projects corresponds
to a unique pair of the first n − 1 agents who disapprove it, and all other agents approve it; the

8



Figure 1: An example with n = 5 agents and m = 7 projects, where pSj indicates that project pj
is disapproved by every agent in set S ⊆ N . Each of the first 6 projects corresponds to a pair of
agents.

last project pm is approved by the first n − 1 agents. That is, each agent in N \ {n} disapproves
n− 2 projects in P \ {pm}, and approves all other projects; agent n approves all m− 1 projects in
P \ {pm}, and disapproves project pm. Fig. 1 shows a 5-agent example.

Then we have |N(pm)| = n − 1, and |N(pj)| = n − 2 for each j ≤ m − 1. The optimal social
welfare is at least 1− n−2

m > n−3
n−1 , achieved by allocating uniform budget to each project. However,

CUT rule allocates each project in P \ {pm} a budget of 1
n(m−1) , and project pm a budget of n−1

n .

Then the social welfare induced by CUT is 1/n, (i.e., the utility of agent n) which implies the
efficiency guarantee of CUT is at most n−1

n(n−3) <
1

n−3 .

Theorem 4.5. The efficiency guarantee of NASH is in [ 2n − 1
n2 ,

2
n ].

Proof. Let I be an arbitrary instance with n agents and m projects, and fNS(I) be the distribution
returned by NASH rule. Since NASH satisfies IFS, we have sw(I, fNS(I)) ≥

1
n . By Theorem 3.3

and the fact that NASH satisfies UFS, the efficiency guarantee is at most 2
n . If the social welfare

induced by NASH rule is sw(I, fNS(I)) ≥
2
n , the proof is done. So we only need to consider the

case sw(I, fNS(I)) ∈ [ 1n ,
2
n). Suppose for contradiction that

sw(I, fNS(I))

sw∗(I)
<

2

n
−

1

n2
. (1)

Let u∗ and uNS be the utility profiles induced by an optimal distribution and the solution
output by NASH, respectively. Let ī ∈ N be the agent with the minimum utility in the NASH
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solution, i.e., uNS
ī

= sw(I, fNS(I)). Then we have

∑

i∈N

u∗i
uNS
i

=
u∗
ī

uNS
ī

+
∑

i∈N :i 6=ī

u∗i
uNS
i

≥
sw∗(I)

sw(I, fNS(I))
+

∑

i∈N :i 6=ī

u∗i
uNS
i

(2)

>
1

2/n − 1/n2
+

sw∗(I)

1
(n− 1)

>
1

2/n − 1/n2
+

1/n

2/n− 1/n2
(n− 1) (3)

= n, (4)

where (2) comes from (1), and (3) comes from (1) and sw(I, fNS(I)) ≥
1
n .

The outcome of NASH rule is an optimal solution of the following convex optimization problem:

max h(u) =
∑

i∈N

log(ui)

s.t.
∑

pj∈Ai

xj = ui, for all i ∈ N

m
∑

j=1

xj = 1,

xj ≥ 0, for j = 1, . . . ,m

Let D be the feasible domain of this problem. Since all constraints are linear, D is a convex set.
Let Du = {u|∃ x s.t. (u,x) ∈ D} be a restriction on u. Then for any 0 ≤ α ≤ 1 and any utility
profile u′ ∈ Du, we have uNS + α(u′ − uNS) ∈ Du. Then, we can derive

lim
α→0+

h(uNS + α(u′ − uNS))− h(uNS)

α
≤ 0

=⇒ ∇h(uNS)T(u′ − uNS) ≤ 0

=⇒
∑

i∈N

u′i
uNS
i

≤ n,

which gives a contradiction to Equation (4).

Because NASH rule satisfies the properties IMP, AFS and CFS, combining with Theorem 3.3,
we have the following corollary.

Corollary 4.6. The POFs of IMP, AFS and CFS are all in [ 2n − 1
n2 ,

2
n ].

Theorem 4.7. The efficiency guarantee of RP is 2
n .

Proof. Let I be an arbitrary instance, and fRP (I) be the distribution returned by RP rule. Since
RP satisfies IFS, the social welfare of fRP (I) is at least 1

n . If sw∗(I) ≤ 1
2 , the normalized social

welfare is ŝw(I, fRP (I)) ≥
2
n . So it suffices to consider the case sw∗(I) > 1

2 .
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When sw∗(I) > 1
2 , if there are two agents i, j ∈ N such that Ai ∩Aj = ∅, then no distribution

can give both agents a utility larger than 1
2 , a contradiction. So for any two agents, the intersection

of their approval sets is non-empty. For each agent i ∈ N , under RP rule, the probability of ranking
the first among the n! permutations is 1

n , where she receives a utility 1. Suppose i = σ(2) and
j = σ(1) for a permutation σ ∈ Θ(N). Since RP maximizes the utility of agents lexicographically
with respect to σ, it must allocate all budget to their intersection Ai∩Aj, and the utilities of agents
i and j both are 1. Note that the probability of ranking the second among the n! permutations for
agent i is 1

n . The utility of agent i under RP rule is at least

Pr{i = σ(1)} · 1 +Pr{i = σ(2)} · 1 =
2

n
,

and the normalized social welfare is also at least 2
n . Combining with the upper bound in Theorem

4.1, the efficiency guarantee of RP is 2
n .

We remark that it is still open whether RP rule can be implemented in polynomial time. Because
RP rule satisfies GFS, combining with Theorem 3.3, we have the following corollary.

Corollary 4.8. The POF of GFS is 2
n .

5 Conclusion

We quantify the trade-off between the fairness criteria and the maximization of egalitarian social
welfare in a participatory budgeting problem with dichotomous preferences. Compared with the
work of Michorzewski et al. [20], which considers this approval-based setting under the utilitarian
social welfare, we additionally study a fairness axiom Unanimous Fair Share (UFS) and a voting
rule Random Priority (RP). We present (asymptotically) tight bounds on the price of fairness for
six fairness axioms and the efficiency guarantees for seven voting rules. In particular, both NASH
and RP rules are guaranteed to provide a roughly 2

n fraction of the optimum egalitarian social
welfare. The NASH solution can be computed by solving a convex program, while RP is unknown
to be computed efficiently.

Both the work of [20] and this paper assume that all agents have dichotomous preferences,
and an immediate future research direction would be to study the effect of fairness constraint
when agents are allowed to have a more general preference. Another avenue for future research is
considering the fairness in participatory budgeting from the projects’ perspective. For example,
the projects (e.g., facility managers and location owners) have their own thoughts, and may have
a payoff from the budget division, for which a good solution should balance the system efficiency
and the satisfaction of the agents and projects. So it would be interesting to study the trade-off
between system efficiency and this new class of fairness concepts.
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