Skip to main content

Data Sensing with Limited Mobile Sensors in Sweep Coverage

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12577))

Abstract

Sweep coverage has received great attention with the development of wireless sensor networks in the past few decades. Sweep coverage requires mobile sensors to cover and sense environmental information from Points Of Interests (POIs) in every sweep period. In some scenarios, due to the heterogeneity of POIs and a lack of mobile sensors, mobile sensors sense the different amounts of data from different POIs, and only part of POIs can be covered by mobile sensors. Therefore, how to schedule the mobile sensors to improve coverage efficiency is important. In this paper, we propose the optimization problem (MSDSC) to maximize sensed data with a limited number of mobile sensors in sweep coverage and prove it to be NP-hard. We then devise two algorithms named GD-MSDSC and MST-MSDSC for the problem. Our simulation results show that, with a limited number of mobile sensors, GD-MSDSC and MST-MSDSC are able to sense more data from POIs than algorithms from previous work. In addition, MST-MSDSC can sense more data while the time complexity of GD-MSDSC is better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 75–86 (2007)

    Google Scholar 

  2. Bin Tariq, M.M., Ammar, M., Zegura, E.: Message ferry route design for sparse ad hoc networks with mobile nodes. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 37–48 (2006)

    Google Scholar 

  3. Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier coverage. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 63–74 (2007)

    Google Scholar 

  4. Chen, Z., Zhu, X., Gao, X., Wu, F., Gu, J., Chen, G.: Efficient scheduling strategies for mobile sensors in sweep coverage problem. In: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–4. IEEE (2016)

    Google Scholar 

  5. Cheng, W., Li, M., Liu, K., Liu, Y., Li, X., Liao, X.: Sweep coverage with mobile sensors. In: 2008 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–9. IEEE (2008)

    Google Scholar 

  6. Du, H., Luo, H.: Routing-cost constrained connected dominating set (2016)

    Google Scholar 

  7. Du, H., Luo, H., Zhang, J., Zhu, R., Ye, Q.: Interference-free k-barrier coverage in wireless sensor networks. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 173–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12691-3_14

    Chapter  Google Scholar 

  8. Du, J., Li, Y., Liu, H., Sha, K.: On sweep coverage with minimum mobile sensors. In: 2010 IEEE 16th International Conference on Parallel and Distributed Systems, pp. 283–290. IEEE (2010)

    Google Scholar 

  9. Feng, Y., Gao, X., Wu, F., Chen, G.: Shorten the trajectory of mobile sensors in sweep coverage problem. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2015)

    Google Scholar 

  10. Gao, X., Fan, J., Wu, F., Chen, G.: Approximation algorithms for sweep coverage problem with multiple mobile sensors. IEEE/ACM Trans. Netw. 26(2), 990–1003 (2018)

    Article  Google Scholar 

  11. Gao, X., Zhu, X., Feng, Y., Wu, F., Chen, G.: Data ferry trajectory planning for sweep coverage problem with multiple mobile sensors. In: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9. IEEE (2016)

    Google Scholar 

  12. Gorain, B., Mandal, P.S.: Point and area sweep coverage in wireless sensor networks. In: 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 140–145. IEEE (2013)

    Google Scholar 

  13. Gorain, B., Mandal, P.S.: Line sweep coverage in wireless sensor networks. In: 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), pp. 1–6. IEEE (2014)

    Google Scholar 

  14. Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. Mob. Netw. Appl. 10(4), 519–528 (2005). https://doi.org/10.1007/s11036-005-1564-y

    Article  Google Scholar 

  15. Kim, D., Wang, W., Li, D., Lee, J.L., Wu, W., Tokuta, A.O.: A joint optimization of data ferry trajectories and communication powers of ground sensors for long-term environmental monitoring. J. Comb. Optim. 31(4), 1550–1568 (2016). https://doi.org/10.1007/s10878-015-9840-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, pp. 284–298 (2005)

    Google Scholar 

  17. Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping sensor network. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 144–158 (2004)

    Google Scholar 

  18. Li, M., Cheng, W., Liu, K., He, Y., Li, X., Liao, X.: Sweep coverage with mobile sensors. IEEE Trans. Mob. Comput. 10(11), 1534–1545 (2011)

    Article  Google Scholar 

  19. Lin, L., Lee, H.: Distributed algorithms for dynamic coverage in sensor networks. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, pp. 392–393 (2007)

    Google Scholar 

  20. Liu, B.H., Nguyen, N.T., et al.: An efficient method for sweep coverage with minimum mobile sensor. In: 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 289–292. IEEE (2014)

    Google Scholar 

  21. Liu, C., Du, H., Ye, Q.: Sweep coverage with return time constraint. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)

    Google Scholar 

  22. Liu, C., Du, H., Ye, Q.: Utilizing communication range to shorten the route of sweep coverage. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)

    Google Scholar 

  23. Liu, C., Huang, H., Du, H., Jia, X.: Performance-guaranteed strongly connected dominating sets in heterogeneous wireless sensor networks. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

    Google Scholar 

  24. Luo, H., Du, H., Kim, D., Ye, Q., Zhu, R., Jia, J.: Imperfection better than perfection: Beyond optimal lifetime barrier coverage in wireless sensor networks. In: 2014 10th International Conference on Mobile Ad-hoc and Sensor Networks, pp. 24–29. IEEE (2014)

    Google Scholar 

  25. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage problems in wireless ad-hoc sensor networks. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No. 01CH37213), vol. 3, pp. 1380–1387. IEEE (2001)

    Google Scholar 

  26. Moazzez-Estanjini, R., Paschalidis, I.C.: On delay-minimized data harvesting with mobile elements in wireless sensor networks. Ad Hoc Netw. 10(7), 1191–1203 (2012)

    Article  Google Scholar 

  27. Shu, L., Wang, W., Lin, F., Liu, Z., Zhou, J.: A sweep coverage scheme based on vehicle routing problem. Telkomnika 11(4), 2029–2036 (2013)

    Article  Google Scholar 

  28. Wang, S., Gasparri, A., Krishnamachari, B.: Robotic message ferrying for wireless networks using coarse-grained backpressure control. IEEE Trans. Mob. Comput. 16(2), 498–510 (2016)

    Article  Google Scholar 

  29. Wu, L., Xiong, Y., Wu, M., He, Y., She, J.: A task assignment method for sweep coverage optimization based on crowdsensing. IEEE Internet Things J. 6(6), 10686–10699 (2019)

    Article  Google Scholar 

  30. Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data transport ferries in a delay-tolerant network. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407–1418. IEEE (2005)

    Google Scholar 

Download references

Acknowledgment

This work is supported by National Natural Science Foundation of China (No. 61772154), the Shenzhen Basic Research Program (Project No. JCYJ20190806143011274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nie, Z., Liu, C., Du, H. (2020). Data Sensing with Limited Mobile Sensors in Sweep Coverage. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64843-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64842-8

  • Online ISBN: 978-3-030-64843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics