Skip to main content

Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture

  • Conference paper
  • First Online:
Book cover Service-Oriented Computing (SummerSOC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1310))

Included in the following conference series:

Abstract

Manufacturing environments are characterized by non-stationary processes, constantly varying conditions, complex process interdependencies, and a high number of product variants. These and other aspects pose several challenges for common machine learning algorithms to achieve reliable and accurate predictions. This overview and vision paper provides a comprehensive list of common problems and challenges for data science approaches to quality control in manufacturing. We have derived these problems and challenges by inspecting three real-world use cases in the field of product quality control and via a literature study. We furthermore associate the identified problems and challenges to individual layers and components of a functional setup, as it can be found in manufacturing environments today. Additionally, we extend and revise this functional setup and this way propose our vision of a future functional software architecture. This functional architecture represents a visionary blueprint for solutions that are able to address all challenges for data science approaches in manufacturing quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  2. Chawla, N., Japkowicz, N., Kołcz, A.: Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explor. 6, 1–6 (2004). https://doi.org/10.1145/1007730.1007733

    Article  Google Scholar 

  3. Cheng, Y., et al.: Data and knowledge mining with big data towards smart production. J. Ind. Inf. Integr. 9, 1–13 (2018). https://doi.org/10.1016/j.jii.2017.08.001

    Article  Google Scholar 

  4. Choudhary, A., Harding, J., Tiwari, M.: Data mining in manufacturing: A review based on the kind of knowledge. J. Intell. Manuf. 20, 501–521 (2009). https://doi.org/10.1007/s10845-008-0145-x

    Article  Google Scholar 

  5. Feurer, M., et al.: Efficient and robust automated machine learning. In: Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS 2015), pp. 2755–2763. MIT Press, Cambridge, MA, USA (2015)

    Google Scholar 

  6. Gama, J., et al.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

    Article  Google Scholar 

  7. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Intelligent Systems Reference Library, vol. 72. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-10247-4

    Book  Google Scholar 

  8. Gerling, A., et al.: A reference process model for machine learning aided production quality management. In: Proceedings of the 22nd International Conference on Enterprise Information Systems, pp. 515–523. SCITEPRESS - Science and Technology Publications, Prague, Czech Republic (2020). https://doi.org/10.5220/0009379705150523

  9. Harding, J., Shahbaz, M.: Data mining in manufacturing: A review. J. Manuf. Sci. Eng. Trans. ASME 128(4), 969–976 (2006). https://doi.org/10.1115/1.2194554

    Article  Google Scholar 

  10. Hirsch, V., Reimann, P., Mitschang, B.: Data-driven fault diagnosis in end-of-line testing of complex products. In: Proceedings of the 6th IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 492–503. IEEE, Washington, D.C., USA (2019). https://doi.org/10.1109/DSAA.2019.00064

  11. Hirsch, V., Reimann, P., Mitschang, B.: Exploiting domain knowledge to address multi-class imbalance and a heterogeneous feature space in classification tasks for manufacturing data. Proc. VLDB Endowment 13(12), 3258–3271 (2020). https://doi.org/10.14778/3415478.3415549

    Article  Google Scholar 

  12. Hirsch, V., et al.: Analytical approach to support fault diagnosis and quality control in End-Of-Line testing. Procedia CIRP, 51st CIRP Conf. Manuf. Syst. 72, 1333–1338 (2018)

    Google Scholar 

  13. Hu, S., et al.: Product variety and manufacturing complexity in assembly systems and supply chains. CIRP Ann. 57(1), 45–48 (2008). https://doi.org/10.1016/j.cirp.2008.03.138

    Article  Google Scholar 

  14. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer-Verlag, Berlin Heidelberg (2006)

    Book  Google Scholar 

  15. ISO 9000:2015: Quality management systems - Fundamental and vocabulary. Standard, International Organization for Standardization, ISO/TC 176/SC 1 Concepts and terminology, Geneva, CH (2015)

    Google Scholar 

  16. Kassner, L., Mitschang, B.: Exploring text classification for messy data: An industry use case for domain-specific analytics technology. In: Proceedings of the 19th International Conference on Extending Database Technology (EDBT 2016), pp. 491–502. ACM, Bordeaux, France (2016). https://doi.org/10.5441/002/edbt.2016.47

  17. Khaleghi, B., et al.: Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013). https://doi.org/10.1016/j.inffus.2011.08.001

    Article  Google Scholar 

  18. Köksal, G., Batmaz, İ., Testik, M.C.: A review of data mining applications for quality improvement in manufacturing industry. Expert Syst. Appl. 38(10), 13448–13467 (2011). https://doi.org/10.1016/j.eswa.2011.04.063

    Article  Google Scholar 

  19. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: An overview of methods, challenges, and prospects. Proc. IEEE Multimodal Data Fusion 103(9), 1449–1477 (2015). https://doi.org/10.1109/JPROC.2015.2460697

    Article  Google Scholar 

  20. Leitner, L., Lagrange, A., Endisch, C.: End-of-line fault detection for combustion engines using one-class classification. In: Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 207–213. Banff, AB, Canada (2016). https://doi.org/10.1109/AIM.2016.7576768

  21. Lu, J., et al.: Learning under concept drift: A review. Trans. Knowl. Data Eng. 31, 2346–2363 (2019). https://doi.org/10.1109/TKDE.2018.2876857

    Article  Google Scholar 

  22. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc., New York (2017)

    Google Scholar 

  23. Minguez, J., et al.: A service bus architecture for application integration in the planning and production phases of a product lifecycle. Int. J. Syst. Service-Oriented Eng. 2(2), 21–36 (2011). https://doi.org/10.4018/978-1-4666-2470-2.ch010

    Article  Google Scholar 

  24. Schmitt, R.: Quality assurance. In: Chatti, S., Laperrière, L., Reinhart, G., Tolio, T. (eds.) CIRP Encyclopedia of Production Engineering, pp. 1402–1406. Springer, Berlin Heidelberg, Berlin, Heidelberg (2019)

    Chapter  Google Scholar 

  25. Sun, Y., Wong, A.K.C., Kamel, M.S.: Classification of imbalanced data: A review. Int. J. Pattern Recognit. Artif. Intell. 23(04), 687–719 (2009). https://doi.org/10.1142/S0218001409007326

    Article  Google Scholar 

  26. Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L.: Cost-sensitive learning methods for imbalanced data. In: Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN) (2010). https://doi.org/10.1109/IJCNN.2010.5596486

  27. Thalmann, S., et al.: Cognitive decision support for industrial product life cycles: A position paper. In: Proceedings of the 11th International Conference on Advanced Cognitive Technologies and Applications, pp. 3–9. IARIA, Venice, Italy (2019)

    Google Scholar 

  28. Vartak, M., et al.: ModelDB: A system for machine learning model management. In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics (HILDA), San Francisco, CA, USA (2016). https://doi.org/10.1145/2939502.2939516

  29. VDI 5600 Part 1 - Manufacturing Execution Systems (MES). Standard, Verein Deutscher Ingenieure e.V. (VDI), Düsseldorf, DE (2016)

    Google Scholar 

  30. Wang, S., Yao, X.: Multiclass imbalance problems: Analysis and potential solutions. IEEE Trans. Syst. Man Cybern. B Cybern. 42(4), 1119–1130 (2012). https://doi.org/10.1109/TSMCB.2012.2187280

    Article  Google Scholar 

  31. Weber, C., Hirmer, P., Reimann, P.: A model management platform for industry 4.0 - Enabling management of machine learning models in manufacturing environments. In: Abramowicz, W., Klein, G. (eds.) Business Information Systems, vol. 389, pp. 403–417. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  32. Wollschlaeger, M., Sauter, T., Jasperneite, J.: The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind. Electron. Mag. 11(1), 17–27 (2017)

    Article  Google Scholar 

  33. Wüst, T., et al.: Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016)

    Google Scholar 

  34. Ziekow, H., et al.: Proactive error prevention in manufacturing based on an adaptable machine learning environment. In: Artificial Intelligence: From Research to Application: Proc. of the Upper-Rhine Artificial Intelligence Symposium UR-AI, pp. 113–117. Offenburg, Germany (2019)

    Google Scholar 

  35. Ziekow, H., et al.: Technical Report: Interpretable machine learning for quality engineering in manufacturing - Importance measures that reveal insights on errors. Tech. rep., Furtwangen University of Applied Science (2019). https://nbn-resolving.de/urn:nbn:de:bsz:fn1-opus4-55331

Download references

Acknowledgement

We would like to thank the German Research Foundation (DFG) for financial support of parts of this work in the Graduate School of advanced Manaufacturing Engineering (GSC 262). Parts of this work is based on earlier publications of the PREFERML project. PREFERML is funded by the German Federal Ministry of Education and Research, funding line “Forschung an Fachhochschulen mit Unternehmen (FHProfUnt)”, contract number 13FH249PX6. The responsibility for the content of this publication lies with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilhelm, Y., Schreier, U., Reimann, P., Mitschang, B., Ziekow, H. (2020). Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture. In: Dustdar, S. (eds) Service-Oriented Computing. SummerSOC 2020. Communications in Computer and Information Science, vol 1310. Springer, Cham. https://doi.org/10.1007/978-3-030-64846-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64846-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64845-9

  • Online ISBN: 978-3-030-64846-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics