
pre
pri

nt

Pattern Views:
Concept and Tooling for Interconnected

Pattern Languages

Manuela Weigold[0000−0002−4554−260X], Johanna Barzen[0000−0001−8397−7973],
Uwe Breitenbcher[0000−0002−8816−5541], Michael Falkenthal[0000−0001−7802−1395],

Frank Leymann[0000−0002−9123−259X], and Karoline Wild[0000−0001−7803−6386]

Institute of Architecture of Application Systems,
University of Stuttgart, Universittsstrasse 38, Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Abstract. Patterns describe proven solutions for recurring problems. Typically,
patterns in a particular domain are interrelated and organized in pattern lan-
guages. As real-world problems often require patterns of multiple domains, dif-
ferent pattern languages have to be considered to address these problems. How-
ever, cross-domain knowledge about how patterns of different languages relate to
each other is either hidden in individual pattern descriptions or not documented at
all. This makes it difficult to identify relevant patterns across pattern languages.
Therefore, we introduce a concept and tooling that enables to capture patterns
and their relations across pattern languages for a particular problem context.

Keywords: Patterns · Pattern Languages · Cross-Language Relations · Pattern
Language Composition · Pattern Graph.

1 Introduction

Patterns describe proven solutions for recurring problems. After the first patterns were
published in the domain of city and building architecture by Alexander et al. [1], the
concept of patterns has been adopted in various other fields. Especially in software and
information technology, publishing patterns has become a popular way to convey ex-
pert knowledge in different domains, e.g., object-oriented programming [2], enterprise
application architecture [3], messaging [4], or security [5]. Since patterns can often be
used in combination or offer alternative solutions, the relations between patterns are
essential for identifying all relevant patterns and are therefore also documented. For
example, the cloud computing pattern Public Cloud [6] describes how cloud providers
can offer IT resources to a large customer group. It further refers to patterns that de-
scribe the different service models for offering resources, e.g., as Infrastructure as a
Service (IaaS). When using the Public Cloud pattern, those related patterns should also
be considered. In conjunction with the relations between them, patterns can be orga-
nized in pattern languages [1]. As a result, a pattern language describes how patterns
work together to solve broader problems in a particular domain [7].

ar
X

iv
:2

00
3.

09
12

7v
1

 [
cs

.S
E

]
 2

0
M

ar
 2

02
0

pre
pri

nt

2 Weigold et al.

However, real-world problems often require patterns of different domains. Most
likely, not all relevant patterns belong to the same pattern language. Therefore, some
authors include references to other languages, e.g., Fehling et al. [6] state that the mes-
sage queues of the Message-oriented Middleware pattern in the cloud computing pat-
terns are introduced by Hophe & Woolf’s [4] pattern language as Message Channels.
Unfortunately, not all relevant pattern languages are referred. For example, distributed
cloud applications typically have to meet security requirements regarding the commu-
nication of the distributed components. To ensure secure communication, Schumacher
et al.s [5] Secure Channel pattern can be applied. However, this pattern language is not
mentioned by Fehling et al. [6] at all. As references to other pattern languages are often
missing, it is difficult to identify relevant patterns in other areas.

One reason for missing references is the way pattern languages are documented.
Most pattern languages are published in books or scientific publications. Once they
are published, they can hardly be changed and therefore the patterns languages remain
static. This was not intended by Alexander et al. [1], who described them as living
networks. Some authors created dedicated websites for their pattern languages (e.g.,
[8,9,10]), which eases the adaptation. Nevertheless, these websites represent only one
particular language. For this reason, pattern repositories have been developed that aim
to collaboratively collect patterns of various domains and provide tooling support to
edit or extend patterns and relations.

Although several pattern repositories support the collections of patterns, patterns
from different languages are sometimes treated only as a simple interconnected set and
are not organized in pattern languages (e.g., [11,12]). However, a pattern language is
more than a collection of patterns. It reflects the higher-level domain for which the pat-
terns are relevant [13], e.g., for realizing cloud applications. A few repositories organize
patterns in pattern languages (e.g., [14,15]), but do not explicitly reflect cross-domain
relations between patterns in different languages. This knowledge is hidden in individ-
ual pattern descriptions. However, without explicitly cross-domain relations, and with-
out the context in which these relations are relevant, it is difficult to identify relevant
patterns for a given problem. This means that it must be possible (i) to assign patterns
to a particular pattern language, (ii) to document cross-domain relations, and (iii) to
specify the context in which a set of patterns and their relations are relevant.

To tackle these issues, we introduce a concept to explicitly document cross-domain
knowledge relevant for a particular problem context. For this, patterns and their re-
lations from different pattern languages can be selected and further relations can be
defined as relevant in a specific context. The relations between patterns of different lan-
guages are cross-language relations that express cross-domain knowledge. Thus, it is
possible to combine and extend pattern languages – a truly living network of patterns.
Based on our previous experience with pattern repositories, we show how support for
the concept can be integrated into the tool chain of an existing pattern repository. We
also present a prototype that supports multiple pattern languages and their dynamical
combination by using the new concept. The remainder of the paper is structured as
follows: Section 2 describes fundamentals and a motivating scenario, Section 3 intro-
duces our concept and tooling for it. We further present a use case in Section 4. Finally,
Section 5 describes related work and Section 6 concludes the paper.

pre
pri

nt

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 3

Processing

Component

User Interface

Stateless

Component

Elastic

Queue

Message-

oriented

Middleware

Competing

Consumer

Point-to-Point

Channel

RRD

Message

Dispatcher
Data

Obscurity

DO

SC

Secure

Channel

Authorization

A

Role-right

Definitions

RAC

Role-based

Access control

MLM

Multi-level

Model

RM

Reference

monitor

Command

Message

…

…

…

…

…

Cloud Computing Enterprise Integration Security

Polling

Consumer

Event-Driven

Consumer

Remote

Procedure

Invocation

C

Data

Abstractor

Node-based

Availability

Elastic

Platform

Elastic

Infrastructure

Fig. 1. Patterns and relations of multiple pattern languages: Cloud computing patterns [6],
enterprise integration patterns [4], and security patterns [5].

2 Background and Motivation

In this section, we first introduce patterns and pattern languages and then motivate that
for real-world problems often patterns from multiple domains have to be considered.

2.1 Patterns and Pattern Languages

As already mentioned, patterns are used to gather knowledge about proven solutions for
recurring problems in many different fields, e.g., humanities [16] or software engineer-
ing [7]. They describe the core idea of the solution on an general manner, which means
in case of software engineering patterns that they are independent of a specific technol-
ogy or programming language. The general solution concept of a pattern can therefore
be applied to a variety use cases in different ways. Since humans are the targets, patterns
are documented as textual descriptions according to a defined pattern format. Even if the
pattern formats differ slightly from pattern language to pattern language [17], typical
formats for patterns in software and information technology domains contain sections
about the addressed problem, the context in which the problem might arise, forces which
direct the problem, the proposed solution, the resulting context describing which forces
have been resolved, and a section showing a sketch of the solution [18]. Often other
patterns are only referenced in the textual description of one of these sections. Some
authors have introduced explicit sections to describe the relations of the pattern and
give them defined semantics [19], such as Variations [6,9], See also [5] or Next [4].

Patterns and relations are the basic building blocks of pattern languages. In this
work, we build on the premise that a pattern language is more than a collection of pat-
terns, but a designed system [20]. This means that (i) relations of a pattern language
are designed to guide the reader towards suitable patterns and (ii) each pattern solves
a specific problem that is related to the overall context of the pattern language [21,13],
e.g., in the domain of cloud computing, enterprise integration, or security.

pre
pri

nt

4 Weigold et al.

2.2 Motivating Scenario

Often patterns of several domains have to be considered for a real-world problem. For
example, suppose a software developer wants to build a secure elastic cloud applica-
tion. An elastic application responds to changing workload by adjusting the amount of
resources allocated to the application [6]. This ensures that neither too many resources
(which is costly) nor too few resources are allocated over a long period.

The cloud computing patterns in Figure 1 on the left provide several patterns rel-
evant for an elastic cloud application: For example, an Elastic Infrastructure provides
a dynamically adjustable infrastructure to a customer to deploy an application and an
Elastic Queue can be used to monitor the number of message in a queue and to adjust
the number of processing components handling the requests. In context of an elastic
cloud application, the Processing Components are often implemented as Competing
Consumers as any of the instances can receive and process an incoming request. There-
fore, this enterprise integration pattern is explicitly referred to in the processing com-
ponent pattern. Since messaging is often used for integrating cloud application com-
ponents, the cloud computing patterns contain several messaging-related patterns, such
as the Message-oriented Middleware pattern that also refer to other enterprise integra-
tion patterns. However, often references to related pattern languages are missing. For
example, the enterprise integration patterns were published before the cloud computing
patterns and thus never reference them. And although most elastic cloud applications
must meet certain security requirements, such as secure communication between appli-
cation components as provided by the Secure Channel pattern of the security patterns no
security patterns are mentioned and thus no cross-language relations exist. It can easily
be seen that cross-language relations are also important for pattern languages of other
areas than software, e.g., for realizing a film scene, patterns from different domains
(costumes, music and film settings) are needed [22].

But even if cross-language relations exist, they are often not properly documented.
The pattern languages depicted in Figure 1 are published in books [6,4,5] or on dedi-
cated websites [8,10]. Besides scientific publications and dedicated websites, patterns
are published in repositories that aim to collect patterns in collaboration [23]. However,
even with the tooling support of current repositories it is challenging to find relevant
patterns for a given problem: Several repositories do not organize patterns in pattern
languages [11,12] and treat patterns only as a simple interconnected set. The few repos-
itories organizing patterns in pattern languages [23,14] hide cross-language relations in
individual pattern descriptions. None of the repositories known to us enables to docu-
ment patterns and relations for a specific context (e.g., secure elastic cloud application).
Consequently, finding suitable patterns across pattern languages for a certain problem
is a cumbersome, manual process.

3 Pattern Views

In the following sections, we introduce pattern views as a concept to document cross-
domain knowledge for a particular context that requires patterns and relations across
pattern languages. We explain how pattern views can be integrated into the tool chain
of a pattern repository by presenting our prototype.

pre
pri

nt

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 5

view-specific relation

𝑃1

𝑃5

𝑃3

𝑃14

𝑃8
𝑃9

𝑃13

𝑃10

𝑃12

𝑃7

Pattern View 1

𝑃2

𝑃6

𝑃4

Pattern Language BPattern Language A

𝑃11

𝑃15

𝑃16

Pattern View 2

existing inner-language relation existing cross-language relation

Fig. 2. The concept of pattern views: Pattern views can comprise patterns of multiple (pattern
view 1) or one pattern language (pattern view 2).

3.1 The Concept of Pattern Views

Already Alexander et al. [1] mentioned in the publication of the first pattern language
that if a certain problem requires patterns of different pattern languages, patterns of
different domains can be combined arbitrarily. Based on this idea we introduce pattern
views as a concept (i) to explicitly define the context for which a set of patterns and
relations is relevant, (ii) to specify new relations between patterns that are relevant in
this specific context, and (iii) to preserve knowledge about the pattern languages from
which the patterns originate.

Figure 2 illustrates our concept. A pattern view comprises patterns of either different
pattern languages (pattern view 1) or one pattern language (pattern view 2). For exam-
ple, patterns from different languages are relevant for a secure elastic cloud application,
while only a subset of the cloud computing patterns are relevant for the deployment of
a cloud application. The relations between the contained patterns in a pattern view are
either those already defined in the original language or newly defined relations that are
relevant in the defined context of the pattern view. Especially cross-language relations
are often not embedded in the original languages. The relevance of a pattern view is de-
termined by its context. The context guides the pattern users, e.g., software architects,
to identify a pattern view for his or her particular problem. Thus, pattern views enable
to document knowledge about combining patterns and pattern language for a particular
problem explicitly and reusable for other users. In Section 4 a pattern view containing
patterns relevant in the context of secure elastic cloud applications is described in de-
tail. As a result, an individual pattern can be considered from different perspectives: It
is primarily anchored in its original pattern language, but can also be part of different
views that place the pattern in a specific context. As a pattern view can reuse and extend
the existing structure of underlying pattern languages, new structures emerge. This sup-
ports the notion of Alexander’s living network of patterns that is constantly changing.

The term pattern view is inspired by two existing concepts in computer science:
In database management systems, database views can be used to represent subsets of
data contained in regular tables. They can join, aggregate, or simplify data from mul-
tiple tables and represent them as a single database view. For patterns, the same can
be done by our pattern views: Patterns from multiple data sources (pattern languages)

pre
pri

nt

6 Weigold et al.

can be included in a pattern view. New relations for the pattern view can be defined,
just like a database view can refer to another table. Another analogy to pattern views
is the notion of architecture views in architecture descriptions [24]. An architecture
view represents the architecture of a system from a specific viewpoint that is in accor-
dance with a certain set of stakeholders’ concerns [24]. Depending on the concerns of
the different stakeholders, a suitable architecture description can be created, e.g. a pro-
cess view for process architects or a software distribution view for software developer.
While Avgeriou & Zdun [25] use this definition to assign architectural patterns to their
primary architectural view, e.g., the Client-Server pattern to the component-interaction
view, we only adopt the idea of views and define pattern views as a representation of
pattern languages from a particular viewpoint. The context of a pattern view represents
the viewpoint from which the patterns and pattern languages are viewed to address the
concerns of the pattern user.

In section Section 4 we present a pattern view for secure elastic cloud applications
that is aimed towards cloud software architects and contains several patterns for the
integration of the application components. Even if we motivate our work on the basis
of information technology pattern languages, our concept is not limited to them but can
be applied, e.g., to patterns for film costumes [26] or building architecture [1].

3.2 Tooling for Pattern Views

In previous works, PatternPedia1 [23] has been introduced as a collaborative tool for
documenting and managing patterns and pattern languages, as well as concrete solu-
tions that are implementations of the patterns with a particular technology or in a partic-
ular programming language, in case of software engineering patterns. Pattern research
is actively supported, as experts can analyze concrete solutions in collaboration and as
a result identify best practices and document patterns [23].

Figure 3 illustrates the abstract architecture of PatternPedia with the newly devel-
oped components in dark grey. In the pattern repository patterns and relations between
them are managed. The patterns as well as their relations are organized in pattern lan-
guages. The metadata defines the pattern formats for the different pattern languages
as well as the semantics of the relations. Analogously, the solution repository stores
concrete solutions and their relations, which are organized in solution languages. In ad-
dition, aggregation descriptors are stored that specify how different concrete solution
artefacts can be combined [27]. The aggregation descriptors are used to annotate the re-
lations between the concrete solutions in the solution languages. The solution repository
for managing solution languages depends highly on the domain of the solution, e.g., for
concrete solutions of costumes detailed descriptions of clothing pieces are relevant [28]
whereas solution of software patterns can be code snippets [23]. The PatternPedia edi-
tor facilitates to add patterns as textual descriptions and browse the patterns and pattern
languages as well as solution languages.

In this work, we enriched the pattern repository of PatternPedia by the concept of
pattern views and a graphical editor2. The repository has been extended by the func-

1 https://github.com/PatternPedia
2 A demo can be found here: https://bit.ly/391T7Wz

https://bit.ly/391T7Wz

pre
pri

nt

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 7

Patterns

Pattern RepositorySolution Repository

Concrete

Solutions
Relations

PatternPedia

Aggregation

Descriptors

View

Definitions

Pattern Languages Pattern ViewsSolution Languages

Metadata

Editors

Graphical Editor:

Pattern Languages & Views
Text Input Browser …

Fig. 3. Abstract Architecture of PatternPedia.

tionality to create pattern view definitions that specify the context of a particular pattern
view and reference the existing relations and patterns across pattern languages that are
part of the pattern view. Additionally, view-specific relations can be defined in the con-
text of a particular pattern view. These view-specific relations add additional knowledge
about how patterns in a certain context are interrelated.

As pattern and their relations are commonly represented as a directed graph with
nodes representing patterns and edges representing relations [19,7,29,30] (a represen-
tation we use in figures throughout this paper), we use a graph-based representation
to visualize the graph structure of pattern languages and pattern views in the graphical
editor. Within the graphical editor, relations of a pattern can be inspected in detail, and
new relations can be added by drawing arrows between two patterns. Additionally, the
visualization of the graph can be adapted by re-positioning nodes, zooming in and out,
and triggering an automatic reordering of the graph layout based on the edges. Users
can therefore directly edit or interact with the visualized pattern graph and observe how
new relations or patterns lead to structural changes as the overall structure of the net-
work of patterns can be grasped immediately. In the course of this work we not only
conceptually extended the pattern repository but also refactored the implementation.
The user interface of the pattern repository was reimplemented as an Angular frontend3

and we used Spring Boot for implementing a RESTful backend4.

4 Case Study

In our motivating scenario in Section 2.2, we stated that patterns from multiple domains
are needed for realizing a secure elastic cloud application. In this section, we present a
case study with the pattern view for the context of secure elastic cloud applications.

3 https://github.com/PatternPedia/pattern-pedia-views-ui
4 https://github.com/PatternPedia/pattern-pedia-views-backend

pre
pri

nt

8 Weigold et al.

User Interface

Message-

oriented

Middleware

Elastic

Queue

Number of

messages

scale

Processing

Components

Secure

Point-to-Point

Channel

Competing Consumers

Elastic

Infrastructure

Elastic

Infrastructure

hosted

on
hosted

on

provided

by

Fig. 4. Architecture of a secure elastic cloud application.

Users expect certain applications to be always available. To fulfil these expectations,
cloud providers offer infrastructure and services that can be used to guarantee the avail-
ability of an application even for a sudden increase of demand. Elastic cloud application
deal with changing demand by adjusting the amount of resources that are used for the
application [6]. In addition, data security plays a major role, especially when data is
exchanged between communication partners.

Figure 4 depicts the architecture of a secure elastic cloud application. The applica-
tion consists of a User Interface component that communicates with Processing Com-
ponents via messaging. Both components are hosted on an Elastic Infrastructure. The
number of messages in the channel is monitored to determine the workload of the pro-
cessing component instances. Depending on the number of messages, the Elastic Queue
adjusts the number of instances. As any processing component instance can answer a
request, the component is implemented as Stateless Component and its instances act as
Competing Consumers listening on a Point-to-Point channel provided by a Message-
Oriented Middleware. After consuming and processing a message the processing com-
ponent instance can send an answer via another point-to-point channel. To ensure data
security, the communication between the component must be encrypted.

For such an application, there are a number of patterns that should be taken into
account during implementation. In Figure 5, the pattern view for secure elastic cloud
applications is shown. It includes patterns from the cloud computing, enterprise inte-
gration, and security pattern languages which are relevant in this specific context. Be-
sides existing relations from the original pattern languages, three new cross-language
relations (dashed arrows) are contained in the pattern view. In addition to the already
named patterns also a Message Dispatcher can be used to delegate the message to one
specific consumer, i.e. one processing component instance. Each Competing Consumer
can be implemented as Polling Consumer, Event-Driven Consumer, or a combination of

pre
pri

nt

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 9

Message

Dispatcher

Processing

Component Competing

Consumer

Point-to-Point

Channel

User

Interface

Stateless

Component

Elastic

Queue

Elastic

Infrastructure

Elastic

Platform

Secure

Channel

SC

Message-

oriented

Middleware

Polling

Consumer

Event-driven

Consumer

Node-based

Availability

Data

Abstractor

…

…

Remote

Procedure

Invocation

Command

Message

…

…

Reference

monitor

RM

…
Security

Enterprise IntegrationCloud Computing

…

C

Fig. 5. Pattern view for secure elastic cloud applications,
refer to Figure 1 for a legend of the relation types.

both [4]. A Message-oriented Middleware provides the functionality for communication
via messaging and therefore also the message channels for competing consumers. To
ensure that a message is consumed only once, the consumers must all listen to the same
Point-to-Point Channel. As all transferred data of the application must be encrypted,
the point-to-point channel must also implement the Secure Channel pattern. Once de-
fined, this pattern view can be used by other cloud application architects to realize their
secure elastic cloud applications. Since the existing knowledge is only enriched by the
pattern views, further relevant patterns outside the view can be identified by the existing
relations in the pattern languages.

5 Related Work

Several authors have examined relations and patterns across multiple pattern languages.
Avgeriou & Zdun [25] reviewed architectural views and patterns from different lan-
guages. They assigned each architectural pattern to its primary architectural view and
defined relations between the patterns. As each of their collection of patterns and rela-
tions for an architectural view is worth documenting, we adopted the idea of views as a
concept that is not limited to the domain of IT architecture. Caiza et al. [31] standardize
the relations of various privacy pattern languages to combine them into a new pattern
language. Porter et al. [29] derived a method to combine pattern languages based on
pattern sequences. In contrast, pattern views contain only those patterns of different
languages and their relations that are relevant in a certain context. Thus, pattern views
are more specific and less complex than potentially large combined pattern languages.

Buschmann et al. [32] introduce pattern stories as textural descriptions that walk a
reader through the application of multiple patterns. In an exemplary pattern story, they
demonstrate how patterns of multiple languages are used together. However, pattern sto-

pre
pri

nt

10 Weigold et al.

ries are targeted at illustrating common pattern sequences. Pattern views are not limited
to express sequential steps but can express arbitrary relationships.

Reinfurt et al. [33] present an algorithm for finding entry points in pattern languages.
Their algorithm can be used to support several manual steps that are needed to document
pattern views: For a formalized set of problems related to the context of the pattern view,
their algorithm suggests suitable languages and a pattern that serves as a starting point.

Kppe et al. [34] elaborated requirements for online pattern repositories. He used the
term pattern views in the sense that there should be different options (pattern views) for
displaying a pattern, e.g., for smaller screens or optimized for printing. His notion of
a pattern view, therefore, defines the visual representation of a pattern whereas we use
the term pattern view for a concept to encompass patterns and relations that are rele-
vant for a particular context. Apparently similar terms from other domains are process
views and process viewing patterns [35]. Process views are used to represent a complex
business process regarding certain aspects, e.g. by reducing the process to its essentials
parts [35]. They are obtained by applying transformations on the process graph of the
business process [36]. These transformations have been described by process viewing
patterns [35]. In contrast to pattern views that are created by selecting suitable nodes
(patterns) and redefine the relations (edges) between them, these transformations can
be far more sophisticated, e.g., nodes of an process graph can be aggregated.

Pavlič et al [37] introduced the concept of pattern-containers to represent pattern
collections. They formalized how patterns represent knowledge in an ontology. Rela-
tions are modeled by specifying that a pattern is related to another pattern. Unfortu-
nately, in their ontology, the relation can not be described further and thus, the type of
the relation can not be defined. They define pattern-containers as a way to create pattern
collections: Pattern-containers can include patterns and other pattern-containers. A pat-
tern can be included in multiple pattern-containers. But given their ontology, pattern-
containers can not be used to represent pattern views: As it can not be defined what
relations are relevant for a pattern-container, they represent a simple subset of patterns.

Graph-based representations for pattern languages are commonly used to reflect
Alexander’s description of a network of patterns [32,19,30]. Another pattern repository,
The Public Sphere Project mentions that a graph representation of all of their patterns
and relations was once created [14], but only a sub-graph of it (8 patterns and their rela-
tions) can still be found on their website. Nevertheless, even the complete graph is still
a static representation of their underlying living pattern network. Schauer & Keller [38]
developed a tool for documenting software systems. Although they use patterns to en-
hance multiple graph-based views for a software system (e.g. as annotations in UML di-
agrams), they do not offer a general view on patterns. Welicki et al. [39] developed a vi-
sualization tool that can be used to search and create relations (including cross-language
relations) between patterns in their software pattern catalog. They also implemented dif-
ferent views on a pattern that display e.g. a summary or software-specific views (e.g.
source-code of a concrete implementation). The MUSE repository of Barzen [40] offers
a graph-based representation of concrete costumes that occur in films and are under-
stood as concrete solutions for costume patterns. However, these tools and repositories
do not offer different perspectives on the relations of the patterns or pattern languages.
Therefore, no other pattern repository or tool known to us offers graph-based represen-

pre
pri

nt

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 11

tations of pattern languages and the ability to [40] dynamically combine patterns from
different languages to pattern views for a particular problem context.

6 Conclusion and Future Work

In this paper, we introduced the concept of pattern views to explicitly document cross-
domain knowledge relevant for a particular problem context. Patterns from either differ-
ent pattern languages or one pattern languages that are relevant for a specific problem
can be combined to a so-called pattern view. In addition to the existing patterns and
relations of the underlying pattern languages, view-specific relations can be defined if
necessary for the given context. Therefore, cross-domain knowledge expressed by these
relations is documented explicitly and within a meaningful context.

We extended our pattern repository that was presented in previous works [23,27]
by the concept of pattern views. Therefore, our repository allows to collect multiple
pattern languages, and to define pattern views that can combine, reuse, and extend the
structure of pattern languages that is given by the patterns and their relations. Our repos-
itory also offers a graph-based representation for the visualization of pattern views and
pattern languages that visualizes the network of patterns. We plan to collect further pat-
tern languages in the repository, such as Internet of Things patterns [41] or green IT
patterns [42] and to extend our collection of pattern views. We will further evaluate
if some pattern needs to be adapted to be used in the context of a pattern view. For
future research we will especially consider patterns from new research areas such as
music [43] or Quantum Computing [44]. Patterns for quantum computing are interest-
ing as new technologies need to be integrated into our current software systems (for
which we already have patterns at hand). Also, an open access hosting of the pattern
repository would offers multiple advantages in future.

Acknowledgment

This work was partially funded by the BMWi projects PlanQK (01MK20005N) and
IC4F (01MA17008G). The authors would like to thank Lisa Podszun for her help with
the documentation of existing patterns.

References

1. C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, Aug. 1977.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, Oct. 1994.

3. M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley, Nov. 2002.
4. G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploy-

ing Messaging Solutions. Addison-Wesley, 2004.
5. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Sommerlad,

Security Patterns: Integrating security and systems engineering. John Wiley & Sons, 2013.

pre
pri

nt

12 Weigold et al.

6. C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications. Springer, Jan. 2014.

7. J. O. Coplien, Software Patterns. SIGS Books & Multimedia, 1996.
8. “Cloud computing patterns,” https://cloudcomputingpatterns.org.
9. “Internet of things patterns,” http://internetofthingspatterns.com/.

10. G. Hohpe, “Enterprise integration patterns,” https://www.enterpriseintegrationpatterns.com/.
11. “Ui patterns,” https://ui-patterns.com/.
12. “Pattern catalog,” http://designpatterns.wikidot.com/pattern-catalog.
13. J. O. Borchers, “A Pattern Approach to Interaction Design,” in Cognition, Communica-

tion and Interaction: Transdisciplinary Perspectives on Interactive Technology, ser. Human-
Computer Interaction Series, S. Gill, Ed. Springer, 2008, pp. 114–131.

14. “The public sphere project,” https://www.publicsphereproject.org/.
15. “Open pattern repository for online learning systems,” https://

www.learningenvironmentslab.org/openpatternrepository.
16. J. Barzen and F. Leymann, “Patterns as Formulas: Patterns in the Digital Humanities,” in

Proceedings of the Ninth International Conferences on Pervasive Patterns and Applications
(PATTERNS). Athen: Xpert Publishing Services, pp. 17–21.

17. S. Henninger and V. Corrła, “Software pattern communities: current practices and chal-
lenges,” in Proceedings of the 14th Conference on Pattern Languages of Programs - PLOP
’07. ACM Press, 2007, p. 1.

18. J. O. Coplien, Software patterns. New York; London: SIGS, 1996.
19. M. Falkenthal, U. Breitenbücher, and F. Leymann, “The nature of pattern languages,” in

Proceedings of the International Conference on Pursuit of Pattern Languages for Societal
Change (PURPLSOC), 10 2018, p. 130150.

20. T. Winn and P. Calder, “A pattern language for pattern language structure,” in Proceedings
of the 2002 conference on Pattern languages of programs, vol. 13, 2003, pp. 45–58.

21. G. Meszaros and J. Doble, “Pattern Languages of Program Design 3.” Addison-Wesley,
1997, ch. A Pattern Language for Pattern Writing, pp. 529–574.

22. M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, F. Leymann, A. Hadjakos,
F. Hentschel, and H. Schulze, “Leveraging Pattern Application via Pattern Refinement,” in
Proceedings of the International Conference on Pursuit of Pattern Languages for Societal
Change (PURPLSOC 2015). epubli, Jun. 2015.

23. C. Fehling, J. Barzen, M. Falkenthal, and F. Leymann, “PatternPedia Collaborative Pattern
Identification and Authoring,” in Proceedings of PURPLSOC (Pursuit of Pattern Languages
for Societal Change). The Workshop 2014., Aug. 2015, pp. 252–284.

24. IEEE Standards Association, IEEE Std 1471 (2000): IEEE Recommended Practice for Ar-
chitectural Description of Software-Intensive Systems, Std., 2000.

25. P. Avgeriou and U. Zdun, “Architectural Patterns Revisited A Pattern Language,” in In
10th European Conference on Pattern Languages of Programs (EuroPlop 2005). UVK -
Universitaetsverlag Konstanz, Jul. 2005.

26. J. Barzen and F. Leymann, “Costume Languages as Pattern Languages,” in Proceedings
of PURPLSOC (Pursuit of Pattern Languages for Societal Change). The Workshop 2014,
P. Baumgartner and R. Sickinger, Eds. Krems: PURPLSOC 2015, Juni 2015, Workshop-
Beitrag, pp. 88–117.

27. M. Falkenthal, J. Barzen, U. Breitenbüucher, and F. Leymann, “Solution languages: Easing
pattern composition in different domains,” International Journal on Advances in Software,
pp. 263–274, 2017.

28. J. Barzen, M. Falkenthal, and F. Leymann, Wenn Kostüme sprechen könnten: MUSE - Ein
musterbasierter Ansatz an die vestimentäre Kommunikation im Film, ser. Digital Humanities.
Perspektiven der Praxis. Berlin: Frank und Timme, Mai 2018, pp. 223–241.

https://www.enterpriseintegrationpatterns.com/
https://www.learningenvironmentslab.org/openpatternrepository
https://www.learningenvironmentslab.org/openpatternrepository

pre
pri

nt

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 13

29. R. Porter, J. O. Coplien, and T. Winn, “Sequences as a basis for pattern language composi-
tion,” Science of Computer Programming, vol. 56, no. 1-2, pp. 231–249, Apr. 2005.

30. U. Zdun, “Systematic Pattern Selection Using Pattern Language Grammars and Design
Space Analysis,” Software: Practice & Experience, no. 9, pp. 983–1016, Jul. 2007.

31. J. C. Caiza, Y.-S. Martn, J. M. Del Alamo, and D. S. Guamn, “Organizing Design Patterns
for Privacy: A Taxonomy of Types of Relationships,” in Proceedings of the 22Nd European
Conference on Pattern Languages of Programs, ser. EuroPLoP ’17. ACM, 2017, pp. 32:1–
32:11.

32. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. Wiley, Oct. 1996.

33. L. Reinfurt, M. Falkenthal, and F. Leymann, “Where to begin: on pattern language entry
points,” SICS Software-Intensive Cyber-Physical Systems, 2019.

34. C. Köppe, P. S. Inventado, P. Scupelli, and U. Van Heesch, “Towards extending online pattern
repositories: Supporting the design pattern lifecycle,” in Proceedings of the 23rd Conference
on Pattern Languages of Programs, ser. PLoP 16. USA: The Hillside Group, 2016.

35. D. Schumm, F. Leymann, and A. Streule, “Process Viewing Patterns,” in Proceedings of the
14th International Conference on Enterprise Distributed Object Computing (EDOC 2010).
IEEE, Oct. 2010, pp. 89–98.

36. ——, “Process views to support compliance management in business processes,” in Proceed-
ings of the 11th International Conference on Electronic Commerce and Web Technologies
(ECWeb 2010), 30 August 3 September 2010, Bilbao, Spain, ser. Lecture Notes in Business
Information Processing (LNBIP), vol. 61. SpringerVerlag, 2010, p. 131142.

37. L. Pavlič, M. Hericko, and V. Podgorelec, “Improving design pattern adoption with
Ontology-Based Design Pattern Repository,” Jul. 2008, pp. 649–654.

38. R. Schauer and R. K. Keller, “Pattern visualization for software comprehension,” in
Proceedings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat.
No.98TB100242), June 1998, pp. 4–12.

39. L. Welicki, O. Sanjun, J. Manuel, and J. Cueva Lovelle, “A Model for Meta-Specification and
Cataloging of Software Patterns,” Proceedings of the 12th Conference on Pattern Languages
of Programs (PLoP 2012), Jan. 2005.

40. J. Barzen, “Wenn Kostüme sprechen - Musterforschung in den Digital Humanities am
Beispiel vestimentärer Kommunikation im Film,” Ph.D. dissertation, Universität zu Köln,
2018.

41. L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg, “Internet of things
patterns for devices,” in Ninth international Conferences on Pervasive Patterns and Applica-
tions (PATTERNS) 2017. Xpert Publishing Services (XPS), 2017, pp. 117–126.

42. A. Nowak, F. Leymann, D. Schleicher, D. Schumm, and S. Wagner, “Green Business Process
Patterns,” in Proceedings of the 18th Conference on Pattern Languages of Programs (PLoP
2011). ACM, Oct. 2011.

43. J. Barzen, U. Breitenbücher, L. Eusterbrock, M. Falkenthal, F. Hentschel, and F. Leymann,
“The vision for MUSE4Music. Applying the MUSE method in musicology,” Computer Sci-
ence - Research and Development, pp. 1–6, November 2016.

44. F. Leymann, “Towards a pattern language for quantum algorithms,” in Quantum Technology
and Optimization Problems, ser. Lecture Notes in Computer Science (LNCS), vol. 11413.
Cham: Springer International Publishing, 2019, pp. 218–230.

	Pattern Views: Concept and Tooling for Interconnected Pattern Languages

