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Abstract. We introduce a novel framework to identify perception-action
loops (PALOs) directly from data based on the principles of computa-
tional mechanics. Our approach is based on the notion of causal blan-
ket, which captures sensory and active variables as dynamical sufficient
statistics — i.e. as the “differences that make a difference.” Furthermore,
our theory provides a broadly applicable procedure to construct PALOs
that requires neither a steady-state nor Markovian dynamics. Using our
theory, we show that every bipartite stochastic process has a causal blan-
ket, but the extent to which this leads to an effective PALO formulation
varies depending on the integrated information of the bipartition.
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1 Introduction

The perception-action loop (PALO) is one of the most important constructs of
cognitive science, and plays a fundamental role in many other disciplines includ-
ing reinforcement learning and computational neuroscience. Despite its impor-
tance and pervasiveness, fundamental questions about what kind of systems can
be properly described by a PALO are still to a large extent unanswered. The
aim of this paper is to introduce a framework that allows us to identify PALOs
directly from data, which complements existent approaches and serves to deepen
our understanding of the essential elements that make a PALO.
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1.1 Markov blankets

One of the most encompassing accounts of PALOs can be found in the Free
Energy Principle (FEP) literature, which formalises them via Markov blankets
(MBs) [14]. An interesting contribution of this literature is to characterise “sen-
sory” (S) and “active” (A) variables as having two defining properties: (i) they
mediate the interactions between internal variables of the agent (M) and external
variables of its environment (E), and (ii) they impose a specific causal structure
on these interactions — e.g. sensory variables may affect internal variables, but
are not (directly) affected by them [14].

Formally, MBs were originally introduced by Pearl [21] for Markov and
Bayesian networks. Within the FEP literature, MBs are usually employed in mul-
tivariate stochastic processes with ergodic Markovian dynamics, with a steady-
state distribution p∗ that is required to satisfy [20]

p∗(et,mt|st, at) = p∗(et|st, at)p∗(mt|st, at) . (1)

However, Eq. (1) does not suffice to guarantee a PALO structure, as noted in
Ref. [7]. In effect, the MB condition is insufficient to establish requirement (ii):
its symmetry with respect to internal and external variables makes it impossible
to infer the direction of the loop; additionally, the fact that the condition holds
across variables synchronously makes it unsuitable to guarantee a causal rela-
tionship [22]. Recent reports [11] acknowledge that this synchronous condition
needs to be complemented with additional diachronic restrictions on the system’s
dynamics, which can be written, for instance, as a set of coupled stochastic dif-
ferential equations of the form

ṁt = fin(mt, at, st) + ωin
t , ȧt = fa(mt, at, st) + ωa

t ,

ėt = fex(et, at, st) + ωex
t , ṡt = fs(et, at, st) + ωs

t .
(2)

Above, the functions fin, fa, fex, fs determine the flow, and ωin
t , ω

a
t , ω

ex
t , ω

s
t denote

additive Gaussian noise. Interestingly, it has been shown that Eq. (2) implies
Eq. (1) under additional assumptions: either block diagonality conditions over
the solenoidal flow [11], or strong dissipation [12, Appendix].8 Hence, PALOs
could be interpreted as coupled stochastic dynamical systems of the form in
Eq. (2), as long as the flow satisfies any of the two mentioned conditions.

Despite its elegance, this formalisation of PALOs has important limitations.
First, this formulation relies strongly on Langevin dynamics, making it difficult
to extend it to PALOs appearing in discrete systems. Secondly, this approach
depends on a set of assumptions — for one, the aforementioned conditions over
the flow and the restriction to systems in their steady-state — that might be too
restrictive for some scenarios of interest. Finally, and perhaps most importantly,
Eq. (1) forces all interactions between Mt and Et to be accountable by (St, At),
which imposes — due to the data processing inequality [9] — an information

8 However, in the general case neither Eqs. (1) or (2) imply each other [7] — hence
they need to be taken as complementary conditions.
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Fig. 1. Two visualisations of PALOs in the FEP literature, either based on (a) Markov
blankets according to Eq. (1) or (b) Langevin dynamics following Eq. (2).

bottleneck of the form I(Mt;Et) ≤ I(Mt;At, St). Therefore, the MB formalism
forbids interdependencies induced by past events that are kept in memory, but
may not directly influence the present state of the blankets.9 This information
kept in memory arguably plays an important role in many PALOs, and includes
uncontroversial features of cognition (such as old memories that an agent re-
tains but is neither caused by a sensation nor causing an action at the current
moment), yet are forbidden by MBs.

1.2 Computational mechanics, causal states, and epsilon-machines

Computational mechanics is a method for studying patterns and statistical regu-
larities observed in stochastic processes by uncovering their hidden causal struc-
ture [24,25]. A key insight is that an optimal, minimimal representation of a
process can be revealed by grouping past trajectories according to their fore-
casting abilities into so-called causal states. More precisely, the causal states
of a (possibly non-Markovian) time series {Zt}t∈Z are the equivalent classes of
trajectories zt := (. . . , zt−1, zt) given by the relationship

zt ≡ε z′t iff p(zt+1|zt) = p(zt+1|z′t) ∀zt+1 .

It can be shown that the causal states are the coarsest coarse-graining of past
trajectories xt that retains full predictive power over future variables [10,13].
Moreover, the corresponding process over causal states always has Markovian
dynamics, providing the simplest yet encompassing representation of the sys-
tem’s information dynamics on a latent space — known as the epsilon-machine.

Please note that the causal states of a system are guaranteed to provide
counterfactual relationships [22] only if the system at hand is fully observed. In
the case of partially observed scenarios, causal states ought to be understood in
the Granger sense, i.e. as states of maximal non-mediated predictive ability [8].

9 We thank Nathaniel Virgo for first noting this issue.
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1.3 Contribution

In this paper we introduce an operationalisation of PALOs based on causal
blankets (CB), a construction based on a novel definition of dynamical statis-
tical sufficiency. CB capture properties (i) and (ii) in a single mathematical
construction by applying informational constructs directly to dynamical condi-
tions. Moreover, CBs can be constructed with great generality for any bipartite
system without imposing further conditions, and hence can be applied to non-
ergodic, non-Markovian stochastic processes. This generality allows us to explore
novel connections between PALOs and integrated information. In the rest of the
manuscript, we:

1) Provide a rigorous definition of CBs (Definition 2); and
2) Show every agent-environment partition has a CB, and thus can be described

as a PALO (Proposition 1); although
3) Not all systems are equally well described as a PALO, and this can be quan-

tified via information geometry and integrated information (Sec. 3) — pro-
viding a principled measure to distinguish preferable candidates for PALO.10

2 Causal blankets as informational boundaries

We consider the perspective of a scientist who repeatedly measures a system
composed of two interacting parts Xt and Yt. We assume that, from these obser-
vations, a reliable statistical model of the corresponding discrete-time stochastic
process can be built — of which all the resulting marginal and conditional dis-
tributions are well-defined. Random variables are denoted by capital letters (e.g.
X,Y ) and their realisations by lower case letters (e.g. x, y); stochastic processes
at discrete times (i.e. time series) are represented as bold letters without sub-
script X = {Xt}t∈Z, and X t := (. . . , Xt−1, Xt) denotes the infinite past of X
until and including t.

Given two random variables X and Y , a statistic U = f(X) is said to be
Bayesian sufficient of X w.r.t. Y if X ⊥⊥ Y | U , which implies that all the
common variability between X and Y is accounted for by U [9]. The first step
in our construction is to introduce a dynamical version of statistical sufficiency.

Definition 1 (D-BaSS). Given two stochastic processes X,Y , a process U
is a dynamical Bayesian sufficient statistic (D-BaSS) of X w.r.t. Y if, for all
t ∈ Z, the following conditions hold:

i. Precedence: there exists a function F (·) such that Ut = F (X t) for all t ∈ Z.
ii. Sufficiency: Yt+1 ⊥⊥X t | (Ut,Y t) .

Moreover, a stochastic process M is a minimal D-BaSS of X with respect to Y
if it is itself a D-BaSS and for any D-BaSS U there exists a function f(·) such
that f(Ut) = Mt,∀t ∈ Z.

10 The proofs of our results can be found in the Appendix.
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The first condition above states that U is no more than a simpler, coarse-
grained representation of X, and the second implies that the influence of X t

on Yt+1 given Y t is fully mediated by Ut. This has interesting consequences for
transfer entropy, as seen in the next lemma.

Lemma 1. If U is a D-BaSS of X w.r.t. Y , then

TE(X → Y )t := I(X t;Yt+1|Y t) = I(Ut;Yt+1|Y t) . (3)

There are many such D-BaSS; e.g. Ut = X t would be one valid D-BaSS of
X w.r.t. Y . However, Theorem 1 shows that minimal D-BaSS’s are unique (up
to bijective transformations).

Theorem 1 (Existence and uniqueness of the minimal D-BaSS). Given
stochastic processes X,Y , the minimal D-BaSS of X w.r.t. Y corresponds to the
partition of past-trajectories xt induced by the following equivalence relationship:

xt ≡p x′t iff ∀yt, yt+1 p(yt+1|xt,yt) = p(yt+1|x′t,yt) .

Therefore, the minimal D-BaSS is always well-defined, and is unique up to an
isomorphism.

This result shows that D-BaSSs can be built irrespective of any other possibly
latent influences on X and Y , as it is defined purely on the joint statistics of
these two processes. Moreover, Theorem 1 provides a recipe to build a D-BaSS:
group together all the past trajectories that lead to the same predictions, which is
a key principle of computational mechanics [10,13,24,25]. Therefore, a minimal
D-BaSS distinguishes only “differences that make a difference” for the future
dynamics, generalising the construction presented in Ref. [6, Definition 1] for
Markovian dynamical systems, and being closely related to the notion of sensory
equivalence presented in Ref. [3]. With these ideas at hand, we can formulate
our definition of causal blanket.

Definition 2 (Causal blanket). Given two stochastic processes X,Y , a re-
ciprocal D-BaSS (ReD-BaSS) is a stochastic process R which satisfies:

i. Joint precedence: Rt = F (X t,Y t) for some function F (·).
ii. Reciprocal sufficiency: R is a D-BaSS of X w.r.t. Y , and also is a D-BaSS

of Y w.r.t. X.

A causal blanket (CB) is a minimal ReD-BaSS: a time series M , itself a ReD-
BaSS, such that for all ReD-BaSSs R there exists a function f(·) such that
Mt = f(Rt),∀t ∈ Z.

This definition satisfies the two key desiderata discussed in Section 1.1: (i)
a CB mediates the interactions that take place between X and Y , and (ii)
it assesses causality by focusing on statistical relationships between past and
future. From this perspective, CBs are the “informational layer” that causally
decouples the agent’s and environment’s temporal evolution from each other (see
Proposition 2). Additionally, our next result guarantees that CBs always exist,
and are unique to each bipartite system.
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(. . . , Xt−1, Xt)

(. . . , Yt−1, Yt)

Xt+1

Yt+1

Agent

Environment

Causal blanket
At

St

Fig. 2. Causal blanket {S,A}, which acts as a sufficient statistic mediating the inter-
actions between X and Y .

Proposition 1. Given X,Y , their CB always exists and is unique (up to an
isomorphism). Moreover, their CB is isomorphic to a pair {S,A}, where A is
a minimal D-BaSS of X w.r.t. Y , and S is a minimal D-BaSS of Y w.r.t. X.

Proposition 1 has two important consequences: it guarantees that CBs always
exist, and that they naturally resemble a PALO — as visualised in Fig 2. Please
note that this type of PALO formalisation has a rich history, being studied in
Refs. [4,5] and variations being considered in Refs. [15,16,26]. In contrast, our
framework follows Refs. [3,6] and does not assume active and sensory variables
as given, but discovers them directly from the data. As a matter of fact, the
“sensory” (S) and “active” (A) variables of CBs correspond (due to Definition 2)
to minimal sufficient statistics that mediate the interdependencies between the
past and future of X and Y . The construction of CBs imposes no requirements
on the system’s statistics or its structure — beyond the bipartition, holding
also for non-ergodic and also non-stationary systems, and systems with non-
Markovian dynamics.

It is also possible to build internal and external states Mt, Et such that
(Mt, At) = Xt and (Et, St) = Yt with great generality. This can be done via
an orthogonal completion of the phase space; the details of this procedure will
be made explicit in a future publication. In this way, CBs can be thought as
suggesting implicit “equations of motion” somehow equivalent to Eq. (2), as
shown in Figure 2. However, it is important to remark that this representation
does not provide counterfactual guarantees for partially observed systems (see
Section 1.2).

Example 1. Consider a multivariate stochastic process M ,A,E,S whose dy-
namics follows

Mt+1 = fin(Mt, At, St) +Nin, At+1 = fa(Mt, At, St) +Na,

Et+1 = fex(Et, At, St) +Nex, St+1 = fs(Et, At, St) +Ns,
(4)

with N in
t , N

a
t , N

ex
t , N

s
t being independent of Mt, At, Et, St (note that Eq. 4 cor-

responds to a discrete-time version of Eq. (2)). Then, by defining Xt = (Mt, At)
and Yt = (Et, St), one can show using Definition 2 that that {S,A} is the CB of
X,Y — as long as the partial derivatives of fin, fa, fex, fs with respect to their
corresponding arguments are nonzero.
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3 Integrated information transcends the blankets

According to Def. 2, CBs don’t depend on the joint distribution p(xt+1, yt+1|xt,yt),
but only on the marginals p(xt+1|xt,yt) and p(yt+1|xt,yt). Here we study how
meaningful the CB (and the description of the system as a PALO) is when the
joint process’s dynamics are different from the product of these two marginals.

Let us start by introducing the synergistic coefficient ξt ∈ R, which is a
random variable given by

ξt := log
p(Xt+1, Yt+1|X t,Y t)

p(Xt+1|X t,Y t) p(Yt+1|X t,Y t)
. (5)

A process (X,Y ) is said to have factorisable dynamics if ξt = 0 a.s. for all t ∈ Z.

Proposition 2 (Conditional independence of trajectories). If R is a
ReD-BaSS and the dynamics of X,Y is factorisable, then X ⊥⊥ Y | R. Thus,
such system is perfectly described as a PALO, and R is a MB (in Pearl’s sense).

A direct consequence of this Proposition is that a ReD-BaSS does not guar-
antee statistical independence of X,Y at the trajectory level in non-factorisable
systems. Therefore, in such systems there are interactions between X and Y
that are not mediated by the CB. Please note that this is not a weakness of
the CB construction — which is optimal in capturing all the directed influences,
as shown in Proposition 1. Instead, this result suggests that non-factorisable
systems might not be well-suited to be described as a PALO.

To further understand this, let us explore the integrated information in the
system (X,Y ) using information geometry [19]. For this, consider the manifolds

M1 =
{
qt : q(xt+1, yt+1|xt,yt) = q(xt+1|xt,yt)q(yt+1|xt,yt)

}
,

M2 =
{
qt : q(xt+1, yt+1|xt,yt) = q(xt+1|xt)q(yt+1|yt)

}
.

ManifoldM1 corresponds to all systems with factorisable dynamics, andM2 to
all systems where the dynamics of agent and environment are fully decoupled.
The information-geometric projection of an arbitrary system pt onto M2,

ϕ̃t := min
qt∈M2

D(pt||qt) , (6)

has been proposed as a measure of integrated information [2,18]. Using the
Pythagoras theorem [1] together with the fact that M2 ⊂ M1, one can de-
compose ϕ̃t as

ϕ̃t︸ ︷︷ ︸
D(pt‖q(2)t )

= E{ξt}︸ ︷︷ ︸
D(pt||q(1)t )

+
[
TE(A→ Y )t + TE(S →X)t

]
︸ ︷︷ ︸

D(q
(1)
t ||q

(2)
t )

, (7)

where q
(k)
t := arg minqt∈Mk

D(pt||qt).11

11 Note that in non-ergodic scenarios the expected values are not calculated over indi-
vidual trajectories, but over the ensemble statistics that define the probability.
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This decomposition confirms previous results that showed that integrated
information is a construct that combines low-order transfer and high-order syn-
ergies [17]. Thanks to Lemma 1, Eq. (7) states that the transfer component of ϕ̃t
(i.e. D

(
q

(1)
t ||q

(2)
t

)
) is what is properly mediated by the CB. In contrast, the part

of ϕ̃ related to high-order statistics, i.e. E{ξt} = I(Xt+1;Yt+1|X t,Y t), is not
accounted by the CB. This last term can either refer to spurious synchronous
correlations (due e.g. to sub-sampling), or be due to synergistic dynamics that
are a signature of emergent phenomena [23].

In summary, our results suggest that the dynamics of a system (X,Y ) that
is too synergistically integrated are poorly represented as a PALO, even if the
CB formally still exists. Additionally, the synergistic component of integrated
information can be used as a measure for this mismatch.

4 Conclusion

This manuscript introduced a data-driven method to build PALOs leveraging
principles of computational mechanics. Our construction provides an informa-
tional interpretation of sensory and actuation variables: sensory (resp. active)
variables encode all the changes from “outside” (resp. “inside”) that affect the
future evolution of the “inside” (resp. “outside”). Our framework is broadly ap-
plicable, depending only on the underlying bipartition but not imposing any
further conditions on the system’s dynamics or distribution. Furthermore, we il-
lustrated how this construction allows one to relate — within a PALO framework
— the separation of a system and its environment to the integrated information
encompassing the two.

It is to be noted that the CB construction relies on discrete time, which, while
being immediately applicable to digitally sampled data, might not be natural in
some scenarios. Also, CB theory at this stage does not provide explicit links with
probabilistic inference. As shown in Example 1, CBs provide a natural extension
of Eq. (2) to the discrete-time case, so one possibility would be to combine
them with the MB condition in Eq. (1). The exploration of such “causal Markov
blankets” which would satisfy both Eq. (1) and Definition 2 is an interesting
avenue for future research.

It is our hope that the CB construction may enrich the toolbox of researchers
studying PALOs and help to illuminate further our understanding of the nature
of agency.
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A Proofs

Proof (Lemma 1). Let’s consider U to be a D-BaSS of X w.r.t. Y . Then, prop-
erty (ii) of a D-Bass is equivalent to

I(X t;Yt+1 | Ut,Y t) = 0 . (8)

Using this, one can verify that

I(X t;Yt+1|Y t) = I(Ut,X t;Yt+1|Y t) = I(Ut;Yt+1|Y t) .

Here, the first equality holds because Ut is a deterministic function of X t, and
the second equality follows from an application of the chain rule and Eq. (8).

Proof (Theorem 1). Consider the function F (·) that maps each xt to its cor-
responding equivalence class F (xt) established by the equivalence relationship
≡p, and define Mt = F (X t). As this construction satisfies the requirement of
precedence in Def. 1, let us show the sufficiency of M . By definition of Mt, it is
clear that if mt = F (xt) then

p(yt+1|xt,yt) = p(yt+1|mt,yt) ,

which implies that H(Yt+1|X t,Y t) = H(Yt+1|Mt,Y t). As a consequence,

I(X t;Yt+1|Y t) = H(Yt+1|Y t)−H(Yt+1|X t,Y t)

= H(Yt+1|Y t)−H(Yt+1|Mt,Y t)

= I(Mt;Yt+1|Y t) . (9)

From this, sufficiency follows from noticing that

I(X t;Yt+1|Mt,Y t) = I(X t,Mt;Yt+1|Y t)− I(Mt;Yt+1|Y t)

= I(X t;Yt+1|Y t)− I(Mt;Yt+1|Y t)

= 0 .
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Above, the first equality is due to the chain rule, the second follows from the
fact that Mt is a function of X t, and the third uses Eq. (9).

To finish the proof, let us show that M is minimal. For this, consider an-
other U to be another D-BaSS of X w.r.t. Y . As Ut = G(X t) for some function
G(·), U corresponds to another partition of the trajectories xt. If there exists
no function f such that f(Ut) = Mt, that implies that the partition that corre-
sponds to M is not a coarsening of the partition for U , and therefore that there
exists xt and x′t such that G(xt) = G(x′t) while p(yt+1|xt,yt) 6= p(yt+1|x′t,yt).
This, in turn, implies that there exists a x′t such that that p(yt+1|ut,x′t,yt) 6=
p(yt+1|ut,yt) =

∑
xt
p(yt+1|ut,xt,yt)p(xt|ut,yt), showing that X t is not con-

ditionally independent of Yt+1 given Ut,Y t, contradicting the fact that U is a
D-BaSS. This contradiction proves that the partition induced by U is a refine-
ment of the partition induced by M , proving the minimality of the latter.

Proof (Proposition 1). Let’s denote by A the minimal D-BaSS of X w.r.t. Y , and
S the minimal D-BaSS of Y w.r.t. X, which are known to exist and be unique
thanks to Theorem 1. Then, by defining Mt := (St, At), one can directly verify
that M is a ReD-BaSS of (X,Y ). To prove its minimality, let us consider another
ReD-BaSS of (X,Y ) denoted by N . As N is a D-BaSS of X w.r.t. Y , the
minimality of A guarantees the existance of a mapping f(·) such that f(Nt) = St.
Similarly, thanks to the minimality of S, there is another mapping g(·) such that
g(Nt) = At. Therefore, the function F (·) = (f, g) satisfies F (Nt) = Mt, which
confirms the minimality of M .

Proof (Proposition 2). The proof is based on the principle that if p(A,B,C) =
f(A,C)g(B,C) , then A ⊥⊥ B|C. Building on that rationale, a direct calculation
shows that

p(x,y) =

∞∏
τ=−∞

p(xτ+1, yτ+1|xτ ,yτ )

=

∞∏
τ=−∞

exp{ξτ} p(xτ+1|xτ ,yτ ) p(yτ+1|xτ ,yτ ), (10)

where the second equality12 uses Eq. (5). Additionally, if, as per assumption of
the Proposition, R is a ReD-BaSS of (X,Y ), then

p(xτ+1|xτ ,yτ ) = p(xτ+1|xτ ,yτ , rτ ) = p(xτ+1|xτ , rτ ),

where the first equality uses the fact that rτ (by definition) is a function of
(xτ ,yτ ), and the second uses the sufficiency of D-BaSS’s. Following an analogous
derivation, one can show that p(yτ+1|xτ ,yτ ) = p(yτ+1|rτ ,yτ ). Then, with the
assumption that the dynamics of (X,Y ) is factorisable and hence ξt = 0, it
follows from Eq. (10) that

p(x,y) =

∞∏
τ=−∞

p(xτ+1|rτ ,yτ ) p(yτ+1|rτ ,yτ ) .

12 Note that the infinite products in this proof are just a formal procedure to acknowl-
edge products that can be taken up to arbitrary times.



12 Rosas, Mediano, Biehl, Chandaria, and Polani

Separating the two product series, this shows that there exist functions f(·) and
g(·) such that p(x,y) = f(x, r)g(y, r), and hence one has X ⊥⊥ Y |R , which
completes the proof.
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