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Abstract

Motivated by demand-responsive parking pricing systems we consider posted-price algo-
rithms for the online metrical matching problem and the online metrical searching problem
in a tree metric. Our main result is a poly-log competitive posted-price algorithm for online
metrical searching.

1 Introduction

Since 2011 SFpark has been San Francisco’s system for managing the availability of on-street
parking [3, 27, 2]. The goal of the system is to reduce the time and fuel wasted by drivers searching
for an open space. The system monitors parking usages via sensors embedded in the pavement
and distributes this information in real-time to drivers via SFpark.org and phone apps. SFpark
periodically adjusts parking meter pricing to manage demand, to lower prices in underutilized areas,
and to raise prices in overutilized areas. Prices can range from a minimum of 25 cents to a maximum
of 7 dollar per hour during normal hours with a 18 dollars per hour cap for special events such
as baseball games or street fairs. Several other cities in the world have similar demand-responsive
parking pricing systems, for example Calgary has had the ParkPlus system since 2008 [1].

The problem of centrally assigning drivers to parking spots to minimize time and fuel usage
is naturally modeled by the online metrical matching problem. The setting for online metrical
matching consists of a collection of k servers (the parking spots) located at various locations within
a metric space. The algorithm then sees an online sequence of requests over time that arrive at
various locations in the metric space (the drivers arriving to look for a parking spot). In response
to a request, the online algorithm must match the request (car) to some server (parking spot) that
has not been previously matched; Conceptually we interpret this matching as the request (car)
moving to the location of the matched server (parking spot). The objective goal is to minimize the
aggregate distance traveled by the requests (cars).

∗This work was done in part while this author was a student at Carnegie Mellon University
†Supported in part by NSF grants CCF-1421508 and CCF-1535755, and an IBM Faculty Award.
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We also consider what we call the online metrical search problem, which is an important special
case of the online metrical matching problem. This is a promise problem in that the adversary is
constrained to guarantee that there is an optimal matching for which only one edge has positive
cost. It is useful to conceptually think of online metrical search as the following parking problem:
the setting consists of many parking spots at various locations in a metric space and a single car
that is initially parked at some location in the metric space. Over time the parking spots are
decommissioned one by one until only one parking spot is left in commission. If at any time the car
is not parked at an in-commission parking spot, then the car must move to a parking spot that is
still in commission. The objective is to minimize the aggregate distance traveled by the car. The
optimal solution is to move the car directly to the last remaining parking spot.

The online metrical search problem is a special case of the online metrical matching problem
because the parking spots can be viewed as servers and the decommissioning of a parking spot can
be simulated by the arrival of a request at the location of that parking spot. So a lower bound
on the competitive ratio for the online metrical search problem for a particular metric space also
gives a lower bound for the online metrical matching problem on the metric space. Conversely
it seems that in terms of the optimal competitive ratio, online metric search is no easier than
metric matching. In particular, there is no known example of a metric space where the optimal
competitive ratio for online metrical matching is known to be significantly greater than the optimal
competitive ratio for online metrical search on that metric space. For example on a line metric,
the online metrical search problem is better known as the “cow path problem”, and the optimal
deterministic competitive ratio is known to be 9 [12], while the best known lower bound on the
deterministic competitive ratio for online metrical matching on a line metric is 9.001 [17], worse
only by a minuscule factor.

In order to be implementable within the context of SFpark, online algorithms must be posted-
price algorithms. In this setting, posted-price means that before each request arrives, the online
algorithm sets a price on each unused server (parking spot) without knowing the location where
the next request will arrive. Furthermore, each request is assumed to be a selfish agent who moves
to the available server (parking spot) that minimizes the sum of the price of and distance to that
server. The objective remains to minimize the aggregate distance traveled by the requests. So
conceptually the objective of the parking pricing agency is minimizing social cost, not maximizing
revenue.

Research into posted-price algorithms for online metrical matching was initiated in [13] as part
of a line of research to study the use of posted-price algorithms to minimize social cost in online
optimization problems. As a posted-price algorithm is a valid online algorithm, one can not expect
to obtain a better competitive ratio for posted-price algorithms than what is achievable by online
algorithms. So this research line has primarily focused on problems where the optimal competitive
ratio achievable by an online algorithm is (perhaps approximately) known and seeks to determine
whether a similar competitive ratio can be (again perhaps approximately) achieved by a posted-
price algorithm. The higher level goal is to determine the increase in social cost that is necessitated
by the restriction that an algorithm has to use posted prices to incentivize selfish agents, instead
of being able to mandate agent behavior.

An O(log∆)-competitive randomized posted-price algorithm for metric matching on a line met-
ric is given in [13] where ∆ is the ratio of the distance between the furthest two servers and the
distance between the closest two servers. No o(log k)-competitive (not necessarily posted-price)
algorithm is known for online metric matching on a line metric. So arguably, on a line metric
there is a posted-price algorithm that is nearly as competitive as the best known centralized online
algorithm.

Our original research goal was to determine whether posted-price algorithms can be similarly
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competitive with a centralized online algorithm for tree metrics for online metrical matching. In
order to be more specific about our goal, we need to review a bit. A tree metric is represented
by a tree T = (V,E) with positive real edge weights where the distance dT (u, v) between vertices
u, v ∈ V is the shortest path between vertices u and v in T . There is a deterministic online
algorithm that is (2k − 1)-competitive for online metric matching in any metric space, and no
deterministic online algorithm can achieve a better competitive ratio for online metric searching in
a tree metric [20, 21]. An O(log k)-competitive randomized algorithm for online metric matching
in O(log k)-HST’s (Hierarchically Separated Trees) is given in [24]. By combining this result with
results about randomly embedding metric spaces into HST’s [10, 11, 15], [24] obtained an O(log3 k)-
competitive randomized algorithm for online metric matching in a general metric space. Following
this general approach, [9] later obtained an O(log2 k)-competitive randomized algorithm for online
metrical search in an arbitrary metric by giving an O(log k)-competitive randomized algorithm for
2-HST’s. No better results are known for tree metrics, so all evidence points to tree metrics as being
as hard as general metrics for online metrical matching. Thus, more specifically our original research
goal was to determine whether there is poly-log competitive randomized posted-price algorithm for
the online metrical matching problem on a tree metric. Before stating our progress toward this
goal, it will be useful to review the literature a bit more.

1.1 Prior Related Work

The most obvious algorithmic design approach for posted-price problems is to directly design a
pricing algorithm from scratch, as is done for metrical task systems in [13], but this is not the most
common approach in the literature. Two less direct algorithmic design paradigms have emerged
in the literature. The first algorithmic design paradigm is what we will call mimicry. A posted-
price algorithm A mimics an online algorithm B if the probability that B will take a particular
action is equal the the probability that a self-interested agent will choose this same action when the
prices of actions are set using A. For example, [13] shows how to set prices to mimic the O(log∆)-
competitive Harmonic algorithm for online metric matching on a line metric from [18]. As another
example, [16] shows how to set prices to mimic the O(1)-competitive algorithm Slow-Fit from [7, 8]
for the problem of minimizing makespan on related machines. However, for some problems it is not
possible to mimic known competitive algorithms using posted prices. For such problems, another
algorithmic design paradigm is what we will call monotonization. In the monotonization algorithm
design approach, one first seeks to characterize the online algorithms that can be mimicked, and
then designs such an online algorithm. In the examples in the literature, this characterization
involves some sort of monotonicity property. For example, monotonization is used in [13] to obtain
an O(k)-competitive posted-price algorithm for the k-server problem on a line metric, and in [14]
to to obtain an O(k)-competitive posted-price algorithm for the k-server problem on a tree metric.
Since no deterministic algorithm can be better than k-competitive for the k-server problem in any
metric [23], this shows that in these settings, there is minimal increase in social cost necessitated
by the use of posted-prices. As another example, monotonization is used in [19] to obtain an
O(1)-competitive posted-price algorithm for minimizing maximum flow time on related machines.

For online metric matching on a line metric, better competitive ratios are achievable. An
O(k.59)-competitive deterministic online algorithm was given in [4]. Subsequently several different
O(log n)-competitive randomized online algorithms for a line are given in [18]; these algorithms
leverage special properties of HST’s constructed from a line metric. As already mentioned, [18] also
showed that the natural Harmonic algorithm is O(log∆)-competitive. An O(log2 k)-competitive
deterministic online algorithm was given in [25], and this was later improved to O(log k) in [26].
Super-constant lower bounds for various types of algorithms are given in [5, 22]. More generally,
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the algorithm for online metric matching given in [25] has the property that for every metric space,
its competitive ratio is at most O(log2 k) times the optimal competitive ratio achievable by any
deterministic algorithm on that metric space.

1.2 Our Contribution

There is no hope to mimic any of the online algorithms for online metrical matching that are
based on HST’s as HST’s by their very nature lose too much information about the structure
of a tree metric. Therefore we adopt the monotonization approach. In Section 2 we identify a
monotonicity property that characterizes mimicable algorithms for online metrical matching in
tree metrics. Roughly speaking this property says that if a request were to have arrived on the
route to its desired server, then the probability that the request would still have been matched to
this server can not decrease. Thus we reduce finding a post-priced algorithm to finding a monotone
algorithm.

In Section 3 we give an algorithm TreeSearch for the online metrical search problem on a tree
metric. The algorithm is based on the classic multiplicative weights algorithm for online learning
from experts [6]. Conceptually there is one expert Eℓ for each leaf ℓ of the tree T . Expert Eℓ

always recommends that the car/request travels toward the leaf ℓ. Thus expert Eℓ pays a cost of
one whenever a parking spot on the path from the root to ℓ is decommissioned, a cost of zero when
other parking spots are decommissioned, and an infinite cost if there are no remaining parking spots
on the path from the root to ℓ. Let πℓ

t be the probability that the multiplicative weights algorithm
has associated with expert Eℓ right before request rt arrives. Let vℓt be the location of the car
just before request rt arrives if the advice of expert Eℓ had always been followed. The algorithm
TreeSearch maintains the invariant that right before request rt arrives, the probability that the
car is at a vertex v is

∑

ℓ:vℓt=v π
ℓ
t , the sum of the probabilities of the experts that recommend that

the car should be parked at v. The most technically difficult part of the algorithm design process
was maintaining this invariant. We then upper bound the expected number of jumps made by
the TreeSearch algorithm, where a jump is a movement of the car by a positive amount. Finally,
we show how to extend TreeSearch to be a monotone algorithm TreeMatch for online metrical
matching on a tree metric.

In Section algorithm for online metric searching on a tree metric. Before any requests arrive, an
algorithm GroveBuild embeds the tree metric into what we will call a grove, which is a refinement
of an HST that retains more information about the topology of the original metric space. It is
probably easiest to explain what a grove is by explaining the difference in how one is constructed
in comparison to how an HST is constructed. The construction of each starts with a Low Diameter
Decomposition (LDD) of the metric space. A LDD is a partition P = {P1, . . . , Pn} of the vertices
of the metric space where each part is connected and the diameter of each part is an α factor
smaller than the diameter of the whole metric space. The top of the HST consists of a star where
the center of the star is the root of the HST, and there is one child of the root for each part Pi. In
contrast, the top of a grove consists of the tree that remains after collapsing each part to a single
vertex. For both an HST and a grove, the construction then proceeds recursively on each part. So
intuitively the key difference is that groves retain information about the distances between parts
in the LDD that the HST instead discards. See Figure 1 for a comparison of an HST and a grove
constructed from the same LDD.

We then give a monotone algorithm GroveMatch for online metrical matching on a tree metric
that utilizes the algorithm TreeMatch on each tree in the grove constructed from the tree metric.
We show that GroveMatch is poly-log competitive (more precisely O(log6 ∆ log2 n)-competitive)
on metric search instances by induction on the levels of the grove. This is an extension of a
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similar induction argument in [24] that shows that a O(log n)-competitive algorithm for a star (or a
complete unit metric) can be extended to an algorithm for a O(log n)-HST with the loss of a poly-
log factor in the competitiveness. However, our situation is complicated by the fact the possible
ways that a request can potentially move within a grove is more complicated than the possible ways
a request can move within an HST, and thus the induction is more complicated as the induction
depends on when the request is moving “up” and when the request is moving “down” in trees
within the grove. The bound on the number of jumps made by TreeSearch translates to a bound
on the number of recursive calls made by GroveMatch. There is not a lot of wiggle room in our
analysis, and thus both the algorithm design and algorithm analysis process are necessarily quite
delicate. For example, if TreeSearch made just 1% more jumps than the bound that we can show,
then the resulting competitiveness of GroveMatch would not be poly-logarithmic. One consequence
of this delicateness is that we can not use a black box LDD construction to build our grove, we
need to construct our LDD in a way that tightly controls the variance of random properties of our
grove.
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I J K
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LDD of Tree T:

T

A1 D1 H1
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HST of Tree T:

T

A1

D1

H1

A2

B2

D
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I J
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Grove of Tree T:

T

A1 D1 H1

A2 B2 H2

Figure 1: An example of a LDD, the corresponding HST, and the corresponding grove.

2 Pricing Monotone Algorithms

In this section, we show that an algorithm for the online metrical matching can be implemented as
a posted-price algorithm if and only if the algorithm satisfies the following monotonicity property.
Intuitively, an algorithm is monotone if a request and server pair get matched with nondecreasing
probability as the request is dragged towards the server. We note that monotonicity does not have a
natural interpretation within the context of online metrical searching, which explains why we give a
monotone algorithm for online metrical matching, even though we only analyze its competitiveness
for online metrical search.
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Definition 1. An algorithm A for online metric matching is monotone if for every instance, ev-
ery request rt in that instance, every possible sequence R of random events internal to A prior
to rt’s arrival, and all vertices u, v, s where v is on the path from u to s it is the case that:
Pr [AR(rt) = s | ER and rt = u] ≤ Pr [AR(rt) = s | ER and rt = v] where AR(rt) = s is the event
that A matches rt to s, and ER is the event that the past random events internal to A are equal to
R.

Theorem 2. Any algorithm A for the online metrical matching problem can be implemented as a
posted-price algorithm if and only if A is monotone.

In section 2.1, we show this correspondence for the deterministic setting and then extend it
to randomized algorithms in section 2.2. Lastly, in section 2.3 we show that all pricing schemes
induce monotone matching algorithms, giving us the equivalency of pricing schemes and monotone
matching algorithms. For notational simplicity we use d(u, v) instead of dT (u, v) in this section.

2.1 Pricing Deterministic Monotone Algorithms

We first need to define monotone partitions.

Definition 3. A monotone partition of the tree metric space T = (V,E, dT ) consists of two com-
ponents. The first component is a partition P = {Q1, . . . , Qt} of the vertices V , such that for each
part Qi ∈ P it is the case that the induced subgraph on Qi is connected. The second component
consists of a designated leader for each nonempty Qi ∈ P , where a leader is an available server
located in Qi.

A monotone algorithm for serving a request can be simply derived from a monotone partition
by matching a request in each part to that part’s designated leader. The converse is proved in the
course of the proof of lemma 4.

Lemma 4. Every monotone deterministic algorithm A for online metrical matching can be imple-
mented by a pricing algorithm B.

Proof. We first explain how to derive monotone partition P from A at each time step t. For each
si ∈ St, let part Qi consist of the vertices v such that a request arriving on vertex v would be
served by si. The leader of each nonempty Qi is si. The fact that each part Qi induces a connected
subgraph follows directly from the monotonicity of the algorithm. Let ui,j be the vertex in Qi

closest to sj.
We now define the pricing scheme p : Sj → R for time step t for pricing algorithm B.

Set p(si) = 0 for an arbitrary nonempty partition Qi ∈ P
for every nonempty Qj whose leader is not yet priced and that is adjacent to a part Qi whose
leader is already priced do

Set p(sj) = p(si) + d(ui,j , si)− d(uj,i, sj)
end

for any server si ∈ St that is not already priced do
Set p(s) = +∞

end

To show that that this pricing scheme implements A, we will show that if A services a request
at a vertex v by server si then d(v, si) + p(si) < d(v, sj) + p(sj) for all j 6= i. Assume otherwise
to reach a contradiction. Let sj be the server that minimizes d(v, sj) + p(sj) (with ties broken
arbitrarily). We now break the proof into cases.
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In the first case assume that Qi and Qj are adjacent parts, or equivalently that the edge
(ui,j , uj,i) connects Qi and Qj. Then we can conclude that:

p(si) = p(sj) + d(uj,i, sj)− d(ui,j , si) by definition of p(si)

≤ p(si) + d(v, si)− d(v, sj) + d(uj,i, sj)− d(ui,j , si) by assumption

= p(si) + d(v, si)− d(v, uj,i)− d(ui,j, si) as uj,i is on the path from v to sj

≤ p(si) + d(v, ui,j)− d(v, uj,i) by triangle inequality

≤ p(si)− d(ui,j , uj,i) as ui,j is on the path from v to uj,i

< p(si) by definition of metric space

Note that the first inequality holds independently of which of Qi and Qj was priced first, so our
assumption causes a contradiction.

In the second case assume that Qj and Qi are not adjacent, i.e. that is there is not an edge of
the form (ui,j, uj,i) in T . However, let Qk be the last nonempty part before Qj on the unique path
from si to sj in T . Thus the edge (uk,j, uj,k) exists in T . Then we can conclude that:

d(v, sk) + p(sk) ≤ d(v, uk,j) + d(uk,j , sk) + p(sk) by triangle inequality

= d(v, uk,j) + d(uk,j , sk)

+ d(uj,k, sj)− d(uk,j, sk) + p(sj) by definition of p(sk)

= d(v, uk,j) + d(uj,k, sj) + p(sj)

= d(v, uk,j) + d(uk,j , sj)− d(uj,k, uk,j) + p(sj) as uj,k is on the path
from uk,j to sj

< d(v, uk,j) + d(uk,j , sj) + p(sj) by definition of metric space

= d(v, sj) + p(sj) as uk,j is on the path
from v to sj.

This again is a contradiction to our minimality assumption for sj.

2.2 Randomized Algorithms

From a randomized monotone algorithm A we derive a corresponding distribution P over monotone
partitions such that can implement A by picking a random monotone partition P from P, and
setting prices as described in subsection 2.1. We will need the following definitions.

Definition 5.

• Let πv
i be the probability that algorithm A matches a request at v to si.

• Let PrP(P ) denote the probability of partition P under distribution P.

• Let v →P s denote that it is the case that in monotone partition P , server s is the leader of
the part Q where v ∈ Q ∈ P .

• Let v →P s be the event that in a sampled P ∼ P it holds that v →P s.

• Let Pi(w) be the monotone partitions in P that have si as the leader of the part containing
w.

Our goal for the rest of this subsection is to prove the following lemma, which asserts the
existence of an appropriate P.
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Lemma 6. Consider a monotone matching algorithm A for the online metrical matching on a tree
T , a particular request rt, and a particular collection S of remaining available servers. Then there
exists a distribution P over monotone partitions of T such that: Pr(w →P si | rt = w) = πw

i for
all servers si ∈ S and all vertices w.

2.2.1 The Construction of P

Without loss of generality it is sufficient to take t = 1. The proof will be via induction on the
number of vertices in T . The base case is the case where T is a single vertex v containing all n
available servers on it. Then P consists of n monotone partitions, where monotone partition Pi

consists of one part containing vertex v with server si as the leader, and with associated probability
πv
i .
For the inductive step, pick an arbitrary leaf u. Let v be the unique neighbor of u in T . By

renumbering assume servers s1, . . . , sm are located at u. Let T ′ be the tree derived from T by
deleting u, and moving servers s1, . . . , sm to v. By induction there exists a probability distribution
P ′ over monotone partitions of T ′ such that

∑

P∈P ′
i(w)

Pr
P ′
(P ) = πw

i (1)

for all vertices w in T ′ and servers si. We now obtain P from P ′ by extending each monotone
partition P in P ′ to a collection of monotone partitions in P. So consider an arbitrary P ∈ P ′. We
consider two cases.

Case 1: P is of type 1 if P ∈ P ′
i(v) for some 1 ≤ i ≤ m; That is, one of s1, . . . , sm is the leader of

the part Q satisfying v ∈ Q ∈ P . There will be one partition P1 in P derived from P . The partition
P1 is identical to P except that the vertex u is added to the part Q. P1 inherits the probability of
P , that is:

Pr
P
(P1) = Pr

P ′
(P ). (2)

Case 2: P is of type 2 if P ∈ P ′
i(v) for some i > m; That is, one of sm+1, . . . , sn is the leader of

the part Q satisfying v ∈ Q ∈ P . There will be m + 1 partitions P1, . . . , Pm+1 in P derived from
P . For j ∈ [1,m] the partition Pj is identical to P except that Pj contains a new part consisting
of only the vertex u with the leader of this part being sj. Partition Pm+1 is identical to P except
that in Pm+1 the part Q satisfying v ∈ Q ∈ P also contains the vertex u.

To set the probabilities on P1, . . . , Pm+1 in P let δk = πu
k−πv

k for k ∈ [1,m] and let ∆ =
∑m

k=1 δk.
For each j ∈ [1,m], we set

Pr
P
(Pj) = Pr

P ′
(P )

(

(πu
j − πv

j )(π
v
i − πu

i )

∆ · πv
i

)

(3)

and we set

Pr
P
(Pm+1) = Pr

P ′
(P )

πu
i

πv
i

(4)

The following two observations ensure that the probability of P1, . . . , Pm+1 are well-defined and
that P is indeed a probability distribution.

Observation 7. For each k ∈ {1, ...,m}, we have that πu
k ≥ πv

k; for each k ∈ {m + 1, ..., n}, we
have that πv

k ≥ πu
k .
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s1, ..., sm

si

Q

s1, ..., sm

P Pj Pm+1

si

v v

u s1, ..., st

si

Figure 2: An example of case 2 Pj for 1 ≤ j ≤ m and Pm+1

Proof. This follows from the monotonicity of A; it is assumed that s1, ..., sm are all on vertex u, so
for k ∈ {1, ...,m} it must be the case that πu

k ≥ πv
k. Since u is a leaf vertex and v is u’s only neighbor,

v must be on the path from u to any other server. Thus πv
k ≥ πu

k for all k ∈ {m+ 1, ..., n}.

Observation 8.
∑m+1

j=1 PrP(Pj) = PrP ′(P ).

Proof.

m+1
∑

j=1

Pr
P
(Pj) =

m
∑

j=1

Pr
P ′
(P )

(

(πu
j − πv

j )(π
v
i − πu

i )

∆ · πv
i

)

+ Pr
P ′
(P )

πu
i

πv
i

by Eq.s 3 and 4

= Pr
P ′
(P )

πv
i − πu

i

∆ · πv
i

m
∑

j=1

(πu
j − πv

j ) + Pr
P ′
(P )

πu
i

πv
i

= Pr
P ′
(P )

πv
i − πu

i

∆ · πv
i

∆+ Pr
P ′
(P )

πu
i

πv
i

by definition of ∆

=
PrP ′(P )

πv
i

(πv
i − πu

i + πu
i )

=
PrP ′(P )

πv
i

(πv
i ) = Pr

P ′
(P ).

2.2.2 The analysis of P

We now turn to proving that our constructed P has the desired properties.

Definition 9. We partition the support of P as follows

supp(P) =
m
⋃

i=1

Φi ∪





n
⋃

i=m+1



Φi ∪





m
⋃

j=1

Πj
i













where
Φi = {P1 | P ∈ P ′

i(v)} (5)

9



for each 1 ≤ i ≤ m,
Πj

i = {Pj |P ∈ P ′
i(v)} (6)

for i ∈ {m+ 1, .., n} and j ∈ {1, ...,m}, and

Φi = {Pm+1 | P ∈ P ′
i(v)} (7)

for i ∈ {m+ 1, ..., n}.

Lemma 10. For i ∈ {1, ...,m}, we have that
∑

P∈Φi
PrP(P ) = πv

i .

Proof.

∑

P∈Φi

Pr
P
(P ) =

∑

P∈P ′
i(v)

Pr
P
(P1) by Eq. 5

=
∑

P∈P ′
i(v)

Pr
P ′
(P ) by Eq. 2

= πv
i by Eq. 1

Lemma 11. For i ∈ {m+ 1, ..., n}, we have that
∑

P∈Φi
PrP(P ) = πu

i .

Proof.

∑

P∈Φi

Pr
P
(P ) =

∑

P∈P ′
i(v)

Pr
P
(Pm+1) by Eq. 7

=
∑

P∈P ′
i(v)

Pr
P ′
(P )

πu
i

πv
i

by Eq. 4

=
πu
i

πv
i

∑

P∈P ′
i(v)

Pr
P ′
(P ) by Eq. 4

=
πu
i

πv
i

πv
i by Eq. 1

= πu
i

Lemma 12. For i ∈ {m+ 1, ..., n}, we have that
∑m

j=1

∑

P∈Πj
i
PrP(P ) = πv

i − πu
i .
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Proof.

m
∑

j=1

∑

P∈Πj
i

Pr
P
(P ) =

m
∑

j=1

∑

P∈P ′
i(v)

Pr
P
(Pj) by Eq. 6

=

m
∑

j=1

∑

P∈P ′
i(v)

Pr
P ′
(P )

(

(πu
j − πv

j )(π
v
i − πu

i )

∆ · πv
i

)

by Eq. 3

=
m
∑

j=1

(

(πu
j − πv

j )(π
v
i − πu

i )

∆ · πv
i

)

∑

P∈P ′
i(v)

Pr
P ′
(P )

=

m
∑

j=1

(

(πu
j − πv

j )(π
v
i − πu

i )

∆ · πv
i

)

πv
i by Eq. 1

=
πv
i − πu

i

∆

m
∑

j=1

(πu
j − πv

j )

=
πv
i − πu

i

∆
∆ by definition of ∆

= πv
i − πu

i .

Proof of lemma 6. By Observation 8 we know that Pr(w →P si | rt = w) = πw
i holds for all vertices

w except for possibly for vertex u. Thus we just need to verify that this holds for w = u.
For i ∈ {1, ...,m}, we have that

∑

P∈Pi(u)

Pr
P
(P ) =

∑

P∈Φi

Pr
P
(P ) +

n
∑

j=m+1

∑

P∈Πi
j

Pr
P
(P )

=
∑

P∈P ′
i(v)

Pr
P
(P1) +

n
∑

j=m+1

∑

P∈P ′
j(v)

Pr
P
(Pi) by Eq.s 5 and 6

=
∑

P∈P ′
i(v)

Pr
P ′
(P ) +

n
∑

j=m+1

∑

P∈P ′
j(v)

Pr
P ′
(P )

(

(πu
i − πv

i )(π
v
j − πu

j )

∆ · πv
j

)

by Eq.s 2 and 3

= πv
i +

n
∑

j=m+1

∑

P∈P ′
j(v)

Pr
P ′
(P )

(

(πu
i − πv

i )(π
v
j − πu

j )

∆ · πv
j

)

by Eq. 1

= πv
i +

n
∑

j=m+1

(

(πu
i − πv

i )(π
v
j − πu

j )

∆ · πv
j

)

∑

P∈P ′
j(v)

Pr
P ′
(P )

= πv
i +

n
∑

j=m+1

(

(πu
i − πv

i )(π
v
j − πu

j )

∆ · πv
j

)

πv
j by Eq. 1

= πv
i +

πu
i − πv

i

∆

n
∑

j=m+1

(πv
j − πu

j )

= πv
i +

πu
i − πv

i

∆

m
∑

j=1

(πu
j − πv

j ) as both πu and πv
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are distributions
over 1, ..., n

= πv
i +

πu
i − πv

i )

∆
∆

= πv
i + πu

i − πv
i = πu

i

For i ∈ {m+ 1, ..., n}, we have that
∑

P∈Pi(u)

Pr
P
(P ) =

∑

P∈Φi

Pr
P
(P )

=
∑

P∈P ′
i(v)

Pr
P
(Pm+1) by Eq. 7

=
∑

P∈P ′
i(v)

Pr
P ′
(P )

πu
i

πv
i

by Eq. 4

=
πu
i

πv
i

∑

P∈P ′
i
(v)

Pr
P ′
(P )

=
πu
i

πv
i

πv
i = πu

i by Eq. 1

This gives us that Pr(u →P si) = πu
i for all i ∈ {1, ..., n}.

2.3 Pricing Schemes Induce Monotone Matching Algorithms

In this section, we show matching requests in an instance of online metrical matching according
to a pricing scheme gives us a monotone algorithm. Specifically, given servers S and a pricing
scheme P, let p be the pricing function created by P prior to the arrival of the first request, and let
f1 : V → S be the matching function such that f(v) = mins∈S d(v, s) + p(s). Since any instance of
online metrical matching after j servers have been used is equivalent to an instance of online metrical
matching with n− j initial available servers, it’s sufficient to just show that matching according to
the pricing scheme is monotone on the first request. Now, let s ∈ S and u, v ∈ V such that v is on
the path from u to s. Then, since d(v, s) ≤ d(u, s), we have that Pr(f(u) = s) ≤ Pr(f(v) = s). Thus
f is a monotone matching function. Since the associated matching function of any pricing scheme
is monotone, this gives us the equivalence of pricing schemes and monotone matching algorithms
for online metrical matching .

3 The Algorithm TreeMatch

In subsection 3.1 we define algorithm TreeSearch for the metric search problem on a tree T = (V,E)
rooted at vertex a ρ. The distance metric on T will not be of interest to us in this section. We
will use the interpretation of a car moving when its parking spot is decommissioned, as introduced
earlier, as we think that this interpretation is more intuitive. The description of TreeSearch

in subsection 3.1 uses a probability distribution qσt (τ) that is complicated to define, so its exact
definition is postponed until subsection 3.2, in which we also show that it achieves our goal of
matching the experts distribution. In subsection 3.3 we analyze the number of jumps used by
the TreeSearch algorithm. Finally in subsection 3.4, we show how to convert TreeSearch into a
monotone algorithm TreeMatch for online metrical matching that is identical to TreeSearch on
online metrical search instances.
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3.1 Algorithm Description

We start with some needed definitions and notation.

Definition 13. A parking spot si in the collection S of parking spots is a leaf-spot if there are
no other parking spots in the subtree rooted at si. Let L(T ) = {ℓ1, ..., ℓd} denote the collection of
leaf-spots. Let H be the maximum initial number of parking spots in T on the path from the root
ρ to a leaf-spot in L(T ). For σ ∈ [d], define Tσ ⊆ V as the set of parking spots on the path from
the root ρ to ℓσ, inclusive. We define Tσ to be alive if there is still an in-commission parking spot
in Tσ, and dead otherwise. A Tσ is killed by rt if rt is the last parking spot to be decommissioned
in Tσ. Let At = {σ ∈ [d] | Tσ is alive just before the arrival of rt}. For a vertex v ∈ V , let L(v)
denote the collection of leaf-spots that are descendants of v in T . Let ct be the location of the car
just before the arrival of request rt.

Algorithm TreeSearch: The algorithm has two phases: the prologue phase and the core phase.
The algorithm starts in the prologue phase and transitions to the core phase after the first time m
when there is no available parking space on the path from the new parking spot cm+1 to the root
ρ, inclusive. The algorithm then remains in the core phase until the end. In the prologue phase,
whenever the car is not parked at a vertex with an in-commission parking spot, the following actions
are taken:

1. If there is an in-commission parking spot at ct then no action is taken.

2. Else if there is an in-commission parking spot on the path between ct and the root ρ, inclusive,
then the car moves to the first in-commission parking spot on this path nearest to ct.

3. Else the car moves to the root ρ and enters the core phase to determine where to go from
there. So for analysis purposes, the movement to ρ counts as being part of the prologue phase,
and the rest of the movement counts as being in the core phase.

If the car is at the root ρ and the algorithm is just transitioning into the core phase, then a live Tτ

is picked uniformly at random from At+1, an internal variable γ is set to be τ , and the car moves
to the first in-commission parking spot on the path from ρ to ℓτ . Subsequently in the core phase,
when a parking spot rt is decommissioned then:

1. If the car is not parked at rt, that is if ct 6= rt, then no action is taken.

2. Else the car moves to the first in-commission parking spot in Tτ with probability qγt (τ) and
sets γ to be τ . ( qγt (τ) is defined in the next subsection.)

Intuitively γ stores the last random choice of the algorithm.

3.2 The Definition of qσt (τ)

In this section we only consider times in the core phase. We conceptually divide up the tree T
into three regions. Given vertex v and time t, we let zvt be the number of in-commission parking
spots on the path from v to ρ, inclusive, just before decommission rt. We then define the regions
as follows:

1. The root region is the set of all vertices v such that zvt = 0. Note that this region is connected,
and no decommissioning can occur in this region since there are no parking spots left.
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2. The frontier region is the set of all vertices v such that zvt = 1. A decommissioning rt is called
a frontier decommissioning if rt is in the frontier region.

3. The outer region is the set of all vertices v such that zvt > 1. A decommissioning rt is called
a outer decommissioning if rt is in the outer region.

Observe that these regions have no dependence on random events internal to the algorithm. Further
observe that step 2 of the core phase in algorithm TreeSearch maintains the invariant that the car
is always parked at a spot in the frontier region. This means that any outer decommissionings will
not move the car from its current parking spot.

Definition 14. Let rm be the last decommissioning handled in the prologue phase of TreeSearch.
Define Xt = At ∩ L(rt) to be the collection of σ’s such that Tσ is alive and contains rt and define
Yt = At \ Xt = At ∩ L(rt) to be the collection of σ’s such that Tσ is alive and doesn’t contain rt.
Define Ft = Xt ∩ At+1 to be the collection of σ’s such that Tσ is killed by rt. Let nσ

t denote the
number of frontier decommissionings strictly before time t from Tσ. Define wσ

t = (1− ǫ)n
σ
t for each

σ ∈ [d]. Define Wt(J ) =
∑

σ∈J wσ
t for any J ⊆ {1, ..., d}. Define πσ

t as the probability the experts

algorithm would give to expert σ, that is πσ
t =

wσ
t∑

τ∈[d]w
τ
t
. Define π̃σ

t as πt normalized amongst all

experts in At, that is π̃σ
t =

wσ
t∑

τ∈At
wτ

t
if σ ∈ At, and 0 otherwise. Define pσt as the probability that

γ = σ right before time t.

We are now ready to define qσt (τ). Note that by the definition of TreeSearch, qσt (τ) is only
used for σ ∈ Xt since the algorithm only reaches step 2 of the core phase when rt ∈ Tγ . We show
in Lemma 16 that this definition of qσt (τ) indeed defines a probability distribution over τ ∈ [d]. We
then show in Lemma 18 that the definition of qσt (τ) guarantees that our desired invariant pσt = π̃σ

t

holds.

Definition 15.

qσt (τ) =







































ǫwτ
t

(1−ǫ)Wt(Xt\Ft)+Wt(Yt)
if τ ∈ Yt and σ ∈ Xt \ Ft

wτ
t

(1−ǫ)Wt(Xt\Ft)+Wt(Yt)
if τ ∈ Yt and σ ∈ Ft

1−
∑

ς∈Yt
qσt (ς)

|Xt\Ft|
if τ ∈ Xt \ Ft

0 if τ ∈ Ft or τ ∈ At

Lemma 16. For all times t in the core phase and for all σ ∈ Xt, q
σ
t (τ) forms a distribution over

τ ∈ [d].

Proof. First, note that the cases of Definition 15 partition [d] since

[d] = At ∪ At by definition of At

= (Xt ∪ Yt) ∪At by definition of Xt, Yt

= ((Xt \ Ft) ∪ Ft ∪ Yt) ∪ At by definition of Ft
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Next, we show that the distribution sums to 1.

∑

τ∈[d]

qσt (τ) =
∑

τ∈Xt\Ft

qσt (τ) +
∑

τ∈Yt

qσt (τ) since qσt (τ) = 0 for τ ∈ Ft or τ ∈ At

=
∑

τ∈Xt\Ft

1−
∑

ς∈Yt
qσt (ς)

|Xt \ Ft|
+
∑

τ∈Yt

qσt (τ) By Defn. 15

= |Xt \ Ft|
1−

∑

ς∈Yt
qσt (ς)

|Xt \ Ft|
+
∑

τ∈Yt

qσt (τ)

= 1

Finally, we show that every event has non-negative probability. Trivially, qσt (τ) ≥ 0 for any τ ∈

[d] \ (Xt \ Ft) by Definition 15. For τ ∈ Xt \ Ft, q
σ
t (τ) =

1−
∑

ς∈Yt
qσt (ς)

|Xt\Ft|
, so it is sufficient to show

that
∑

τ∈Yt
qσt (τ) ≤ 1. If σ ∈ Xt \ Ft, then

∑

τ∈Yt

qσt (τ) =
∑

τ∈Yt

ǫwτ
t

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
by Defn. 15

≤
ǫ

Wt(Yt)

∑

τ∈Yt

wτ
t since (1− ǫ)Wt(Xt \ Ft) ≥ 0

=
ǫWt(Yt)

Wt(Yt)
by definition of Yt

= ǫ

≤ 1

If σ ∈ Ft, the only difference from the previous case is that the constant ǫ is replaced with a 1
in Definition 15, so the analysis still holds.

Before proving that the invariant pσt = π̃σ
t holds using distribution q, we prove some necessary

properties about the set Xt.

Lemma 17. Let X ⊆ Xt be an arbitrary subset of Xt and let σ ∈ Xt be any parking spot, we then
have that:

1. wσ
t = Wt(X)

|X|

2.
∑

τ∈X
π̃τ
t = Wt(X)

Wt(At)

Proof. Given decommissioning rt, let σi, σj ∈ Xt be arbitrary spots. Then, by definition of Xt,
Tσi

and Tσj
overlap at rt as well as every parking spot from rt to the root. So, any frontier

decommissioning before rt that decommissioned a spot from Tσi
also decommissioned a spot from

Tσj
. In other words, nσi

t = n
σj

t and wσi
t = w

σj

t . Since σi and σj were arbitrary from Xt, for any
subset X ⊆ Xt and σ ∈ Xt,

Wt(X) =
∑

τ∈X

wτ
t = |X|wσ

t

15



Property 2 comes just from the definition of π̃σ
t :

∑

τ∈X

π̃τ
t =

∑

τ∈X wτ
t

∑

τ∈At
wτ
t

by defintion of π̃τ
t

=
Wt(X)

Wt(At)
by definition of Wt(X), Wt(At)

Lemma 18. For all times t during the core phase and for all σ ∈ [d], pσt = π̃σ
t .

Proof. The proof is by induction on the time t. The transition from the prologue to core phases
of TreeSearch guarantees that this invariant is initially true. Now assuming pσt = π̃σ

t for all σ, we
want to show that pσt+1 = π̃σ

t+1 for all σ. The proof is broken into cases.
In the first case, assume σ ∈ Xt \ Ft and rt is a frontier decommissioning. We will begin with

two equations:

∑

τ∈Xt\FT

pτt
1−

∑

ς∈Yt
qτt (ς)

|Xt \ Ft|

=
∑

τ∈Xt\FT

pτt
1−

∑

ς∈Yt

ǫwς
t

(1−ǫ)Wt(Xt\Ft)+Wt(Yt)

|Xt \ Ft|
by Defn. 15

=
∑

τ∈Xt\FT

pτt
1− ǫWt(Yt)

(1−ǫ)Wt(Xt\Ft)+Wt(Yt)

|Xt \ Ft|
by defn. of Wt(Yt)

=
∑

τ∈Xt\FT

pτt
(1− ǫ)Wt(At \ Ft)

|Xt \ Ft|((1 − ǫ)Wt(Xt \ Ft) +Wt(Yt))
by defn. of At,Ft

=
(1− ǫ)Wt(At \ Ft)

|Xt \ Ft|((1 − ǫ)Wt(Xt \ Ft) +Wt(Yt))

∑

τ∈Xt\FT

π̃τ
t pτt = π̃τ

t

=
(1− ǫ)Wt(Xt \ Ft)Wt(At \ Ft)

|Xt \ Ft|Wt(At)((1 − ǫ)Wt(Xt \ Ft) +Wt(Yt))
by Lemma 17 part 2

(8)

and similarly,

∑

τ∈FT

pτt
1−

∑

ς∈Yt
qτt (ς)

|Xt \ Ft|

=
∑

τ∈FT

pτt
1−

∑

ς∈Yt

wς
t

(1−ǫ)Wt(Xt\Ft)+Wt(Yt)

|Xt \ Ft|
by Defn. 15

=
∑

τ∈FT

pτt
1− Wt(Yt)

(1−ǫ)Wt(Xt\Ft)+Wt(Yt)

|Xt \ Ft|
by defn. of Wt(Yt)

=
∑

τ∈FT

pτt
(1− ǫ)Wt(Xt \ Ft)

|Xt \ Ft|((1 − ǫ)Wt(Xt \ Ft) +Wt(Yt))

=
(1− ǫ)Wt(Xt \ Ft)

|Xt \ Ft|((1 − ǫ)Wt(Xt \ Ft) +Wt(Yt))

∑

τ∈FT

π̃τ
t pτt = π̃τ

t

=
(1− ǫ)Wt(Xt \ Ft)Wt(Ft)

|Xt \ Ft|Wt(At)((1 − ǫ)Wt(Xt \ Ft) +Wt(Yt))
by Lemma 17 part 2

(9)
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Now, notice that by the definition of qσt (τ), if γ = σ ∈ Xt after rt, then it must have been the case
that γ ∈ Xt before rt, and thus:

pσt+1 =
∑

τ∈Xt

pτt q
τ
t (σ)

=
∑

τ∈Xt

pτt
1−

∑

ς∈Yt
qτt (ς)

|Xt \ Ft|
by Defn. 15

=
∑

τ∈Xt\FT

pτt
1−

∑

ς∈Yt
qτt (ς)

|Xt \ Ft|
+
∑

τ∈Ft

pτt
1−

∑

ς∈Yt
qτt (ς)

|Xt \ Ft|

=
(1− ǫ)Wt(Xt \ Ft) (Wt(At \ Ft) +Wt(Ft))

|Xt \ Ft|Wt(At)((1 − ǫ)Wt(Xt \ Ft) +Wt(Yt))
by Eq. 8 and 9

=
(1− ǫ)Wt(Xt \ Ft)

|Xt \ Ft|((1− ǫ)Wt(Xt \ Ft) +Wt(Yt))
by definition of W (At)

=
(1− ǫ)wσ

t

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
by Lemma 17 part 1

= π̃σ
t+1 by definition of π̃σ

t+1

In the second case, assume that σ ∈ Yt and rt is a frontier decommissioning. We will begin
with three equations:

π̃σ
t+1 − π̃σ

t =
wσ
t

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
−

wσ
t

Wt(Xt) +Wt(Yt)
by defn. of πσ

t

=
(Wt(Ft) + ǫ Wt(Xt \ Ft))w

σ
t

(Wt(Xt) +Wt(Yt))((1 − ǫ)Wt(Xt) +Wt(Yt))

= π̃σ
t

Wt(Ft) + ǫ Wt(Xt \ Ft)

(1− ǫ)Wt(Xt) +Wt(Yt)
by defn. of π̃σ

t

= pσt
Wt(Ft) + ǫ Wt(Xt \ Ft)

(1− ǫ)Wt(Xt) +Wt(Yt)
as pσt = π̃σ

t .

(10)

∑

τ∈Xt\Ft

π̃τ
t q

τ
t (σ) =

∑

τ∈Xt\Ft

π̃τ
t

ǫwσ
t

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
by Defn. 15

=
ǫwσ

t

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)

∑

τ∈Xt\Ft

π̃τ
t

=
ǫwσ

t

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)

(

Wt(Xt \ Ft)

Wt(At)

)

by Lemma 17 part 2

= π̃σ
t

ǫWt(Xt \ Ft)

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
by defn. of π̃σ

t

= pσt
ǫWt(Xt \ Ft)

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
as pσt = π̃σ

t

(11)

and similarly,

∑

τ∈Ft

π̃τ
t q

τ
t (σ) =

∑

τ∈Ft

π̃τ
t

wσ
t

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
by Defn. 15

= pσt
Wt(Ft)

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)

(12)
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If right after rt it was the case that γ = σ ∈ Yt, then it must be the case that right before rt
either γ = σ and the car did not move at time t, or the car moved and γ was updated. This gives
us

pσt+1 = pσt +
∑

τ∈Xt

pτt q
τ
t (σ)

or equivalently:

pσt+1 − pσt =
∑

τ∈Xt

pτt q
τ
t (σ)

=
∑

τ∈Xt

π̃τ
t q

τ
t (σ) pτt = π̃τ

t

=
∑

τ∈Xt\Ft

π̃τ
t q

τ
t (σ) +

∑

τ∈Ft

π̃τ
t q

τ
t (σ)

= pσt
(ǫWt(Xt \ Ft) +Wt(Ft))

(1− ǫ)Wt(Xt \ Ft) +Wt(Yt)
by Eq. 11 and 12

= π̃σ
t+1 − π̃σ

t by Eq. 10

Hence we can conclude that pσt+1 = π̃σ
t+1.

In the third case, assume σ ∈ Ft and rt is a frontier decommissioning. By definition of Ft, Tσ

has been killed by rt and so pσt+1 = 0. Similarly, since σ /∈ At+1, π̃
σ
t+1 = 0 = pσt+1.

In the last case assume that rt is an outer decommissioning. Then rt does not increase nσ
t for

any σ ∈ [d], so π̃σ
t = π̃σ

t+1. Moreover, by the invariant that we also keep the car at a parking spot in
the frontier, rt cannot decommission the parking spot at ct, and thus the car does not move. Thus
pσt+1 = pσt .

3.3 Cost Analysis

Definition 15 with Lemmas 16 and 18 give us the following bound on the cost:

Theorem 19. During the prologue phase,
∑m

t=1 1
TM(t) ≤ H and during the core phase,

E

[

k−1
∑

t=m+1

1TM(t)

]

≤ (1 + ǫ)H +
ln d

ǫ

where 1TM(t) is an indicator random variable that is 1 if TreeSearch moves the car to a new
parking spot on the decommissioning rt and 0 otherwise.

Proof. The first inequality for the prologue phase follows from the fact that the car always moves
towards the root and the definition of H. So now consider a time t in the core phase, and σ ∈ [d].
Let Dt = [d] \ At be the set of dead paths just before decommissioning rt and define

cσt =

{

1 σ ∈ Xt or σ ∈ Dt

0 otherwise.

Let δσt be defined for all σ ∈ At such that π̃σ
t = πσ

t + δσt . Then by summing over all σ ∈ At we have

∑

σ∈At

π̃σ
t =

∑

σ∈At

πσ
t +

∑

σ∈At

δσt . (13)
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Note that
∑

σ∈At
π̃σ
t = 1 by definition of π̃t and

∑

σ∈At
πσ
t = 1−

∑

τ∈Dt
πτ
t since At and Dt partition

[d]. Thus Equation 13 can be reformulated as

∑

σ∈At

δσt =
∑

τ∈Dt

πτ
t . (14)

Thus

E
[

1TM(i)
]

=
∑

σ∈Xt

pσt By Defn. of pσt

=
∑

σ∈Xt

π̃σ
t by Lemma 18

=
∑

σ∈Xt

δσt +
∑

σ∈Xt

πσ
t By Defn. of δσt

≤
∑

σ∈At

δσt +
∑

σ∈Xt

πσ
t Since Xt ⊆ At

=
∑

σ∈Dt

πσ
t +

∑

σ∈Xt

πσ
t by Eq. 14

=
∑

σ

cσt π
σ
t By Defn. of cσt

≤ (1 + ǫ) min
σ∈[d]

(

k−1
∑

i=m+1

cσt

)

+
ln d

ǫ
By Multiplicative Weights Analysis [6]

≤ (1 + ǫ)H +
ln(d)

ǫ
By considering the last alive path Tσ

For the last inequality, note that if Tσ is the last alive path then
∑k−1

i=m+1 c
σ
t ≤ H by the definition

of H.

3.4 Monotonicity

We show that any neighbor algorithm for online metrical search can be extended to a monotone
algorithm for online metrical matching, where a neighbor algorithm has the property that if it
moves the car to a parking spot si with positive probability then it must be the case that there is
no in-commission parking spot on the route to si. As TreeSearch is obviously a neighbor algorithm,
it then follows that it can be extended to a monotone algorithm for online metrical matching, which
we will call TreeMatch.

Lemma 20. Let A be a neighbor algorithm for online metrical search. Then there exists a monotone
algorithm B for online metrical matching on a tree metric that is identical to A for online metrical
search instances.

Proof. We construct B using A as a subroutine. As long as B continues to receive requests for
which there is a co-located available server, it will send that request to a co-located server. By
renumber the requests, let r1 for the first request for which there is not a co-located server. We now
know that at this point, there optimal matching has positive cost. Now B starts running A, with
the current server locations and the car parked at r1. As long as there is an optimal matching with
only one positive edge, B will continue to run A. Whenever A doesn’t move the car, the request
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arrived at a co-located server, which is where B will send the request. If a request arrives at the
location of the car in A, then B moves the request to where A moves the car.

If a request rt arrives at a vertex without a co-located server and that is not the location of
the car, then let us call it a deviating request. B handles a deviating request in the following way.
Let c be the current parking spot of the car. Let Q be the collection of in-commission parking
spots that can be reached from c without passing over another in-commission parking spot. For
a parking spot si ∈ Q let pi be the probability that A moves the car to si if c is decommissioned.
Let R be the vertices that can reach c without passing through a vertex in Q. Note R includes no
vertices in Q. Let X = V −R−Q, the vertices separated from c by Q. If a request arrives at vertex
v ∈ X then the B moves the request to the first in-commission parking spot on the path from v
to c. If a request arrives at a vertex v ∈ Q then B moves the request to a co-located server. If a
request arrives at a vertex v ∈ R then moves the request to each server si ∈ Q with probability pi.
It is clear that B is monotone for a deviating request rt. After receiving a deviating request, then
B knows that the instance is not an online metrical searching instance, and can then mimic any
monotone algorithm, for exactly the greedy algorithm that moves a request to the nearest available
server.

4 The GroveMatch Algorithm

In subsection 4.1 we describe an algorithm GroveBuild that builds a grove G from a tree metric T
with distance metric dT before any request arrives. We assume without loss of generality that the
minimum distance in T is 1. In subsection 4.2 we then give an algorithm GroveMatch for online
metrical matching on a tree metric that utilizes the algorithm TreeMatch on each tree in the grove
constructed by GroveBuild, and we prove some basic properties of the grove G. In subsection 4.3
we show that GroveMatch is a monotone online metrical matching algorithm on a tree metric, and
is O(log6 ∆ log2 n)-competitive for online metrical search instances.

4.1 The GroveBuild Algorithm

Definition 21. A grove G is either: a rooted tree X consisting of a single vertex, or an unweighted
rooted tree X with a grove X(v) associated with each vertex v ∈ X. The tree X is the canopy of
the grove G. Each X(v) is a subgrove of X. The canopy of a subtree X(v) is a child of X. Trees
in G are descendants of X.

GroveBuild Description: GroveBuild is a recursive algorithm that takes as input a tree metric
T , a designated root ρ of T , positive real R, a positive real α and a positive integer d. In the initial
call to GroveBuild, T is the original tree metric, ρ is an arbitrary vertex in T , R is the maximum
distance ∆ between ρ and any other vertex in T , d is 1, and α is a parameter to be determined
later in the analysis.

If T consists of a single vertex v, then the recursion ends and the algorithm outputs a rooted
tree consisting of only the vertex v. We call this tree a leaf of the grove. Otherwise the algorithm’s
first goal is to partition the vertices of T into parts P1, . . . , Pk, and designate one vertex ℓi of each
partition Pi as being the leader of Pi. To accomplish this, the algorithm sets partition P1 to consist
of the vertices in T that are within a distance z of ρ, where z is selected uniformly at random from
the range [0, Rα ]. The leader ℓ1 is set to be ρ. To compute Pi and ℓi after the first i − 1 parts
and leaders are computed the algorithm takes the following steps. Let ℓi be a vertex such that
ℓi /∈ ∪i−1

j=1Pj and for each vertex v on the path (ℓi, ρ) it is the case that v ∈ ∪i−1
j=1Pj . So ℓi is not in

but adjacent to the previous partitions. Then Pi consists of all vertices v ∈ T − ∪i−1
j=1Pj that are
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within distance R
α from ℓi in T . So Pi intuitively is composed of vertices that are not in previous

partitions and that are close to ℓi.
The tree X at this point in the recursion has a vertex for each part in the partition of T . There

is an edge between vertices/parts Pi and Pj in X if and only if there is an edge (v,w) in T such
that v ∈ Pi and w ∈ Pj. We identify this edge in X with the edge (v,w) ∈ T . The root of X
is the vertex/part P1. The tree X is at depth d in the grove. The grove X(Pi) associated with
vertex Pi in X is the result of calling GroveBuild on the subtree of T induced by the vertices in
Pi, with ℓi designated as the root, parameter R decreased by an α factor, parameter α unchanged,
and parameter d incremented by 1.

So from here on, let G denote the grove built by GroveBuild on the original tree metric T .

Definition 22.

• For an edge (u, v) ∈ T , let δ(u, v) be the depth in the grove G of the tree X that contains
(u, v). Note that each edge in T occurs in exactly one tree in G.

• For an edge (u, v) ∈ T , define dG(u, v) to be ∆
αδ(u,v)−1 .

• For vertices u0, uh ∈ T , connected by the simple path (u0, u1, . . . , uh) in T , define dG(u0, uh)
to be

∑h−1
i=0 dG(ui, ui+1). Obviously dG forms a metric on the vertices of T .

Lemma 23. Recall that dT (u, v) is the shortest path distance between two vertices u, v of tree T .
For all vertices u, v ∈ T , we have that dG(u, v) ≥ dT (u, v) and E [dG(u, v)] ≤ α(1+ log ∆) ·dT (u, v).

Proof. Let (u0, u1, . . . , uh) be the path from u0 to uh in T . Since dG(u0, uh) =
∑h−1

i=0 dG(ui, ui+1),

and dT (u0, uh) =
∑h−1

i=0 dT (ui, ui+1), it is sufficient to prove this for each (u, v) ∈ T . For notational
simplicity let δ := δ(u, v).

Notice that from the construction of G that dG(u, v) = ∆
αδ−1 . Showing that dT (u, v) ≤ ∆

αδ−1

proves the first inequality: if δ = 1 then dT (u, v) ≤ ∆, else, dT (u, v) ≤
∆

αδ−1 since (u, v) did not get
cut at depth δ − 1.

To prove the second inequality, let Ai be the event that δ = i, and A<i be the event that δ < i.
Notice that if dT (u, v) ≥

∆
αi for some i, then, δ ≤ i since cuts at depth i of the recursion are made

in increments of ∆
αi distance. Hence, the value of δ is at most 1 + logα(

∆
dT (u,v) ). By the linearity of

expectation we have:

E [dG(u, v)] =

1+logα(∆/dT (u,v))
∑

i=1

Pr [Ai] ·
∆

αi−1
=

1+logα(∆/dT (u,v))
∑

i=1

Pr
[

Ai| A<i

]

Pr
[

A<i

]

·
∆

αi−1

≤

1+logα(∆/dT (u,v))
∑

i=1

Pr
[

Ai| A<i

]

·
∆

αi−1
=

1+logα(∆/dT (u,v))
∑

i=1

αdT (u, v).

The last equality follows from the fact that Pr
[

Ai|A<i

]

= dT (u,v)
∆/αi since cuts at depth i of the

recursion are made in increments of ∆
αi distance with an offset randomly chosen from [0, ∆

αi ].

Corollary 24. An algorithm B that is c-competitive for online metric matching on T with distance
metric dG is O(c · α log ∆)-competitive for online metric matching on T with distance metric dT .

Proof. This is an immediate consequence of Lemma 23.
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4.2 GroveMatch Description

We now describe an algorithm GroveMatch for online metrical matching for tree metrics.

GroveMatch Description: Conceptually within GroveMatch, a separate copy TreeMatch(X) of the
online metric matching algorithm TreeMatch will be run on each tree X in the grove G constructed
by the algorithm GroveBuild. In order to accomplish this, we need to initially place servers at the
vertices in X. We set the number of servers initially located at each vertex x ∈ X to the number
of servers in T that are located at vertices v ∈ T such that v ∈ x (recall that each vertex in a tree
in the grove G corresponds to a collection of vertices in T ).

When a request rt arrives at a vertex v in T , the algorithm GroveMatch calls the algorithm
TreeMatch on a sequence (X1, x1), (X2, x2), . . . where each Xi is a tree of depth i in G and xi is
a vertex in Xi. Initially X1 is the depth 1 tree in G, and x1 is the vertex in X1 that contains
v. Assume that TreeMatch has already been called on (X1, x1), (X2, x2), . . . (Xi−1, xi−1), then the
algorithm GroveMatch processes (Xi, xi) in the following manner. First, TreeMatch(Xi) is called
to respond to a request at xi. Let yi be the vertex in Xi that TreeMatch(Xi) moved this request
to. If Xi is a leaf in G, then TreeMatch(Xi) sets yi = xi, and GroveMatch moves request rt to the
unique vertex in T corresponding to xi. If Xi is not a leaf in G, then Xi+1 is set to be the canopy
of the grove Xi(yi), and xi+1 = argminw∈T :w∈Xi+1

dT (v,w) or equivalently xi+1 is the first vertex
in Xi+1 that one encounters if one walks in T from v to the vertices of Xi+1.

Lemma 25. Consider a tree X at depth δ with root ρ in grove G. For any vertex v in X, the
number of hops in X between ρ and v is at most α+1. Furthermore, by the time that TreeMatch(X)
enters its core phase, it must be the case that for every descendent tree Y of X in G there will be
no future movement of the car on edges in Y while TreeMatch(Y ) is in its prologue phase.

Proof. This follows immediately from the fact that the parameter R decreases by an α factor on
each recursion.

4.3 GroveMatch Analysis

We now analyze GroveBuild and GroveMatch under the assumption that α = (lnn)(log2α ∆) and
ǫ = 1

logα ∆ .

Lemma 26. The algorithm GroveMatch is O(log n log3 ∆)-competitive for online metrical search
instances with the metric dG.

Proof. If GroveMatch directs a request to traverse an edge (u, v) ∈ T , we will say that the cost of
this traversal is charged to the unique tree in G that contains (u, v). Define P (δ) to be the charge
incurred by a tree X of depth δ in G and all subgroves X(v) of X during the prologue phase of
TreeMatch(X). Define C(δ) to be the charge incurred by a tree X of depth δ in G and all subgroves
X(v) of X during the core phase of TreeMatch(X).

Recall that the distance under the dG metric of ever edge in X is ∆
αδ−1 and by Lemma 25 there

are at most α + 1 vertices on the path from any leaf to the root of X. This gives us that the
distance in X under dG from the root to any leaf is at most α ∆

αδ−1 = ∆
αδ−2 and that the diameter

of X is at most 2 ∆
αδ−2 . The only subgroves X(v) of X that incur costs during the prologue phase

of TreeMatch(X) are those subgroves for which v is traversed by the car on its path to the root of
X. Thus we obtain the following recurrence:

P (δ) ≤ (α+ 1) (P (δ + 1) + C(δ + 1)) +
∆

αδ−2
. (15)
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Note that once the core phase begins in TreeMatch(X), by Lemma 25 all instances of TreeMatch(Y )
on any tree Y that is a descendent of X in G can incur no most costs in their prologue phase. By
Theorem 19 the core phase cost on X is at most (1+ ǫ)(α+1)+ lnn

ǫ times the diameter of X, which
is at most 2 ∆

αδ−2 . Thus we obtain the following recurrence:

C(δ) ≤

(

C(δ + 1) + 2
∆

αδ−2

)(

(1 + ǫ)(α+ 1) +
lnn

ǫ

)

(16)

We expand the recurrence relation for C(δ) first. Treating ((1 + ǫ)(α+1)+ ln(n)
ǫ ) as a constant

Z, and expanding C(δ) we obtain:

C(δ) ≤

(

C(δ + 1) + 2
∆

αδ−2

)

Z

= C(δ + 1)Z + 2
∆

αδ−2
Z

≤ 2
∆

αδ−1

logα ∆
∑

i=1

(

Z

α

)i

≤
2∆ logα ∆

αδ−1

(

Z

α

)logα(∆)

≤
2∆ logα ∆

αδ−1

(

(1 + ǫ)
α+ 1

α
+

ln(n)

ǫα

)logα(∆)

≤
2∆ logα ∆

αδ−1

(

1 + ǫ+
1

α
+

ǫ

α
+

lnn

ǫα

)logα(∆)

≤
2∆ logα ∆

αδ−1

(

1 +
1

logα ∆
+

1

(lnn)(log2α∆)
+

1

(ln n)(log3α ∆)
+

1

logα∆

)logα(∆)

≤
2∆ logα ∆

αδ−1

(

1 +
4

logα ∆

)logα ∆

≤
2e4∆ logα∆

αδ−1

Now expanding the recurrence relation for P (δ) we obtain:

P (δ) ≤ (α+ 1) (P (δ + 1) + C(δ + 1)) +
∆

αδ−2

≤ (α+ 1)

(

P (δ + 1) +
2e4∆

αδ−1
logα ∆

)

+
∆

αδ−2

= (α+ 1)P (δ + 1) +
2e4∆(α+ 1)

αδ−1
logα ∆+

∆

αδ−2

≤ (α+ 1)P (δ + 1) +
2e4∆(α+ 1)

αδ−1
logα ∆+

∆(α+ 1)

αδ−1

≤ (α+ 1)P (δ + 1) +
∆(α+ 1)

αδ−1

(

2e4 logα∆+ 1
)

≤ (α+ 1)P (δ + 1) +
3e4(α+ 1)∆ logα ∆

αδ−1

≤
3e4∆ logα ∆

αδ−2

logα ∆
∑

i=1

(

α+ 1

α

)i
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≤
3e4∆ log2α ∆

αδ−2

(

α+ 1

α

)logα ∆

=
3e4∆ log2α ∆

αδ−2

(

1 +
1

α

)logα ∆

=
3e4∆ log2α ∆

αδ−2

(

1 +
1

(ln n)(log2α ∆)

)logα ∆

≤
3e5∆ log2α ∆

αδ−2

Hence the cost of the algorithm GroveMatch is O
(

∆
αδ−2 log

2 ∆
)

. However, note that TreeMatch

only pays positive cost on X if for any optimal solution there is at least one request that such a
solution must pay positive cost for in X. The reason for this is that if TreeMatch(X) moves the car
out of a vertex v in X, then there are no in-commission parking spots left in v, and therefore every
algorithm would have to move the car out of v. Since every edge in X has distance ∆

αδ−1 , this gives

us that GroveMatch must be O(α log2 ∆) = O(log n log3 ∆) competitive on the metric dG.

Together with Corollary 24, Lemma 26 gives us the following theorem:

Theorem 27. GroveMatch is O(log6 ∆ log2 n)-competitive for online metrical search instances.

Lemma 28. GroveMatch is a monotone algorithm for online metrical matching.

Proof. Consider a tree Xi and vertex xi ∈ Xi considered in the GroveMatch algorithm. Then by the
monotonicity of the algorithm TreeMatch the probability that a request would arrive at a particular
yi if the request arrived in a vertex xj on the path from xi to yi has to be at least the probability
that a request arriving at xi moves to yi. And the routing in the Xk’s, k > i, is independent of
whether the request arrived at xi or xj.
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