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Abstract. We consider the classical machine scheduling, where n jobs need to be scheduled on m
machines, and where job j scheduled on machine i contributes pi,j ∈ R to the load of machine i, with
the goal of minimizing the makespan, i.e., the maximum load of any machine in the schedule. We study
inefficiency of schedules that are obtained when jobs arrive sequentially one by one, and the jobs choose
themselves the machine on which they will be scheduled, aiming at being scheduled on a machine with
small load. We measure the inefficiency of a schedule as the ratio of the makespan obtained in the
worst-case equilibrium schedule, and of the optimum makespan. This ratio is known as the sequential
price of anarchy (SPoA). We also introduce two alternative inefficiency measures, which allow for a
favorable choice of the order in which the jobs make their decisions. As our first result, we disprove
the conjecture of [23] claiming that the sequential price of anarchy for m = 2 machines is at most 3.
We show that the sequential price of anarchy grows at least linearly with the number n of players,
assuming arbitrary tie-breaking rules. That is, we show SPoA ∈ Ω(n). Complementing this result, we
show that SPoA ∈ O(n), reducing previously known exponential bound for 2 machines. Furthermore,
we show that there exists an order of the jobs, resulting in makespan that is at most linearly larger
than the optimum makespan. To the end, we show that if an authority can change the order of the jobs
adaptively to the decisions made by the jobs so far (but cannot influence the decisions of the jobs),
then there exists an adaptive ordering in which the jobs end up in an optimum schedule.
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1 Introduction

We consider the classical optimization problem of scheduling n jobs on m unrelated machines. In this problem,
each job has a (possibly different) processing time on each of the m machines, and a schedule is simply an
assignment of jobs to machines. For any such schedule, the load of a machine is the sum of all processing
times of the jobs assigned to that machine. In this optimization problem, the objective is to find a schedule
minimizing the makespan, that is, the maximum load among the machines.

In the game-theoretic version of this scheduling problem, also known as the load balancing game, jobs
correspond to players who selfishly choose the machine to which the job is assigned. The cost of a player is
the load of the machine to which the player assigned its own job. Such a setting models, for example, the
situation where the machines correspond to servers, and the communication with a server has a latency that
depends on the total traffic to the server.

The decisions of the players lead to some equilibrium in which no player has an incentive to deviate,
though the resulting schedule may not necessarily be optimal in terms of makespan. Such an equilibrium
might have a rather high social cost, that is, the makespan of the corresponding schedule5 is not guaranteed
to be the optimal one, as in Example 1 below.

Example 1 (two jobs on two unrelated machines [5]). Consider two jobs and two unrelated machines, where
the processing times are given by the following table:

job 1 job 2

machine 1 1 `

machine 2 ` 1

5 When each player chooses deterministically one machine, this definition is obvious. When equilibria are mixed or
randomized, each player chooses one machine according to some probability distribution, and the social cost is the
expected makespan of the resulting schedule.
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The allocation represented by the gray box is a pure Nash equilibrium in the load balancing game (if a
job moves to the other machine, its own cost increases from ` to ` + 1), and has makespan `. The optimal
makespan is 1 (swap the allocations). This example shows that the makespan of an equilibrium can be
arbitrarily larger than the optimum.

The inefficiency of equilibria is a central concept in algorithmic game theory. Typically, one aims to
quantify the efficiency loss resulting from a selfish behavior of the players, where the loss is measured in
terms of the social cost. Arguably, the two most popular measures of inefficiency of equilibria are the price
of anarchy (PoA) [27] and the price of stability (PoS) [4], which, intuitively, consider the most pessimistic
and the most optimistic scenario:

– The price of anarchy is the ratio of the cost of the worst equilibrium over the optimal social cost ;
– The price of stability is the ratio of the cost of the best equilibrium over the optimal social cost.

The price of anarchy corresponds to the situation (anarchy) in which there is no authority, and players
converge to some equilibrium by themselves. In the price of stability, one envisions that there are means to
suggest the players how to play, and if that is an equilibrium, then they will indeed follow the suggestion, as
no unilateral deviation can improve a player’s individual cost. Furthermore, the price of stability provides
a lower bound on the efficiency loss of an equilibrium outcome, if, for example, no equilibrium is actually a
social optimum.

Example 1 thus shows that the price of anarchy of load balancing games is unbounded even for
two jobs and two machines. Interestingly, the price of stability instead is one (PoS =1), for any number
of jobs and any number of machines. This is because there is always an optimal solution that is also a pure
Nash equilibrium [18] (see Section 1.3 for details). In a pure Nash equilibrium, players choose their strategies
deterministically, as opposed to mixed Nash equilibria. In this work, we will also focus on the case in which
players act deterministically, though in a sequential fashion (see below).

As the price of anarchy for unrelated machines is very high (unbounded in general), one may ask whether
Nash equilibria are really what happens as an outcome in the game, or whether a central authority, which
cannot influence the choices of the players (jobs), may alter some aspects of the scheduling setting, and as
a result, improve the performance of the resulting equilibria.

Motivated by these issues, in [28] the authors consider the variant in which players, instead of choosing
their strategies simultaneously, play sequentially taking their decisions based on the previous choices and
also knowing the order of players that will make play. Formally, this corresponds to an extensive-form game,
and the corresponding equilibrium concept is called a subgame-perfect equilibrium. Players always choose
their strategy deterministically. The resulting inefficiency measure is called the sequential price of anarchy
(SPoA).

There are two main motivations to study a sequential variant of the load balancing game. First, assuming
that all players decide simultaneously to choose the machine to process their jobs is a too strong and
unnatural modeling assumption in many situations; furthermore, expecting that all players choose the worst-
case machine, as was the case in Example 1, is unnatural as well. Second, one may have the power to explicitly
ask the players to make sequential decisions, and make this the policy, which the players are aware of, with
the view of lowering the loss of efficiency of the resulting equilibrium schedules. In a sense, such an approach
of adjusting the way the players access the machines resembles coordination mechanisms [11], which are
scheduling policies aiming to achieve a small price of anarchy (see Section 1.3 for more details).

1.1 Prior results (SPoA for unrelated machines)

The first bounds on the SPoA for unrelated machines have been obtained in [28], showing that

n ≤ SPoA ≤ m · 2n.

Therefore, SPoA is constant for a constant number of machines and jobs, while PoA is unbounded even
for two jobs and two machines (recall Example 1). The large gap in the previous bound naturally suggests
the question of what happens for many jobs and many machines. This was addressed by [7] which improved
significantly the prior bounds by showing that

2Ω(
√
n) ≤ SPoA ≤ 2n.
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At this point, one should note that these lower bounds use a non-constant number of machines. In other
words, it still might be possible that for a constant number of machines the SPoA is constant. For two
machines, [23] proved a lower bound SPoA ≥ 3, and in the same work the authors made the following
conjecture:

Conjecture 1. [23] For two unrelated machines, SPoA = 3 for any number of jobs.

1.2 Our contributions

In this paper, we disprove Conjecture 1 by showing that in fact, SPoA on two machines is not even constant.
Indeed, it must grow linearly and the conjecture fails already for few jobs:

– For five jobs we have SPoA ≥ 4 (Theorem 2);
– In general, with arbitrary tie-breaking rules, it holds that SPoA ≥ Ω(n) (Theorem 3).

Note that the result of Theorem 3 uses suitable player-specific tie-breaking rules (see Definition 1). We
discuss the implications of using tie-breaking rules more in detail at the end of this subsection.

While Theorem 2 settles the conjecture, the result of Theorem 3 says that SPoA is non-constant already
for two machines (as the number of jobs grows) for generic tie-breaking rules. We actually conjecture that
there exist instances for which the SPoA is unbounded without having ties. Moreover, it implies a strong
separation with the case of identical machines, where SPoA ≤ 2− 1

m , for any number m of machines [23].
In Theorem 4 we show that SPoA is upper bounded by 2(n − 1), reducing the exponential upper bound
obtained in [7] for arbitrarily many machines to linear bound for 2 machines.

The original idea behind the notion of price of stability (PoS) is that an authority can suggest to the
players how to play:

[...] The best Nash equilibrium solution has a natural meaning of stability in this context – it is the
optimal solution that can be proposed from which no user will defect. [...] As a result, the global
performance of the system may not be as good as in a case where a central authority can simply
dictate a solution; rather, we need to understand the quality of solutions that are consistent with
self-interested behavior. [4]

We borrow this idea of an authority suggesting desirable equilibria. Specifically for our setting, the authority
suggests the order in which players make their decisions, so to induce a good equilibrium. This can be viewed
as the price of stability (PoS) for these sequential games. We introduce this notion in two variants (a weaker
and a stronger):

– Sequential Price of Stability (SPoS). The authority can choose the order of the players’ moves. This
order determines the tree structure of the corresponding game.

– Adaptive Sequential Price of Stability (adaptive SPoS). The authority decides the order of the players’
moves adaptively according to the choices made at each step.

The study of these two notions for two unrelated machines is also motivated by our lower bound, and by
the lack of any good upper bound on this problem. We prove the following upper bounds for two unrelated
machines (Theorems 5 and 6):

SPoS ≤ n

2
+ 1 , adaptive SPoS = 1 .

The next natural question is to consider three or more machines. Here we show an impossibility result, namely
adaptive SPoS ≥ 3/2 already for three machines (Theorem 7). That is, even with the strongest type of
adaptive authority, it is not possible to achieve the optimum. This shows a possible disadvantage of having
players capable of complex reasoning, like in extensive-form games. In the classical strategic-games setting,
where we consider pure Nash equilibrium, here is an optimum which is an equilibrium, that is, PoS = 1 for
any number of machines and jobs. This result follows from [18] (see Section 1.3 for details)

As mentioned above, some of our results rely on the use of a suitable tie-breaking rules. Using tie-breaking
rules to prove lower bounds on the SPoA is not new: in [16] the authors showed that, in routing games,
the sequential price of anarchy is unbounded. Their proof is based on carefully chosen tie-breaking rules.
This way of using tie-breaking rules is not part of the players’ strategy interactions. In contrast, some works
consider settings where among equivalent choices, each player i can use the one that hurts prior agents who
chose a strategy that player i would prefer they had not chosen (see [30]).
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1.3 Further related work

The load balancing games considered in this work are one of the most studied models in algorithmic game
theory (see, e.g., [27, 26, 20, 2, 15, 19, 17]). In all these works, players correspond to jobs, their cost is the
load of the machine they choose, and the social cost is defined as the makespan of the jobs allocation. In
particular, the seminal paper [27] which introduced the concept of the price of anarchy, considers the case of
identical and related machines, two simpler versions of unrelated machines (related machines is the setting
where each machine has a speed, each job has a certain size, and the processing time equals the job size
divided by the machine speed; the case of identical machines is the restriction in which all speeds are the
same).

Interestingly, the price of anarchy for related or identical machines is much better than in the case of
unrelated machines (where the price of anarchy is unbounded). Indeed, for related and identical machines,
the price of anarchy is bounded for any constant number of machines [27, 15, 26, 21, 20, 19, 17] (some of these
results give bounds also for mixed Nash equilibria). Specifically, for pure Nash equilibria, PoA = (2− 2

m+1 )

for identical machines as implied by the analysis of [21], while PoA = O( logm
log logm ) for related machines [15].

As already mentioned above, the PoS for unrelated machines is 1. This is due to the work [18] which
shows that, starting from any schedule, an iterative process of applying unilateral improving-strategy changes
of players leads to a pure Nash equilibrium (the same property has been observed earlier in [22] for related
machines). This condition implies the existence of a pure Nash equilibrium.

Load balancing games on identical and related machines are a special case of weighted singleton congestion
games. In a singleton weighted congestion game, there are m resources, and n players, each player i having
a weight wi. Every resource r has a cost function cr associated with it. In the game, every player i chooses
one resource si as its strategy, resulting in cost cr(

∑
i:si=r

wi) of the resource, which is also the cost of every
player i that chooses resource r as its strategy. Obviously, seeing the machines in the load balancing games
as resources, seeing the jobs as the players, seeing the job sizes as weights wi, and setting cr(x) = x/speedr,
the singleton congestion game models the load balancing games on m related machines, where machine r
has speed speedr, and the processing time of job i on machine r is wi/speedr. Load balancing games on
unrelated machines have, to the best of our knowledge, no counterpart in congestion games.

Requiring that players make their decisions sequentially, according to a given and known order can be
seen as a mean of a central authority that can control access to the resources (machines), but not the choices
of the players (jobs). In this sense, changing the access from simultaneous to sequential can be seen as a kind
of control mechanism like a coordination mechanism [11]. In load balancing games where the cost of a player
(job) is the completion time of the job (and not the total load of the machine on which the job is scheduled), a
coordination mechanism is a scheduling policy, one for every machine, which determines the order of the jobs
in which they will be scheduled on the machine. The scheduling policy needs to be fixed and (publicly) known
to the players. For load balancing games in normal form (i.e., where players make simultaneous decisions, as
opposed to the sequential decisions, which we consider in this paper), coordination mechanisms have been
studied both for the version where the social cost is the makespan (see, e.g., [25, 8, 6, 9] and the references
therein), or the total (weighted) completion time (see, e.g., [24, 14, 12, 1, 31] and the references therein).

As already discussed above, the concept of a sequential price of anarchy is not new. In addition to the
results for unrelated machines discussed in Section 1.1, the sequential price of anarchy has been studied also
for other games. These include congestion games with affine delay functions [16], isolation games [3], and
network congestion games [13]. Interestingly, the latter work shows that the sequential price of anarchy for
these games is unbounded, as opposed to the price of anarchy which was known to be 5/2.

Naturally, there is a huge literature on the classical algorithm-theoretic research on machine scheduling,
see, e.g., the textbook [29] and the survey [10] for fundamental results and further references.

2 Preliminaries

In unrelated machine scheduling there are n jobs and m machines, and the processing time of job j on
machine i is denoted by pij . A solution (or schedule) consists of an assignment of each job to one of the
machines, that is, a vector s = (s1, . . . , sn) where sj is the machine to which job j is assigned to. The load
li(s) of a machine i in schedule s is the sum of the processing times of all jobs allocated to it, that is,
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li(s) =
∑
j:sj=i

pij . The social cost of a solution s is the makespan, that is, the maximum load among all
machines.

Each job j is a player who attempts to minimize her own cost costj(s), that is, the load of the machine
she chooses: costj(s) = lsj . Every player j decides sj , the assignment of job j to a machine. The combination
of all players strategies gives a schedule s = (s1, . . . , sn).

In the extensive-form version of these games, players play sequentially; they decide their strategies based
on the choices of the previous players and knowing that the remaining players will play rationally. We
consider a full information game. As players enter the game sequentially, they can compute their optimal
moves by the so-called backward induction: the last player makes her move greedily, the player before the
last makes the move also greedily (taking into account what the last player will do), and so on. Any game
of this type can be modeled by a decision tree, which is a rooted tree where the non-leaf vertices correspond
to the players in certain states, while edges correspond to the strategies available to the players in a given
state.

Each leaf corresponds to a solution (schedule), which is simply the strategies on the unique leaf-to-root
path. Given the processing times P = (pij), the players can compute the loads on the machines in each of
the leaves. In case of ties, all players know the deterministic tie-breaking rules of all the other players. A
player can calculate what the final outcome would be for each of her strategies, and choose the strategy
that minimizes her cost. This method is called backward induction. Strategies obtained in this way for each
internal node constitute what is called the subgame-perfect equilibrium: for each subtree, we know what is the
outcome achieved by the players in this subtree if they play rationally. We usually represent the strategies
(edges) that are chosen by players in the subgame perfect equilibrium in bold, and the other strategies
as dashed edges.

It is easy to see that a subgame-perfect equilibrium always exists and it is unique, for given tie-breaking
rules. On the other hand, its computation is difficult, as proved in [28]:

Theorem 1. [28] Computing the outcome of a subgame perfect equilibrium in Unrelated Machine Scheduling
is PSPACE-complete.

Notation and formal definitions. We consider n jobs and m machines, denoted by J = (J1, J2, . . . , Jn) and
M = (M1,M2, . . . ,Mm) respectively. The processing times are given by a matrix P = (pij), with pij being
the processing time of job Jj on machine Mi. The set of all such nonnegative n × m matrices is denoted
by Pn,m and it represents the possible instances of the game. For any P ∈ Pn,m as above, we denote by
Tn,m the set of all possible depth-n, complete m-ary decision trees where each path from the root to a leaf
contains every job (player) exactly once. The whole game (and the resulting subgame perfect equilibrium)
is fully specified by P , T , and the tie-breaking rule used by the players. The most general – worst case –
scenario is that ties are arbitrary (see Definition 1). In the following, we do not specify the dependency on
the ties, and simply denote by SPE(P, T ) the cost (makespan) of the subgame perfect equilibrium of the
game. One type of worst-case analysis is to assume the players’ order to be adversarial, and the tree T being
chosen accordingly. This is the same as saying that players arrive in a fixed order (say J1, J2, . . . , Jn) and
their costs P is chosen in an adversarial fashion. In this case, we simply write SPE(P ) as the tree structure
is fixed. For a fixed order σ (a permutation) of the players, and costs P , we also write SPE(P, σ) to denote
the quantity SPE(P, T ) where T is the tree resulting from this order σ of the players.The optimal social
cost (makespan) is denoted by OPT (P ).

We next introduce formal definitions to quantify the inefficiency of subgame perfect equilibria in various
scenarios (from the most pessimistic to the most optimistic). The sequential price of anarchy (SPoA)
compares the worst subgame perfect equilibrium with the optimal social cost,

SPoA = sup
P∈Pn,m

SPE(P )

OPT (P )
.

In the sequential price of stability (SPoS), we can choose the order σ in which players play depending on
the instance P . The resulting subgame perfect equilibrium has cost SPE(P, σ), which is then compared to
the optimum,

SPoS = sup
P∈Pn,m

min
σ∈Sn

SPE(P, σ)

OPT (P )
,
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where σ ranges over all permutations Sn of the n players. In adaptive sequential price of stability (adaptive
SPoS), we can choose the whole structure of the tree, meaning that for each choice of a player, we can adap-
tively choose which player will play next. This means that every path from any leaf to the root corresponds
to a permutation of the players. The adaptive price of stability is then defined as

adaptive SPoS = sup
P∈Pn,m

min
T∈Tn,m

SPE(P, T )

OPT (P )
.

Note that by definition adaptive SPoS ≤ SPoS ≤ SPoA.

3 Linear lower bound for SPoA

In this section, we consider the sequential price of anarchy for two unrelated machines. In [23] the authors
proved a lower bound SPoA ≥ 3 for this case, and they conjectured that this was also a tight bound. We
show that unfortunately this is not the case: Already for five jobs, SPoA ≥ 4, and with more jobs the lower
bound grows linearly, i.e., SPoA = Ω(n).

3.1 A lower bound for n = 5 players

Theorem 2. For two machines and at least five jobs, the SPoA is at least 4.

The proof is in the appendix.

3.2 Faster linear program formulation

Our first lower bound for n = 5 players has been obtained by solving a linear program, suggested in [23]. A
crucial achievement for the speedup of the program is the discovery of the property that we describe in the
following. This property allows excluding a large number of combinations for the last layer of the tree. As the
last layer of the tree represents more than half of the internal nodes in the tree, the number of combinations
that have to be generated can be reduced drastically. For example, for n = 5, the improvement is from 2 ·109

to 6 · 106.
In this approach of linear programming, the variables are the processing times {pij , 1 ≤ i ≤ m, 1 ≤ j ≤ n},

and the approach essentially goes as follows:

– Fix the subgame perfect equilibrium structure, that is, the sequence of players and all the decisions in
the internal nodes, this also gives the sequential equilibrium;

– Fix the leaf which is the optimum, and impose that the optimum makespan is at most 1;

For every fixed subgame perfect equilibrium tree structure, we have one constraint for each internal node
(decision of a player). The optimum state (leaf) should also be fixed and both numbers have to be assumed
to be at most 1 by adding two additional constraints to the linear program. By maximizing the maximum
value of loads on the machines in the leaf which corresponds to the sequential equilibrium, we get the worst
case example for this particular tree structure. There are 2n − 1 internal nodes in the decision tree with
n players. Therefore, this approach requires exploring 22

n−1 many possible subgame perfect equilibria tree
structures, and for each of them, we have to decide where is the optimum among 2n leaves and solve a linear
program of size 2n ×O(n).

We managed to solve the case n = 5 players with the aid of a computer program which explored all
possible tree structure leading to subgame perfect equilibria; this has been achieved by understanding the
structure and by breaking certain symmetries to reduce the search space, as we explain next. It is clear that
the extremely fast growing number of possible tree structures makes the program very time-consuming even
for small values. Consequently, we tried to exclude combinations from the computation, i.e. we avoid starting
the linear programming solver for certain tree structures. There are some trivial cases that we present for
the intuition. The first is that not all leaves of the tree should be tested for the position of the optimum.
Both the leftmost and the rightmost leaf nodes can be excluded from the possible optimum position due to
the property that SPoA is 1 in both cases. For the same reason, all tree structures where the equilibrium is
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located at those extreme leaves can also be ignored. Additionally, the leaf where the equilibrium is achieved
should be avoided for the optimum position. The next idea is that trees that are mirror images of other trees
with regard to the vertical axis will lead to the same SPoA.

During the experimental investigations of possible outcomes based on the structure of the game tree, we
found out that a relatively big part of game tree structures always leads to an infeasible linear program,
regardless of the position of the optimum. Consider the simple tree structure for two players and two ma-
chines, depicted in Figure 1. Solid lines represent the best responses in each node. It is obvious that, if the
best response of player 2 in the left node is to choose machine 1, then the best response in the right node
cannot be to choose machine 2. We generalized this observation to any number of players n and a number of
machines m, and apply it to the second lowest level of the tree, i.e., to the best responses of the last player
Jn.

Additional notation. We denote the nodes of a T ∈ Tn,m by H and the nodes in the level i by Hi. Clearly,
in the case of adaptive sequences, Hi may contain different players, while in the case of fixed sequences, in
Hi all the nodes correspond to exactly one player.

Let p(h) denote the parent node of node h in tree t. We define the child index c(h) = i ∈ M of node
h if h is the i-th child of it parent p(h), this means that the edge from p(h) to h represents that the agent
corresponding to p(h) selects Mi. Every node h on the j-th layer of t is defined by the choices of the agents
playing before agent Jj . These decisions create a unique path from the root of t to h. The nodes on the path
from the root r to h are P (h) = {r, ..., p(p(h)), p(h), h} = {h′ ∈ H|h ∈ th′} where th′ is the subtree of t
rooted at h′. These definitions allow us to define the set of agents that selected a certain machine i before
node h: B(i, h) = {j ∈ J | p(h′) ∈ Hj ∧ h′ ∈ P (h) ∧ c(h′) = i}. Then the observation is the following:

Observation 1 For every pair of nodes in the second lowest layer h, h′ ∈ Hn if the best response of player
Jn in h is i, then it implies that the best response in h′ is also i if ∀i′ ∈M \ i : B(i′, h) ⊆ B(i′, h′) holds.

1

22

M1

M1 M1

M2

M2 M2

Fig. 1: A tree for the case of two players and two machines. The responses of the players (bold edges) cannot
be a subgame perfect equilibrium.

Remark 1. We could not find any example that would give a lower bound on sequential price of anarchy
(even locally) better than the one in the proof of Theorem 3. For n ≤ 7, our computer program searched the
whole space and the results obtained above are the best. We believe that the construction from the proof of
the theorem gives the best possible lower bound example.

3.3 Linear lower bound

Extending the construction for n = 5 players is non-trivial as this seems to require rather involved constants
that multiply the ε terms. However, we notice that these terms only help to induce more involved tie-breaking
rules of the following form:

Definition 1 (arbitrary tie-breaking rule). We say that the tie-breaking rule is arbitrary if each player
uses a tie-breaking rule between machines which possibly depends on the allocation of all players.

The following theorem gives our general lower bound:
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Theorem 3. Even for two machines, the SPoA is at least linear in the number n of jobs, in the case of
arbitrary tie-breaking rule.

Proof. We consider the following instance with n = 3k − 1 jobs arriving in this order (from left to right),

J1 J2 J3 J4 J5 J6 · · · J3k−5 J3k−4 J3k−3 J3k−2 J3k−1
M1 k + 1 0 0 k 0 0 · · · 3 0 0 1 2

M2 0 k k 0 k − 1 k − 1 · · · 0 2 2 1 1

and show that the subgame perfect equilibrium is the gray allocation whose makespan is k + 2, while the
optimal makespan is 1. This requires players to use the following tie-breaking rules in the first part: if player
J1 chooses machine M1, then J2 and J3 prefer to avoid player J1, that is, they choose the other machine in
case of ties in their final cost.

We prove the claim above by induction on k. The base case is k = 2 which follows directly from the
example in Equation (10), where we replace ε > 0 with an equivalent tie-breaking rule (and set ε = 0). As
for the inductive step, the proof consists of the following steps (which we prove below):

1. If the first three jobs choose their zero-cost machines, then all subsequent jobs implement the subgame
perfect equilibrium on the same instance with k′ = k − 1. The cost of J1, in this case, is k′ + 2 = k + 1.

2. If the first job J1 chooses M2, then both J2 and J3 choose M1.
3. If the first job J1 chooses M1, then all subsequent players will choose the gray allocation (and therefore,

the cost of J1 is k + 1 in this scenario as well).

The first two steps above imply that, if J1 chooses machine M2, then her cost is k + 1. Step 3 says that the
same cost occurs if J1 chooses M1. We assume the tie-breaking rule for player J1, in this case, is that she
prefers the cost k+1 on the first machine M1. Therefore, by Step 3, J1 will choose M1 and all players choose
the gray allocation in the subgame perfect equilibrium. Note that the cost on machine M1 and M2 is k + 1
and k + 2, respectively.

Next, we prove the three steps above:

Proof (of Step 1). Note that the sequence starting from J4 is the same sequence for k′ = k − 1. Since the
first three jobs did not put any cost on the machines, we can apply the inductive hypothesis and assume
that all subsequent players play the subgame perfect equilibrium. The resulting cost on machine M2 will be
k′ + 2 = k + 1, and this is the machine chosen by J1. ut

Proof (of Step 2). Choosing M2 costs J2 and J3 at least k, no matter what the subsequent players do. If
they instead choose M1, by the previous claim, their cost is k′ + 1 = k which they both prefer given their
tie-breaking rule. ut

Proof (of Step 3). In this case, where J1 is on machine M1, we assume different tie-breaking rules for the
last two players J3k−2 and J3k−1, depending on which of the two players J2 and J3 choose machine M2.

Case 1: player J2 chooses machine M1. In this case we assume that player J3 breaks ties in favor of M2:
we will show that choosing M2 results in the cost of k + 1 in the end, instead of some cost on machine M1,
which we already know is at least k + 1, because J1 is already on machine M1. If job J3 gets assigned to
machine M2, then by backward induction we can show the following claim:

Claim. No player among J4, . . . , J3k−3 gets assigned to machine where she has non-zero cost.

Proof (of Claim). Suppose none of them joins the non-zero cost machine. Then the last two players can add
at most 3 to the cost k+ 1 on the first machine and at most cost 2 to the cost k on the second machine. On
the other hand, any job among J4, . . . , J3k−3 adds at least that cost to the non-zero cost machine she joins.
By backward induction we can assume that none of them chooses non-zero cost machine. ut

Because of the last claim, only the last two players are left to decide. We assume that player J3k−2 prefers
to choose machine M1 and pays the cost k+ 2 instead of choosing machine M2 and paying the cost k+ 2 on
that machine, while the last player J3k−1 prefers to choose machine M2 and incur the cost k+ 1. Therefore,
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job J2 pays the cost k+ 2, but in this case we can assume that she prefers cost k+ 2 that she has to pay on
machine M2, given this is achievable.

Case 2: job J2 gets assigned to machine M2, as in the claimed subgame perfect equilibrium state.
Similarly to the previous case, by backward induction we conclude that all players J3, . . . , J3k−3 get assigned
to the machine where they have cost 0, and the last two jobs J3k−2 and J3k−1 choose machine M2, here again
we assume that player J3k−2 prefers to pay k+ 2 on machine M2 than to pay the same cost on machine M1.
In this way the cost on machine M1 is k + 1, while the cost on machine M2 is k + 2.

This finishes the proof of Step 3 and of the theorem. ut

Note that it is important to have seemingly equivalent jobs J2 and J3. They use different tie-breaking
rules, which creates the asymmetry between them and increases the SPoA.

We solved linear programs with strict inequalities obtained from the subgame perfect equilibria tree
structure given in the example from the proof of Theorem 3, by introducing small ε for strict inequalities.
We found solutions for n = 8 and n = 11, that is linear programs are feasible. Therefore, at least for small
n’s we can drop the assumption about tie-breaking rules. As the solutions replace the ε terms by rather more
complicated coefficients, we do not present them here. For the general case, we conjecture that the statement
of Theorem 3 holds without the assumption on the tie-breaking rules, and that the latter are merely used
to make the analysis easier:

Conjecture 2. For two machines, the SPoA is at least linear in n.

4 Linear upper bound for SPoA

Additional notation. To prove the upper bound for SPoA, we introduce some additional notation. We define
a vector D = (d1, d2) of initial load on the machines before the jobs play the game. Consequentially, the load
of each machine i becomes

li(D, s) = di +
∑
j:sj=i

pij ,

where s = (s1, s2, . . . , sn) is the schedule (SPE) achieved by the jobs playing the game with initial load D
on the machines; the cost of each job j is

costj(D, s) = lsj (D, s) .

The notation for the makespan is renewed as SPED(P ) for the SPE with initial load D. Additionally, we
define ∆SPE(P ) as the maximum possible increase of the makespan due to the players, with processing
time P , for any initial load D:

∆SPE(P ) = sup
D
{SPED(P )− ||D||∞} .

Moreover, for a given P , we use P[u:v] to represent the processing times only for jobs (Ju, Ju+1, . . . , Jv), that
is, P[u:v] = (pij) where j = u, u+ 1, . . . , v.

We first prove a key lemma showing that each job can only contribute a certain amount (bounded by the
total minimum processing time) to the makespan:

Lemma 2. ∆SPE
(
P[`:n]

)
−∆SPE

(
P[`+1:n]

)
≤
∑n
j=` mini pij for ` = 1, 2, . . . , n− 1.

Proof. For an arbitrary ` ∈ {1, 2, . . . , n−1}, giving a processing time P[`:n] and an initial load D, we suppose
w.l.o.g. that job ` chooses machine 1. After job ` makes its decision, choosing machine 1, the game consists
of the rest players, {`+ 1, `+ 2, . . . , n} starting with a new initial load D′ = (d1 + p1`, d2). Thus,

SPED
(
P[`:n]

)
= SPED′

(
P[`+1:n]

)
.

We first discuss the trivial case when d1 + p1` < d2. In this case, it holds that ||D′||∞ = ||D||∞ = d2,
which indicates that

SPED
(
P[`:n]

)
= SPED′

(
P[`+1:n]

)
≤ ∆SPE

(
P[`+1:n]

)
+ ||D′||∞ = ∆SPE

(
P[`+1:n]

)
+ ||D||∞ ,
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d′1

d′2 l2(D
′, s′)

l1(D
′, s′)

α

β

γ

δ

ϵ

l2(D
′, s̃′)

l1(D
′, s̃′)α

β

γδ

ϵ

M1

M2

(a) The original schedule s′

(b) The schedule s̃′ when job α moves to machine 1

M1

M2

d′1

d′2

Fig. 2: Proof of Claim

that is,
SPED

(
P[`:n]

)
− ||D||∞ ≤ ∆SPE

(
P[`+1:n]

)
. (1)

We then consider the other case d1 + p1` ≥ d2, that is, ||D′||∞ = d1 + p1,`. Let s′ = (s`+1, s`+2, . . . , sn)
be the schedule of the jobs {J`+1, J`+2, . . . , Jn} playing with initial load D′. We know that

SPED
(
P[`:n]

)
= SPED′

(
P[`+1:n]

)
= max{l1(D′, s′), l2(D′, s′)} . (2)

Claim. max{l1(D′, s′), l2(D′, s′)} ≤ l1(D′, s′) +
∑n
j=`+1 mini pij .

Proof (of Claim). If max{l1(D′, s′), l2(D′, s′)} = l1(D′, s′), the claim is obviously true. Thus we only need
to prove l2(D′, s′) ≤ l1(D′, s′) +

∑n
j=`+1 mini pij .

Let Jα denote the last job who chooses machine 2 and has a longer processing time on machine 2 than on
machine 1, i.e., p1α ≤ p2α. Let s̃′ be the new schedule if job Jα chooses machine 1. In schedule s̃′, the decisions
of jobs {Jα+1, Jα+2, . . . , Jn} may be different from schedule s′. We divide the jobs {Jα+1, Jα+2, . . . , Jn} into
4 subsets, namely, β, γ, δ and ε, depending on the differences between s′ and s̃′ (as shown in Figure 2):

– Jobs in β are on machine 1 in s′ but on machine 2 in s̃′;
– Jobs in γ are on machine 2 in s′ but on machine 1 in s̃′;
– Jobs in δ are on machine 1 in both s′ and s̃′;
– Jobs in ε are on machine 2 in both s′ and s̃′.

For simplicity, we define some notations to represent the total processing time of the job sets:

α1 = p1α , β1 =
∑
j∈β

p1j , γ1 =
∑
j∈γ

p1j , ε1 =
∑
j∈ε

p1j ,

α2 = p2α , β2 =
∑
j∈β

p2j , γ2 =
∑
j∈γ

p2j , ε2 =
∑
j∈ε

p2j .

In the following, we will prove l2(D′, s′) ≤ l1(D′, s′) + α1 + γ2 + ε2. According to the definition of
job Jα, we know the jobs in γ and ε have shorter processing times on machine 2, thus it follows that
α1 + γ2 + ε2 ≤

∑n
j=α mini pij ≤

∑n
j=`+1 mini pij , meaning that the claim is true.

We prove the inequality by contradiction, assuming that

l1(D′, s′) < l2(D′, s′)− α1 − γ2 − ε2 . (3)

Intuitively, when job Jα moves to machine 1, if the following jobs {Jα+1, Jα+2, . . . , Jn} make the same
decisions as in schedule s′, the cost of job Jα (i.e., l1(D′, s′)+α1) is lower than the cost (i.e., l2(D′, s′)) of job
Jα in the original schedule s′, since inequality (3) holds. To guarantee that job Jα has no incentive to move
to machine 1, the cost of Jα when moving to machine 1 should be higher than l2(D′, s′). In other words,
when job Jα moves to machine 1, there must be some jobs (i.e., γ) originally on machine 2 also move to
machine 1, increasing the load of machine 1 to a value higher than l2(D′, s′). Moreover, the incentive of the
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jobs in γ moving to machine 1 is due to the increase of the load of machine 2 by some jobs (i.e., β) originally
on machine 1 moving to machine 2 when Jα moves to machine 1. In the following, we will show that the
jobs in β have no incentive to move to machine 2 if inequality (3) holds, which gives a contradiction.

By definition, the loads of machine 1 and 2 in s̃′ are

l1(D′, s̃′) = l1(D′, s′) + α1 − β1 + γ1 , (4)

l2(D′, s̃′) = l2(D′, s′)− α2 + β2 − γ2 . (5)

Since schedule s′ is a equilibrium, it holds that the cost of job Jα in s′ is no greater than that in s̃′, that is,

l2(D′, s′) ≤ l1(D′, s̃′) . (6)

First, we know that the job set γ is nonempty, otherwise

l1(D′, s̃′) = l1(D′, s′) + α1 − β1 + γ1 by (4)

< l2(D′, s′)− α1 − γ2 − ε2 + α1 − β1 + γ1 by (3)

≤ l2(D′, s′) ,

which contradicts with (6).
Now that γ is nonempty, in schedule s̃′, the cost of jobs in γ is l1(D′, s̃′). The reason why jobs in γ move

to machine 1 when job Jα moves to machine 1 is that if any job in γ stays at machine 2, the cost will be
higher than l1(D′, s̃′). Thus we have l2(D′, s̃′) + γ2 ≥ l1(D′, s̃′). Since l1(D′, s̃′) ≥ l2(D′, s′) (inequality (6)),
it follows that l2(D′, s̃′) + γ2 ≥ l2(D′, s′). Together with (5) we get β2 ≥ α2.

The cost of jobs in β in s̃′ is l2(D′, s̃′). However, we notice that if jobs in β choose machine 1 (after job
Jα chooses machine 1), the cost of jobs in β is at most l1(D′, s′) + α1 (since jobs in γ will choose machine 2
in this case), and the cost l1(D′, s′) + α1 is smaller than l2(D′, s̃′) because

l1(D′, s′) + α1 < l2(D′, s′)− γ2 − ε2 by (3)

≤ l2(D′, s′)− γ2
≤ l2(D′, s′)− α2 + β2 − γ2 by β2 ≥ α2

= l2(D′, s̃′) by (5) .

Therefore, the jobs in β have no incentive to choose machine 2 in s̃′, since the cost of choosing machine 1
is lower. In other words, schedule s̃′ is not a equilibrium, which is a contradiction. Thus, we conclude that
l1(D′, s′) ≥ l2(D′, s′)− α1 − γ2 − ε2, which proves this claim. ut

From (2) and the above claim, we have

SPED
(
P[`:n]

)
≤ l1(D′, s′) +

n∑
j=`+1

min
i
pij

≤ ||D′||∞ +∆SPE
(
P[`+1:n]

)
+

n∑
j=`+1

min
i
pij . (7)

Moreover, the cost of job J`, namely l1(D′, s′), must be no greater than the cost of choosing machine 2:

l1(D′, s′) ≤ l2(D′′, s′′) ,

where D′′ = (d1, d2 + p2`) is the initial load if job J` chooses machine 2, and s′′ is the schedule of the jobs
{J`+1, J`+2, . . . , Jn} playing with initial load D′′. Thus we obtain

SPED
(
P[`:n]

)
≤ l1(D′, s′) +

n∑
j=`+1

min
i
pij

≤ l2(D′′, s′′) +

n∑
j=`+1

min
i
pij

≤ ||D′′||∞ +∆SPE
(
P[`+1:n]

)
+

n∑
j=`+1

min
i
pij . (8)
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According to (7) and (8), it holds that

SPED
(
P[`:n]

)
≤ min {||D′||∞, ||D′′||∞}+∆SPE

(
P[`+1:n]

)
+

n∑
j=`+1

min
i
pij .

As D′ = (d1 + p1`, d2) and D′′ = (d1, d2 + p2`), we know

min {||D′||∞, ||D′′||∞} ≤ max {d1, d2}+ min {p1`, p2`} .

Thus it follows that

SPED
(
P[`:n]

)
≤ max {d1, d2}+ min {p1`, p2`}+∆SPE

(
P[`+1:n]

)
+

n∑
j=`+1

min
i
pij

= ||D||∞ +∆SPE
(
P[`+1:n]

)
+

n∑
j=`

min
i
pij ,

that is,

SPED
(
P[`:n]

)
− ||D||∞ ≤ ∆SPE

(
P[`+1:n]

)
+

n∑
j=`

min
i
pij . (9)

Since inequality (1) holds for the case d1 + p1` < d2, and inequality (9) holds for the case d1 + p1` ≥ d2,
we obtain that inequality (9) holds for any D, that is, ∆SPE

(
P[`:n]

)
≤ ∆SPE

(
P[`+1:n]

)
+
∑n
j=` mini pij ,

which concludes the proof of the lemma. ut

Theorem 4. For two machines, the SPoA is at most 2(n− 1).

Proof. Applying Lemma 2, we have

∆SPE
(
P[1:n]

)
≤ ∆SPE

(
P[2:n]

)
+

n∑
j=1

min
i
pij

≤ ∆SPE
(
P[3:n]

)
+ 2

n∑
j=1

min
i
pij

≤ . . .

≤ (n− 1)

n∑
j=1

min
i
pij .

Since the optimal cost is at least OPT ≥
∑n
j=1 mini pij/2 (for 2 machines), it follows that

SPoA ≤
∆SPE

(
P[1:n]

)
OPT

≤ 2(n− 1) ,

which completes the proof. ut

5 Linear upper bound on the SPoS

In this section, we give a linear upper bound on the sequential price of stability for two machines (Theorem 5
below). Unlike in the case of the sequential price of anarchy, here we have the freedom to choose the order of
the players. Each player can choose any tie-breaking rule. Since we consider a full information setting, the
tie-breaking rules are also public knowledge.

Though finding the best order can be difficult, we found that a large set of permutations already gives
a linear upper bound on SPoS. In particular, it is enough that the authority divides the players into two
groups and puts players in the first group first, followed by the players from the second group. Inside each
group players can form any order. The main result of this section is the following theorem:
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Theorem 5. For two machines, the SPoS is at most n
2 + 1.

The proof is in the appendix. This result cannot be extended to three or more machines, because the
third machine changes the logic of the proof. In particular, we can no longer assume that the players on the
second machine in the optimal assignment can guarantee low costs for themselves by simply staying on that
machine. For two machines, we conjecture that actually there is always an order which leads to the optimum:

Conjecture 3. For two machines, the SPoS is 1.

Though we are not able to prove this conjecture, in the next section, we introduce a more restricted
solution concept, and show that in that case the optimum can be achieved.

6 Achieving the optimum: the adaptive SPoS

In this section, we study the adaptive sequential price of stability. Unlike the previous models, here we assume
that there is some authority, which has full control over the order of the players’ arrival in the game. It does
not only fix the initial complete order, but can also change the order of arrivals depending on the decision
that previous players made. On the other hand, the players still have the freedom to choose any action in a
given state, each of them aiming at minimizing her own final cost. The players also know the whole decision
tree, and thus the way the authority chooses the order. As in the previous section, each player can use any
tie-breaking rule, and the tie-breaking rules are also known to all players.

This model is the closest instantiation of a general extensive form game compared to the previously
studied models in this paper. In this way, the authority has an option to punish players for deviating from
the optimal path (path leading to a social optimum) by placing different players after the deviating decisions
of the deviating player. As a result, rational players may achieve much better solutions in the end. The
following theorem shows that achieving the optimum solution is possible for 2 machines:

Theorem 6. For two machines, the adaptive SPoS is 1.

The proof is in the appendix. The previous result cannot be extended to more than 2 machines:

Theorem 7. For three or more machines, the adaptive SPoS is at least 3
2 .

Proof. Consider the following instance with three machines and three jobs, where the optimum is shown as
gray boxes:

J1 J2 J3

M1 4− ε 2 2

M2 4 3 3
M3 6 6− ε 6− ε

We distinguish two cases for the first player to move (the root of the tree), and show that in neither case
the players will implement the optimum:

1. The first to move is J1. This player will choose the cheapest machine M1, because none will join this
machine. Indeed, the second player to move will choose M2 knowing that the last one will then choose
M3.

2. The first to move is J2 or J3. This player will choose M2 and not M1. Indeed, if the first player to move,
say J2, chooses M1, then either (I) the other two follow also the optimum (which costs 4 to J2) or (II)
they choose another solution, whose cost is at least 6− ε. In the latter case, we have the lower bound. In
case (I), we argue that choosing M2 is better for J2, because no other player will join: for the following
players, being both on machine M1 is already cheaper than being on M2 with J2.

In the first case, given that J1 is allocated to M1, the cheapest solution costs 6− ε. In the second case, one
among J2 or J3 is allocated to M2. The best solution, in this case, costs again 6 − ε. This completes the
proof. ut
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Remark 2. The following example shows that the analysis of Theorem 6 cannot be extended to 3 machines
even in the case of identical machines. Assume that we have m = 3 machines, the initial loads on these
machines are (0, 2, 6) and there are 3 jobs left to be assigned with processing times 7, 5 and 5. Note that
the constrained optimum here is (10, 9, 6), that is the first job with processing time 7 gets assigned to the
second machine M2, while both jobs with processing times 5 and 5 get assigned to machine M1. On the
other hand, if any of these players chooses different machine their cost is strictly decreasing in the subgame
perfect equilibrium solution. We did not find any example showing that adaptive SPoS > 1 for more than
2 identical machines, unlike the case of unrelated machines.

7 Conclusions

In this paper, we disprove a conjecture from [23] and give a linear lower bound construction for the sequential
price of anarchy. On the other hand, we show linear upper bound. For the best sequence of players, we prove a
linear upper bound, that is 4 times lower than the upper bound for sequential price of anarchy. Moreover, we
prove the existence of a sequential extensive game which gives an optimum solution. One possible direction
for future research is to investigate whether the sequential price of stability is 1 for any number of identical
machines. In this work, we give some evidence that the case of three (or more) machines is different from
the case of two machines (see Theorem 7 and Remark 2).

Our linear lower bound on the sequential price of anarchy (Theorem 3) suggests that subgame perfect
equilibria do not guarantee in the worst case a price of anarchy independent of the number of jobs, even for
two machines. Though our lower bound is based on a suitable tie-breaking rule, we believe it holds without
any tie being involved (Conjecture 2).

Acknowledgments. We are grateful to Thomas Erlebach for spotting a mistake in an earlier proof of Theo-
rem 6 and for suggesting a fix of the proof. We thank Paul Dütting for valuable discussions. We also thank
anonymous reviewers and seminar participants of OR 2016 for suggestions that improved the paper.
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8 Appendix

Proof (of Theorem 2). Consider the following instance with jobs arriving in this order (from left to right),

J1 J2 J3 J4 J5

M1 3− 11ε ε ε 1− 2ε 2− 8ε

M2 ε 2− 9ε 2− 8ε 1− 2ε 1− 2ε

(10)

where the subgame perfect equilibrium is shown as gray boxes. Note that the optimum has cost 1, while the
subgame perfect equilibrium costs 4− 13ε. By letting ε tend to 0 we get the desired result.

For ease of presentation, we assume that players break ties in favor of machine M1 (this assumption can
be dropped by using more involved coefficients for the ε terms – see Remark 3). To see why the allocation
corresponding to the gray boxes is indeed a subgame perfect equilibrium, we note the following:

1. If the first three jobs follow the optimum, then J4 prefers to deviate to M2, which causes J5 to switch
to machine M1:

J1 J2 J3

M1 3− 11ε ε ε
M2 ε 2− 9ε 2− 8ε

⇒
J4 J5

1− 2ε 2− 8ε

1− 2ε 1− 2ε

Now the cost for J3 would be 2− 6ε.
2. Given the previous situation, J3 prefers to deviate to M2 because in this way J4 and J5 choose M1, and

her cost will be 2− 7ε:

J1 J2

M1 3− 11ε ε
M2 ε 2− 9ε

⇒
J3 J4 J5

ε 1− 2ε 2− 8ε

2− 8ε 1− 2ε 1− 2ε

Now the cost for J2 would be 3− 9ε.
3. Given the previous situation, J2 prefers to deviate to M2 because in this way J3 and J4 choose M1, J5

chooses M2, and the cost for J2 is 3− 10ε:

J1

M1 3− 11ε
M2 ε

⇒
J2 J3 J4 J5

ε ε 1− 2ε 2− 8ε

2− 9ε 2− 8ε 1− 2ε 1− 2ε

Now the cost for J1 would be 3− 10ε.

We have thus shown that, if J1 chooses M2 then her cost will be 3−10ε. To conclude the proof, observe that
if J1 chooses M1, then by similar arguments as above job J2 prefers to choose machine M2 and all players
will choose the allocation in (10), the cost for J1, in this case, is also 3−10ε. Since players break ties in favor
of M1, we conclude that the subgame perfect equilibrium is the one in (10). ut

Remark 3 (tie-breaking rule). In the construction above, we have used the fact that players break ties in
favor of M1. This assumption can be removed by using slightly more involved coefficients for the ε terms, so
that ties never occur.

Proof (of Theorem 5). Consider an optimal assignment and denote the corresponding makespan by OPT .
By renaming jobs and machines, we can assume without loss of generality that in this optimal assignment
machine M1 gets the first k ≤ n

2 jobs, and machine M2 gets all the other jobs:

{J1, J2, . . . , Jk} →M1 , {Jk+1, . . . , Jn} →M2 .

Take the sequence given by the jobs allocated to M1 followed by the jobs allocated to M2,

J1, J2, . . . , Jk, Jk+1, . . . , Jn.
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We prove that for this sequence there is a subgame perfect equilibrium whose makespan is at most (k + 1) ·
OPT .

In the proof, we consider the first player who deviates from the optimal allocation. We distinguish two
cases, corresponding to the next two claims.

Claim. If the first player Jd who deviates is in {Jk+1, . . . , Jn}, then she does not improve her own cost.

Proof (of Claim). Observe that all players in {J1, J2, . . . , Jk}, who came before player Jd, did not deviate.
Machine M1 has thus exactly the jobs that it gets in the optimum. If Jd stays on M2, her cost will be at
most OPT (in the worst-case, all subsequent jobs choose to stay on M2). Moving to M1 will in the end
produce a schedule with fewer jobs on M2 and more jobs on M1, compared to the optimum. The cost on
M1 is therefore at least OPT (otherwise the new schedule has smaller makespan than OPT , a contradiction
with the optimality), which is the cost of Jd when deviating.

The remaining case is the following one.

Claim. If the first player Jd who deviates is in {J1, . . . , Jk}, then any subgame perfect equilibrium has
makespan at most (t+ 1) ·OPT where t = k + 1− d.

Proof (of Claim). The proof is by induction on t. For t = 1, the deviating player is the last in {J1, . . . , Jk},
i.e., Jk. Note that, if Jk does not deviate, then by the previous claim, Jk guarantees her cost to be at most
OPT . Thus, if Jk deviates to M2, then in the resulting equilibrium schedule she cannot pay more, i.e., she
pays at most OPT . We now argue that if Jk deviates, M1 will have, in the resulting equilibrium, load at
most 2 ·OPT . Clearly, in the resulting equilibrium, the load on M2 is at most OPT . Some of the jobs among
Jk+1, . . . , Jn may be assigned to M1 in this equilibrium. Moving them all to machine M2 will result in a load
on M2 being at most 2 · OPT (since all these jobs are, in the optimum solution, on M2). Hence, each job
among Jk+1, . . . , Jn that decided to move to M1 in the resulting equilibrium cannot have a worse cost than
that of staying on M2, which guarantees cost at most 2 ·OPT .

For t > 0, the first player who deviates from the optimal assignment is Jk−t. We argue similarly that the
makespan is at most (t+1) ·OPT . By induction we can assume that if player Jk−t stays on the first machine
then she is guaranteed to pay at most t · OPT . Since in the subgame perfect equilibrium Jk−t chooses the
second machine, we know that she is paying at most t ·OPT on the second machine. Thus, the cost on the
second machine is at most t ·OPT . We next argue that the cost on the first machine is at most (t+1) ·OPT .
If no player in {Jk+1, . . . , Jn} chooses the first machine, then the cost of this machine is at most OPT .
Otherwise, if some player J ′′ in {Jk+1, . . . , Jn} chooses the first machine, then we show that she is paying
at most (t + 1) · OPT , thus implying that the cost of the first machine is at most (t + 1) · OPT . This is
because, if J ′′ would choose the second machine, she would pay at most (t + 1) · OPT : indeed, the cost on
the second machine was at most t ·OPT and even if all players after J ′′ choose M2, they will contribute at
most another additional factor OPT (because the players after J ′′ are in {Jk+1, . . . , Jn}).

We have thus shown that the cost on the first machine is at most (t+1)·OPT , and therefore this sequence
results in a solution which has makespan at most (k + 1) ·OPT , which completes the proof. ut

The two claims above imply the theorem. ut

Proof (of Theorem 6). [Main Idea] The main idea of the proof is as follows. Each internal node of a tree
corresponds to a choice of some player, and the path (edges) to that node correspond to an allocation of a
subset of players (the nodes on the node-to-root path). We consider the corresponding constrained optimum,
that is, allocation of all remaining jobs that minimizes the makespan, given the fixed allocation of the previous
players. Among these remaining players, we then find a particular one for which the constrained optimum is
better than any constrained optimum if she deviates. If this player deviates, we can punish such deviation
by letting the others implement the more expensive constrained optimum (by adaptively fixing their order).

Proof. For any node h of the tree, let Sh be the subset of players that appeared on the previous nodes (i.e.,
from the parent of h up to the root), and let Ah be the resulting allocation (described by the path). Let
opth be the constrained optimum, that is, the allocation of all remaining jobs Rh which, combined with Ah,
minimizes the resulting makespan. We now choose a suitable player J∗(h) to put on node h, according to
the following:
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Claim. There exists a player J∗(h) among the remaining players Rh such that the following holds. If J∗(h)
deviates from the constrained optimum opth, then the new constrained optimum (if implemented) is not less
costly for J∗(h).

Proof (of Claim). Consider the best alternative solution opt′h, that is, the best allocation for the remaining
jobs Rh, given the allocation Ah of jobs in Sh, such that at least one job in Rh is not allocated as in opth.
Observe the following:

– There must be a job J ′ ∈ Rh which opt′h allocates differently from opth and in opt′h this job is on a
machine determining the makespan of opt′h.

This means that if J ′ deviates from opth, then she is choosing the machine according to opt′h. Consider the
resulting constraints A′h and R′h, where we extend Ah by allocating J ′ as in opt′h (therefore the remaining
players are R′h = Rh \ {J ′}). Since opt′h is the best solution among all solutions in which at least one job
from Rh is not allocated as in opth, then opt′h is a constrained optimum for such A′h and R′h. The cost of
J ′ in solution opt′h is the corresponding makespan, which cannot be smaller than the makespan of opth. We
can thus choose J∗(h) = J ′ and observe that deviating from opth makes J∗(h) incur at least the same cost
as in opth. ut

At each node h, the chosen player J∗(h) can either follow the constrained optimum, or deviate. backward
induction guarantees that in either case, the remaining players implement the resulting constrained optimum.
The above claim implies that J∗(h) does not deviate from the constrained optimum opth (under a suitable
tie-breaking rule). ut
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