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Abstract. In load balancing problems there is a set of clients, each wishing to select a resource from
a set of permissible ones, in order to execute a certain task. Each resource has a latency function,
which depends on its workload, and a client’s cost is the completion time of her chosen resource. Two
fundamental variants of load balancing problems are selfish load balancing (aka. load balancing games),
where clients are non-cooperative selfish players aimed at minimizing their own cost solely, and online
load balancing, where clients appear online and have to be irrevocably assigned to a resource without any
knowledge about future requests. We revisit both selfish and online load balancing under the objective
of minimizing the Nash Social Welfare, i.e., the geometric mean of the clients’ costs. To the best of
our knowledge, despite being a celebrated welfare estimator in many social contexts, the Nash Social
Welfare has not been considered so far as a benchmarking quality measure in load balancing problems.
We provide tight bounds on the price of anarchy of pure Nash equilibria and on the competitive
ratio of the greedy algorithm under very general latency functions, including polynomial ones. For this
particular class, we also prove that the greedy strategy is optimal as it matches the performance of any
possible online algorithm.

Keywords: Congestion games · Nash social welfare · Pure Nash equilibrium · Price of anarchy · Online
algorithms.

1 Introduction

In load balancing problems there is a set of clients, each wishing to select a resource from a set of permissible
ones, in order to execute a certain task. Each resource has a latency function, which depends on its workload,
and a client’s cost is the completion time of her chosen resource. These problems stand at the foundations of
the Theory of Computing and have been studied under a variety of objective functions, such as the maximum
client’s cost (aka. the makespan) [40,41,42,48] and the average weighted client’s cost (see [26] for an excellent
survey).

Two extensively studied variants of load balancing problems are selfish load balancing [61] (aka. load
balancing games) and online load balancing [40]. Selfish load balancing, where clients are non-cooperative
selfish players aimed at minimizing their own cost solely, constitutes a notable subclass of weighted congestion
games [53] and, as such, enjoys some nice theoretical properties. For instance, they always admit pure Nash
Equilibria [43]. Moreover, under the assumption that all tasks have unitary weight (unweighted congestion
games), any best-response dynamics converges to a pure Nash Equilibrium in polynomial time [1]. In online
load balancing, instead, clients appear online and have to be irrevocably assigned to a resource without any
knowledge about future requests.

Interpreting the set of clients of a load balancing problem as a society and adopting the terminology
of welfare economics, the makespan and the average weighted client’s cost objective functions get called,
respectively, the egalitarian and the utilitarian social function. In the case of unweighted tasks, the egalitarian
function is defined as maxi xi, and the utilitarian one is defined as 1

n

∑
i xi, where n is the number of clients

and x = (x1, x2, ...) is the vector encoding the clients’ costs. Another interesting social function is the Nash

Social Welfare (NSW) [51], which is defined as (
∏
i xi)

1
n , i.e., as the geometric mean of the clients’ costs.

These definitions naturally extend to the more general case of weighted tasks (see Section 2).

? This work was partially supported by the Italian MIUR PRIN 2017 Project ALGADIMAR Algorithms, Games,
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The NSW is a celebrated welfare measure in many settings, such as Fisher markets [11,19] and fair
division [4,20,17,23,24,29,39], as it satisfies a set of interesting properties (most of the aforementioned papers
focus on fairness properties such as envy-freeness and maximin share, and Pareto optimality) and achieves
a balanced compromise between the equity of the egalitarian social welfare function and the efficiency of the
utilitarian one. We notice that when xi > 0, for any i = 1, . . . , n, this balance holds regardless of whether
the objective is maximizing or minimizing the NSW. The case where each xi can be either a positive or
negative value has been considered in [4]. In the context of congestion games we do not take into account
envy-freeness and maximin share, however, it is easy to see that an outcome that minimizes the NSW is
Pareto optimal. Another interesting motivation for considering the NSW in load balancing comes from the
following observation. An alternative reasonable way to define a client’s cost can come by taking the ratio
between the completion time of her chosen resource and the completion time she could obtain when being
the only client in the system (i.e., when she is the unique user of the fastest resource). This definition avoids
situations where the cost of a specific client determines almost completely the value of the social welfare.
This happens, for instance, when there is a client i owing a highly time-consuming task. Here, both the
utilitarian and the egalitarian social welfare end up depending on the cost of i, thus almost neglecting the
other clients’ costs. In this setting, the NSW is the proper metric to use. More generally, the NSW is the
only correct mean to use when averaging normalized results, that is, results that are presented as ratios to
reference values [34]. It is important to emphasize the scale-freeness of the NSW in load balancing problems,
that is, the NSW is a robust social welfare function as its analysis is not affected by this change in the
definition of a client’s cost.

1.1 Related Work

Selfish Load Balancing. The literature concerning the efficiency of Nash equilibria in selfish load balancing
is highly tied with that of its superclass of congestion games. In the following, we first focus on results for
the mostly studied case of the utilitarian social welfare. In this setting, it is assumed that all clients selecting
the same resource experience the same cost.

The efficiency of pure Nash equilibria in congestion games has been first considered in [6] and [27],
where it has been independently shown that the price of anarchy is 5/2 and (3 +

√
5)/2 for, respectively,

unweighted and weighted congestion games with affine latency functions. These bounds have been extended
to load balancing games in [22]. However, under the additional assumption that the game is symmetric
(i.e., all resources are available to any client), the price of anarchy improves to 4/3 [49]. Exact bounds
for both weighted and unweighted congestion games with polynomial latency functions have been given in
[2], and [37,12] prove that they hold even for unweighted load balancing games and symmetric weighted
load balancing games, respectively. These results have been further generalized in [15], where it is proved
that, under general latency functions encompassing polynomial ones, the worst-case price of anarchy of
both symmetric weighted congestion games and unweighted congestion games is attained by load balancing
instances. This worst-case behavior, however, does not occur under identical resources, where load balancing
games exhibit better performance with respect to general congestion games. For instance, for affine latency
functions, the price of anarchy drops to 2.012067 for unweighted games [22,59] and to 9/8 for symmetric
weighted games [49]. Tight bounds for this last class of games under polynomial and more general latency
functions have been given in [36,15].

For the class of non-atomic congestion games (a variant assuming that each client’s task is infinitesimally
small with respect to the workload required by the whole society and suited to model communication and
transportation networks) [54,56,57] provide bounds on the price of anarchy under general latency functions
and prove that they are tight even for a two-node network with two parallel links. An interesting connection
between load balancing games and non-atomic congestion games has been uncovered in [35] where it is shown
that, under fairly general latency functions, the price of anarchy of unweighted symmetric load balancing
games coincides with that of non-atomic congestion games.

Less has been done for the egalitarian social welfare. The study of the price of anarchy was initiated in
[47], where weighted congestion games of m parallel links with linear latency functions are considered. The
price of anarchy for the egalitarian social welfare is Θ( logm

log logm ). The lower bound was shown in [47] and the

upper bound in [30]. For load balancing games, the price of anarchy is Θ( logn
log logn ) where n is the number of
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players [36], while for unweighted congestion games is Θ(
√
n) [27]. [55] proves that the price of anarchy of

non-atomic congestion games with general non-decreasing latency function is Ω(n).

Online Load Balancing. The performance of greedy load balancing with respect to the utilitarian social
welfare and under affine latency functions has been studied in [7,22,59]. [7] considers a more general model
where each client has a load vector denoting her impact on each resource (i.e., how much her assignment to a
resource will increase its load) and the objective is to minimize the Lp norm of the load of the resources. Their
results, together with [22], imply a competitive ratio of the greedy algorithm equal to 3 + 2

√
2 ≈ 5.8284 for

the utilitarian social welfare. This bound carries over also to the case of weighted clients where the objective
is to minimize the weighted average latency. [59] and [22] provide a tight bound of 17/3 for different resources
and show that the competitiveness of greedy load balancing is between 4 and 2

3

√
21+1 ≈ 4.05505 for identical

resources. [15] characterizes the competitive ratio of the greedy algorithm applied to congestion games with
general latency functions.

[14,28] analyse a different online algorithm (usually termed one-round walk starting from the empty state)
for load balancing and prove that its competitive ratio is 2 +

√
5 under affine latency functions. Bounds for

the case of polynomial latencies are given in [13,16,46], while [15,60] address more general latency functions
with respect to atomic and non-atomic congestion games, respectively.

Concerning the egalitarian social welfare, most of the results of the literature investigate the case of
identical resources, usually termed as machines. [3,9,32,33,38,40,45]. We notice that the machine scheduling
problem with related (resp. identical) machines is a special case of our weighted load balancing problem with
linear latency functions (resp. identical resources with linear latency functions). For m identical machines,
[40] shows that the greedy algorithm achieves a competitive ratio of exactly 2− 1

m and this bound is proven
the best possible one for m = 2, 3 in [32]. The currently best known algorithm achieves a competitive ratio
of 1.9201 [33] for any m and no algorithm can achieve a competitive ratio bettern than 1.88 [58]. For related
machines, [5,8] show a tight bound of logm, while [21] considers the case of unrelated machines with the
objective of minimizing the norm of the machines loads.

1.2 Our Contribution

We revisit both selfish and online load balancing under the objective of minimizing the NSW. To the best of
our knowledge, this is the first work adopting the NSW as a benchmarking quality measure in load balancing
problems. We analyze the price of anarchy [47] of pure Nash equilibria (the loss in optimality due to selfish
behavior) and the competitive ratio of online algorithms (the loss in optimality due to lack of information)
under very general latency functions. These questions have been widely addressed under the utilitarian and
egalitarian functions, but never under the NSW.

We notice that by adopting the NSW as new metric, we are not going to modify the set of Nash equilibria
but only the social values. The main difference between the NSW and the classical notion of utilitarian social
welfare consists in the fact that, while in the latter the players’ costs are summed, in the former they are
multiplied. This may lead to think that, by turning the costs into their logarithms, a classical utilitarian
analysis can be easily adapted to deal with the NSW. Actually, this is not the case. In fact, on the one hand,
using this idea for bounding a performance ratio (e.g., the price of anarchy or the competitive ratio), one
obtains a bound on the ratio between two logarithms (each one having the product of the players’ costs
as argument). On the other hand, we are interested in bounding the ratio between the argument of these
logarithms, and there is no direct correlation between these two ratios (notice that logarithm of the latter
ratio is equal to the difference between the corresponding utilitarian social costs, and therefore it is not
related to the former one). Thus, the analysis of the NSW requires different proof arguments. In order to
have another evidence of this fact, it is worth noticing that the results obtained for the NSW substantially
differ from the ones holding for the utilitarian social function, not only from a quantitative point of view,
but also from a qualitative one. In fact, while it is well known (see [22]) that for the utilitarian social welfare
the simpler combinatorial structure of load balancing games does not improve the price of anarchy of general
congestion games, our Theorem 10 (deferred to the appendix) and Corollary 1 show that, for the NSW, even
for the case of linear latency functions, the price of anarchy drops from n to 2.

All upper bounds shown in this paper are quite general, given that they hold for any non-decreasing and
positive latency function. Moreover, the provided matching lower bounds hold for latency functions verifying
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mild assumptions; it is worth to remark that they are satisfied by the well studied class of polynomial latency
functions and by many other ones.

In particular, Theorem 1 provides an upper bound to the price of anarchy for the case of weighted load
balancing games, while Theorem 2 gives a matching lower bound. Similarly, we focus on unweighted games
(a special case of weighted ones) by providing tight bounds that, in general, are lower than the ones that
can be obtained for weighted games (see Subsection 3.2). However, Corollaries 1 (or 2) and 3 show that,
when considering polynomial latency functions of degree p, the two analyses (for weighted games and for
unweighted ones) give the same tight bound of 2p. Furthermore, when considering weighted games, the tight
bound of 2p holds even for symmetric games (Corollary 1) and for games with identical resources (Corollary
2). We also provide a tight analysis holding for non-atomic games (see Subsection 3.3); for the case of

polynomial latency functions of degree p, Corollary 4 shows that the price of anarchy is
(
e

1
e

)p
' (1.44)p.

For the online setting, we analyze the greedy algorithm that assigns every client to a resource minimizing
the total cost of the instance revealed up to the time of its appearance. We provide a tight analysis of the
competitive ratio of the greedy algorithm, and we show that, when considering polynomial latency functions
of degree p, there exists no online algorithm achieving a competitive ratio better than the one of the greedy
algorithm, that is equal to 4p (see Section 4). In Table 1, we consider the case of polynomial latency functions,
and we compare the performance under the NSW with that under the utilitarian social welfare studied in
some previous works.

The rest of the paper is structured as follows. Section 2 introduces the model. Sections 3 and 4 are devoted
to the performance analysis of the price of anarchy and of the competitive ratio, under the selfish and the
online setting, respectively. Finally, in Section 5 we give some conclusive remarks and state some interesting
open problems. Due to lack of space, some proofs are sketched or omitted, and are left to the appendix.

NSW USW

Weighted 2p (Φp)
p+1 ∼ Θ

(
p

log(p)

)p+1

, [2]

Unweighted 2p (k+1)2p+1−kp+1(k+2)p

(k+1)p+1−(k+2)p+(k+1)p−kp+1 ∼ Θ
(

p
log(p)

)p+1

, [2]

Non-atomic
(
e

1
e

)p (
1− p(p+ 1)−(p+1)/p

)−1

∼ Θ
(

p
log(p)

)
, [54]

Online 4p (21/(p+1) − 1)−(p+1) ∼ Θ(p)p+1, [21]
Table 1. Tight bounds on the performance of load balancing with polynomial latency functions of maximum degree p,
under the NSW and the utilitarian social welfare (USW). Φp denotes the unique solution of equation xp+1 = (x+1)p,
and k := bΦpc. We observe that the performance under the NSW case is definitely better (even asymptotically) than
that under the USW case, except for the non-atomic setting.

2 Model

Given k ∈ N, let [k] := {1, 2, . . . , k}. A class C of functions is called ordinate-scaling if, for any f ∈ C and
α ≥ 0, the function g such that g(x) = αf(x) for any x ≥ 0, belongs to C; abscissa-scaling if, for any f ∈ C
and α ≥ 0, the function g such that g(x) = f(αx) for any x ≥ 0, belongs to C; all-constant-including if
it contains all the constant functions (i.e., all functions f such that f(x) = c for some c > 0); unbounded-
including if all the latency functions f , except for the constant ones, verify limx→∞ f(x) = ∞. Let P(p)
denote the class of polynomial latencies of maximum degree p, i.e., the class of functions f(x) =

∑p
d=0 αdx

d,
with αd ≥ 0 for any d ∈ [p] ∪ {0} and αd > 0 for some d ∈ [p] ∪ {0}. A function f is quasi-log-convex if
x ln(f(x)) is convex.

We first deal with selfish load balancing, by defining load balancing games, and then we turn our attention
to the online setting.
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2.1 Selfish Load Balancing

(Atomic) Load balancing games. A weighted (atomic) load balancing game, or load balancing game for
brevity, is a tuple LB = (N,R, (`j)j∈R, (wi)i∈N , (Σi)i∈N ) , where N is a set of n ≥ 1 players (corresponding
to clients), R is a finite set of resources, `j : R>0 → R>0 is the (non-decreasing and positive) latency function
of resource j ∈ R, and, for each i ∈ N , wi > 0 is the weight of player i and Σi ⊆ R (with Σi 6= ∅) is her
set of strategies (or admissible resources). For notational simplicity, we assume that each latency function `
verifies `(0) = 0.

An unweighted load balancing game is a weighted load balancing game with unitary weights. A symmetric
weighted load balancing game is a congestion game in which each player can select all the resources, i.e.,
Σi = R for any i ∈ N .

Given a class C of latency functions, let ULB(C) be the class of unweighted load balancing games, WLB(C)
be the class of weighted load balancing games, and SWLB(C) be the class of weighted symmetric load
balancing games, all having latency functions in the class C. We say that resources are identical if all of them
have the same latency function.

Non-Atomic Load balancing Games. The counterpart of the class of atomic load balancing games is that
of non-atomic load balancing games [10,52,62]: these games are a good approximation for atomic ones when
players become infinitely many and the contribution of each player to social welfare becomes infinitesimally
small. A non-atomic load balancing game is a tuple NLB = (N,R, (`j)j∈R, (ri)i∈N , (Σi)i∈N ), where N is a set
of n ≥ 1 types of players, R is a finite set of resources, `j : R>0 → R>0 is the (non-decreasing and positive)
latency function of resource j ∈ R; moreover, given i ∈ N , ri ∈ R≥0 is the amount of players of type i and
Σi ⊆ R is the set of strategies of every player of type i.

Given a class C of latency functions, let NLB(C) be the class of non-atomic load balancing games, and
SNLB(C) be the class of symmetric non-atomic load balancing games, all having latency functions in the
class C.
Strategy Profiles and Cost Functions. In atomic load balancing games, a strategy profile is an n-tuple
σ = (σ1, . . . , σn), where σi ∈ Σi is the resource chosen by each player i ∈ N in σ. Given a strategy profile
σ, let kj(σ) :=

∑
i∈N :σi=j

wi be the congestion of resource j ∈ R in σ, and let costi(σ) := `σi(kσi(σ)) be
the cost of player i ∈ N in σ.

In non-atomic load balancing games, a strategy profile is an n-tuple ∆ = (∆1, . . . ,∆n), where ∆i : Σi →
R≥0 is a function denoting, for each resource j ∈ Σi, the amount ∆i(j) of players of type i selecting resource
j, so that

∑
j∈Σi ∆i(j) = ri. Observe that ∆i(j) = 0 if j /∈ Σi. For a strategy profile ∆, the congestion of

resource j ∈ R in ∆, denoted as kj(∆) :=
∑
i∈N ∆i(j), is the total amount of players using resource j in ∆

and its cost is given by costj(∆) = `j(kj(∆)). The cost of a player of type i selecting a resource j ∈ Σi is
equal to costj(∆) and each player aims at minimizing it.

Nash Social Welfare. In atomic load balancing games, the Nash Social Welfare (NSW) of a strat-

egy profile σ is defined as: NSW(σ) :=
(∏

i∈N costi(σ)wi
) 1∑

i∈N wi . Using the previous definition, for un-

weighted games we get NSW(σ) =
(∏

i∈N costi(σ)
) 1
n . Given a strategy profile σ, let R(σ) := {j ∈

R : kj(σ) > 0}. For weighted load balancing games we get: NSW(σ) =
(∏

i∈N costi(σ)
) 1∑

i∈N wi =(∏
j∈R(σ) `j(kj(σ))kj(σ)

) 1∑
i∈N wi =

(∏
j∈R(σ) `j(kj(σ))kj(σ)

) 1∑
j∈R(σ) kj(σ)

.

Let SP(LB) be the set of strategy profiles of an atomic load balancing game LB. An optimal strategy
profile σ∗(LB) of a load balancing game LB is a strategy profile σ∗ ∈ arg minσ∈SP(LB) NSW(σ), i.e., a strategy
profile minimizing the NSW.

Analogously, for the non-atomic setting, we have NSW(∆) =
(∏

j∈R(∆) costj(∆)kj(∆)
) 1∑

j∈R(∆) kj(∆)

,

where R(∆) := {j ∈ R : kj(∆) > 0}. Let SP(NLB) be the set of strategy profiles of a non-atomic load
balancing game NLB. An optimal strategy profile ∆∗(NLB) of a load balancing game NLB is a strategy
profile ∆∗ ∈ arg min∆∈SP(NLB) NSW(∆), i.e., a strategy profile minimizing the NSW.

Pure Nash Equilibria and their Efficiency. In the atomic setting, for a given strategy profile σ, let
(σ−i, σ′i) := (σ1, σ2, . . . , σi−1, σ′i, σi+1, . . . , σn), i.e., a strategy profile equal to σ, except for strategy σ′i. A
pure Nash equilibrium is a strategy profile σ such that costi(σ) ≤ costi(σ−i, σ′i) for any σ′i ∈ Σi and i ∈ N ,
i.e., a strategy profile in which no player can improve her cost by unilateral deviations. Let PNE(LB) be the
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set of pure Nash equilibria of a load balancing game LB. The Nash price of anarchy of LB is defined as:

NPoA(LB) = supσ∈PNE(LB)
NSW(σ)

NSW(σ∗(LB)) Given a class G of load balancing games, the Nash price of anarchy

of G is defined as NPoA(G) = supLB∈G NPoA(LB). In the non-atomic setting, a pure Nash equilibrium is
a strategy profile ∆ such that, for any player type i ∈ N , resources j, j′ ∈ Σi such that ∆i(j) > 0,
costj(∆) ≤ costj′(∆) holds, that is, an outcome of the game in which no player can improve her situation
by unilaterally deviating to another strategy. The Nash price of anarchy of a non-atomic game NLB (denoted
as NPoA(NLB)) is defined as in the atomic setting, and again, given a class G of non-atomic load balancing
games, the Nash price of anarchy of G is defined as NPoA(G) = supNLB∈G NPoA(NLB).

2.2 Online Load Balancing

We now introduce online load balancing. There is a natural correspondence between a load balancing game
and an instance of the online load balancing problem. When dealing with the online setting, as usual in
the literature, we adopt a different nomenclature. In particular, an instance I of the online load balancing
problem is a tuple I = (N,R, (`j)j∈R, (wi)i∈N , (Σi)i∈N ) , where N = [n] is a set of n ≥ 1 clients, R is a finite
set of resources, `j : R>0 → R>0 is the (non-decreasing and positive) latency function of resource j ∈ R, and,
for each i ∈ N , wi > 0 is the weight of client i and Σi ⊆ R (with Σi 6= ∅) is her set of admissible resources.
Furthermore, in the online setting an assignment of clients to resources is called state: A state is an n-tuple
σ = (σ1, . . . , σn), where σi ∈ Σi ⊆ R is the resource assigned to player i ∈ N in σ. As in load balancing
games, given a class of latency latency functions C, let WLB(C) denote class of load balancing instances with
latency functions in C.

The NSW of a state and the optimal state are defined analogously to the selfish load balancing setting.

The online setting. In online load balancing, clients appear in online fashion, in consecutive steps; when a
client appears, an irrevocable decision has to be taken in order to assign it to a resource. We assume w.l.o.g.
that clients appear in increasing order, i.e., client i ∈ [n] appears before client j ∈ [n] if and only if i < j.
More formally, for any i ∈ [n], an online algorithm has to assign client i to a resource being admissible for it
without the knowledge of the future clients i+1, i+2, . . .; the assignment of client i decided by the algorithm
at step i cannot be modified at later steps.

Notice that at each step i > 1 a new instance is obtained by adding client i to the instance of step i− 1.

Competitive Ratio. Following the standard performance measure in competitive analysis, we evaluate the
performance of an online algorithm in terms of its competitiveness (or competitive ratio).

An online algorithm A is c-competitive on instance I if the following holds: Let σ and σ∗ be the state
computed by algorithm A and the optimal state for I, respectively. Then, NSW(σ) ≤ c · NSW(σ∗). The
competitive ratio CRA(I) of algorithm A on instance I is the smallest c such that A is c-competitive on I [18].

Given a class I of load balancing instances, the competitive ratio CRA(I) of Algorithm A on I is simply
given by the maximum competitive ratio of A over all instances I ∈ I,i.e., CRA(I) = supI∈I CRA(I).

Greedy algorithm. A natural algorithm proposed in [7] for this problem is to assign each client to the
resource yielding the minimum increase to the social welfare (ties are broken arbitrarily). This results to greedy
assignments. Therefore, given an instance of online load balancing, an assignment of clients to resources is
called a greedy assignment if the assignment of a client to a resource minimizes the total cost of the instance
revealed up to the time of its appearance.

3 Selfish Load Balancing

In this section we focus on selfish load balancing. In particular, in Subsection 3.1 we deal with the analysis
of the price of anarchy in weighted load balancing games, in Subsection 3.2 we consider the subclass of
unweighted load balancing games, while in Subsection 3.3 we analyze the price of anarchy of non-atomic
load balancing games.

3.1 The NPoA for Weighted Load Balancing Games

We first provide an upper bound to the Nash price of anarchy of weighted load balancing games.



Nash Social Welfare in Load Balancing 7

Theorem 1. Let C be a class of latency functions. The Nash price of anarchy of
weighted load balancing games with latency functions in C is NPoA(WLB(C)) ≤

supk1≥o1>0,o2>k2≥0,f1,f2∈C
(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

.

Proof. Let LB ∈ WLB(C) be a weighted load balancing game with latency functions in C, and let σ and σ∗

be a worst case pure Nash equilibrium and an optimal strategy profile of LB, respectively. Let kj denote
kj(σ) and oj denote kj(σ

∗).
Since σ is a pure Nash equilibrium, we have that costi(σ) ≤ costi(σ−i, σ∗i ). Thus, we get∏

i∈N costi(σ)wi ≤
∏
i∈N costi(σ−i, σ

∗
i )wi . Since costi(σ) = `σi(kσi) and costi(σ−i, σ∗i ) ≤ `σ∗i (kσ∗i + wi),

it holds that
∏
i∈N costi(σ)wi =

∏
i∈N `σi(kσi)

wi =
∏
j∈R(σ) `j(kj)

∑
i:j=σi

wi =
∏
j∈R(σ) `j(kj)

kj and∏
i∈N costi(σ−i, σ

∗
i )wi ≤

∏
i∈N `σ∗i (kσ∗i +wi)

wi ≤
∏
i∈N `σ∗i (kσ∗i + oσ∗i )wi =

∏
j∈R(σ∗) `j(kj + oj)

∑
i:j=σ∗

i
wi =∏

j∈R(σ∗) `j(kj + oj)
oj . By putting together the above inequalities we get∏

j∈R(σ)

`j(kj)
kj =

∏
i∈N

costi(σ)wi ≤
∏
i∈N

costi(σ−i, σ
∗
i )wi ≤

∏
j∈R(σ∗)

`j(kj + oj)
oj . (1)

By exploiting the properties of the logarithmic function and by using (1), we obtain

ln (NPoA(LB)) = ln


(∏

j∈R(σ) `j(kj)
kj
) 1∑

i∈N wi(∏
j∈R(σ∗) `j(oj)

oj

) 1∑
i∈N wi



≤ ln


(∏

j∈R(σ∗) `j(kj + oj)
oj
) 1∑

i∈N wi(∏
j∈R(σ∗) `j(oj)

oj

) 1∑
i∈N wi

 =

∑
j∈R(σ∗) oj (ln(`j(kj + oj))− ln(`j(oj)))∑

i∈N wi
, (2)

Since
∑
i∈N wi =

∑
j∈R kj =

∑
j∈R oj , we have that (2) is upper bounded by the optimal solution of the

following optimization problem on some new linear variables (αj)j∈R (as (2) is the solution obtained by
setting α = 1 for each j ∈ R):

max

∑
j∈R(σ∗) αjoj (ln(`j(kj + oj))− ln(`j(oj)))∑

j∈R αjkj
(3)

s.t.
∑
j∈R

αjkj =
∑
j∈R

αjoj , αj ≥ 0 ∀j ∈ R.

Fact 1 The maximum value of the optimization problem considered in (3) is at most

supk1≥o1>0,
o2>k2≥0,
f1,f2∈C

(o2−k2)o1(ln(f1(k1+o1))−ln(f1(o1)))+(k1−o1)o2(ln(f2(k2+o2))−ln(f2(o2)))
k1o2−k2o1 .

By Fact 1, and by continuing from (2), we have that the upper bound provided in Fact 1 is
higher or equal than ln(NPoA(LB)). Thus, by exponentiating such inequality, we get NPoA(LB) ≤

supk1≥o1>0,
o2>k2≥0,
f1,f2∈C

(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

. Hence, by the arbitrariness of LB ∈ WLB(C), the

claim follows. ut

In the following theorem we show that the upper bound derived in Theorem 1 is tight under mild assumptions
on the latency functions.

Theorem 2. Let C be a class of latency functions.
(i) If C is abscissa-scaling and ordinate-scaling, then NPoA(WLB(C)) ≥

supk1≥o1>0,o2>k2≥0,f1,f2∈C
(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

.

(ii) If C is abscissa-scaling, ordinate-scaling, and unbounded-including, the previous inequality holds even
for symmetric weighted load balancing games.
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Proof (Sketch of the proof). We show part (ii) of the claim only (the proof of part (i) resorts to
similar arguments and is left to the appendix). Let us assume that C is abscissa-scaling, ordinate-
scaling, and unbounded-including. In order to prove part (ii), we equivalently show that for any M <

supk1≥o1>0,o2>k2≥0,f1,f2∈C
(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

there exists a game LB ∈ WLB(C) such

that NPoA(LB) > M .
Let f1, f2 ∈ C, k1, k2, o1, o2 ≥ 0 such that k1 ≥ o1 > 0, o2 > k2 ≥ 0, and a sufficiently small ε > 0

such that
(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

> M + ε. Let f, g ∈ C be such that f(x) := f1(o1x)

and g(x) := f2(o2x), and let k := k1/o1 and h := k2/o2. Since
(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

=(
f(k+1)
f(1)

) 1−h
k−h

(
g(h+1)
g(1)

) k−1
k−h

we have that

(
f(k + 1)

f(1)

) 1−h
k−h

(
g(h+ 1)

g(1)

) k−1
k−h

> M + ε, for some f, g ∈ C, k ≥ 1, and h < 1. (4)

Observe that f and g can be chosen in such a way that they are non-constant functions. Indeed, if one of
them is constant, it is sufficient replacing it with an arbitrary non-constant function, so that (4) holds as well.
Since C is unbounded-including and f, g are non-constant, we have that limx→∞ f(x) = limx→∞ g(x) =∞.

We consider the case h > 0 only (the case h = 0 is analogue and is left to the appendix). Given two
integers m ≥ 3 and s ≥ 1, let LB(m, s) be a symmetric weighted load balancing game where the resources are
partitioned into 2m groups R1, R2, R3 . . . , R2m. Each group Rj has sj−1 resources and the latency function

of each resource r ∈ Rj is defined as `r(x) := αj f̂j (βjx) with

f̂j :=

{
f if j ≤ m− 1

g if j ≥ m
, βj :=

{(
s
k

)j−1
if j ≤ m− 1(

s
h

)j−m ( s
k

)m−1
if m ≤ j ≤ 2m

, (5)

αj :=



(
f(k)
f(k+1)

)j−1
if j ≤ m− 1(

g(h)
g(h+1)

)j−m (
f(k)
g(h+1)

)(
f(k)
f(k+1)

)m−2
if m ≤ j ≤ 2m− 1

g(h)
g(1)

(
g(h)
g(h+1)

)m−1 (
f(k)
g(h+1)

)(
f(k)
f(k+1)

)m−2
if j = 2m

. (6)

The set of players N is partitioned into 2m − 1 sets N1, N2, . . . , N2m−1, and each group Nj has sj players
having weight wj := 1/βj+1. Let σ be the strategy profile in which, for any j ∈ [2m − 1], each resource of
group Rj is selected by exactly s players of group Nj (see Figure 1.a). One can show that, for any integer
m ≥ 3, there exists a sufficiently large sm such that σ is a pure Nash equilibrium of the game LB(m, sm)
(see the appendix for a complete proof).

Now, let σ∗ be the strategy profile of LB(m, sm) in which, for any j ∈ [2m − 1], each resource of group
Rj+1 is selected by exactly one player of group Nj (see Figure 1.b). By exploiting the definitions of αj ,βj ,

f̂j , wj , and Nj , and by choosing a sufficiently large m, one can show that the following inequalities hold (see

the appendix for a complete proof): NSW(σ)
NSW(σ∗) ≥ limm→∞

( ∏2m−1
j=1 (αj f̂j(βjsmwj))

|Nj |wj∏2m
j=2(αj f̂j(βjwj−1))

|Nj−1|wj−1

) 1∑2m−1
j=1

|Nj |wj − ε =(
f(k+1)
f(1)

) 1−h
k−h

(
g(h+1)
g(1)

) k−1
k−h − ε > M + ε− ε = M, thus showing part (ii) of the claim. ut

When considering functions belonging to the class P(p) of polynomials of maximum degree p, the following
technical lemma holds.

Lemma 1. sup k1≥o1>0,
o2>k2≥0,
f1,f2∈P(p)

(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

= 2p.

Given Lemma 1, and since the class of polynomial latency functions is ordinate-scaling, abscissa-scaling,
and unbounded-including, the following corollary of Theorems 1 and 2 establishes the exact Nash price of
anarchy for polynomial latency functions.
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Fig. 1. The LB used in the proof of Theorem 2. Columns represent resources and squares represent players (number
j inside a square means that the player belongs to group Nj). (a): a Nash equilibrium σ; (b): the strategy profile σ∗.

Corollary 1. The Nash price of anarchy of weighted load balancing games with polynomial latency functions
(even for symmetric games) of maximum degree p is NPoA(WLB(C)) = 2p.

When considering identical resources with polynomial latency functions, the price of anarchy does not de-
crease, as shown in the following corollary of Theorem 2.

Corollary 2. The Nash price of anarchy of weighted load balancing games with polynomial latency functions
of maximum degree p and identical resources is at least 2p.

3.2 The NPoA for Unweighted Load Balancing Games

We first provide an upper bound to the Nash price of anarchy of unweighted load balancing games.

Theorem 3. Let C be a class of latency functions. The Nash price of anarchy of unweighted load balancing

games with latency functions in C is NPoA(ULB(C)) ≤ supf∈C,k∈N,o∈[k]
(
f(k+1)
f(o)

) o
k

.

We show that the upper bound derived in Theorem 3 is tight if the considered latency functions are
ordinate-scaling (the proof is deferred to the appendix). The following result for polynomial latency functions
holds.

Corollary 3. The Nash price of anarchy of unweighted load balancing games with polynomial latency func-
tions of maximum degree p is NPoA(ULB(C)) = 2p.

3.3 The NPoA for Non-Atomic Load Balancing Games

We first provide an upper bound to the Nash price of anarchy of non-atomic load balancing games.

Theorem 4. Let C be a class of latency functions. The Nash price of anarchy of non-atomic load balancing

games with latency functions in C is NPoA(NLB(C)) ≤ supf∈C,k≥o>0

(
f(k)
f(o)

) o
k

.

We show that the upper bound derived in Theorem 4 is tight the considered latency functions are
all-constant-including (the proof is deferred to the appendix). The following result for polynomial latency
functions holds.

Corollary 4. The Nash price of anarchy of non-atomic load balancing games with polynomial latency func-
tions of maximum degree p (even for symmetric games) is NPoA(NLB(P(p))) = NPoA(SNLB(P(p))) =(
e

1
e

)p
' (1.44)p.
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4 Online load balancing

We first provide an upper bound on the competitive ratio of the greedy algorithm.

Theorem 5. Let C be a class of quasi-log-convex functions. The competitive ratio of the greedy al-
gorithm G applied to load balancing instances with latency functions in C is CRG(WLB(C)) ≤

supk1≥o1>0,o2>k2≥0,f1,f2∈C
(
f1(k1+o1)

k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2+o2)

k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

, where we set f2(0)0 := 1.

We show that, when considering the greedy algorithm, the upper bound derived in Theorem 5 is tight if the
considered latency functions are abscissa-scaling and ordinate-scaling (the proof is deferred to the appendix).
The following result for polynomial latency functions holds (the proof is deferred to the appendix).

Corollary 5. The competitive ratio of the greedy algorithm applied to weighted load balancing instances with
polynomial latency functions of maximum degree p is CRG(WLB(C)) = 4p.

We show that, when considering polynomial latency functions, the upper bound of Corollary 5 is tight
for any online algorithm, i.e., we are able to provide a matching lower bound to the online load balancing
problem (the proof is deferred to the appendix).

5 Concluding Remarks and Open Problems

To the best of our knowledge, this is the first work that adopts the NSW as a benchmarking quality measure
in load balancing problems. Several open problems deserve further investigation.

First of all, our paper mostly focuses on evaluating the performance of selfish and online load balancing.
Concerning complexity issues, it is worth noticing that, on the one hand, when considering unweighted
players, an optimal configuration with respect to the NSW can be trivially computed in polynomial time by
exploiting the same techniques developed in [25,50] for the utilitarian social welfare ([25,50] use, in turn, an
approach similar to the one adopted in [31] for the computation of a Nash equilibrium); on the other hand,
when considering weighted players, a simple reduction from the NP-complete problem PARTITION shows
that the problem becomes NP-hard. Therefore, an interesting open problem is that of providing polynomial
time approximation algorithms for the weighted case (we notice that Corollary 5 provides a 4p-approximation
algorithm for weighted load balancing instances with polynomial latency functions of maximum degree p).

Moreover, a natural extension of our results consists in considering other families of congestion games,
being more general than the one of load balancing games, such as the family of matroid congestion games
[1,44].

Finally, it would be interesting to apply the NSW measure to other classes of games, whose performances,
in the literature, have only been analysed with respect to the utilitarian and/or egalitarian social welfare
functions.
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46. Klimm, M., Schmand, D., Tönnis, A.: The online best reply algorithm for resource allocation problems. In:
Proceedings of the 12th International Symposium on Algorithmic Game Theory (SAGT). pp. 200–215 (2019)

47. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of the 16th Annual Conference on
Theoretical Aspects of Computer Science. pp. 404–413. STACS (1999)

48. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines.
Mathematical Programming 46, 259–271 (1990)

49. Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. Theoretical Computer
Science 406(3), 187–2006 (2008)

50. Meyers, C.A., Schulz, A.S.: The complexity of welfare maximization in congestion games. Networks 59(2), 252–
260 (2012)

51. Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
52. Pigou, A.C.: The economics of welfare. London: Macmillan and Co. (1938)
53. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory

2, 65–67 (1973)
54. Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. Syst. Sci. 67(2),

341–364 (2003)
55. Roughgarden, T.: The maximum latency of selfish routing. In: Proceedings of the Fifteenth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA). pp. 980–981 (2004)
56. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)
57. Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games and

Economic Behavior 47(2), 389–403 (2004)
58. Rudin III, J.F.: Improved bounds for the on-line scheduling problem. The University of Texas at Dallas (2001)
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A Missing Proofs of Subsection 3.1

A.1 Proof of Fact 1

First of all, by exploiting the structure of the optimization problem, we can introduce the normalization
constraint

∑
j∈R αjkj =

∑
j∈R αjoj = 1 without affecting the optimal value of the problem. By introducing

such normalization constraint, the optimization problem becomes the following linear program:

max
∑

j∈R(σ∗)

αjoj (ln(`j(kj + oj))− ln(`j(oj))) (7)

s.t.
∑
j∈R

αjkj = 1,
∑
j∈R

αjoj = 1, αj ≥ 0 ∀j ∈ R.

By standard arguments of linear programming, we have that an optimal solution of (7) is given by a vertex of
the polyhedral region defined by the linear constraints of (7), and such vertex can be obtained by nullifying
at least |R| − 2 variables. Thus, we can assume w.l.o.g. that in an optimal solution there are at most two
variables, say α1 and α2, such that α1 ≥ 0 and α2 ≥ 0. If both variables α1 and α2 are positive, we have
that they are univocally determined by the constraints α1k1 + α2k2 = 1 and α1o1 + α2o2 = 1, so that

α1 =
o2 − k2

k1o2 − k2o1
> 0, α2 =

k1 − o1
k1o2 − k2o1

> 0, αj = 0 ∀j ≥ 3. (8)

By symmetry, we can assume w.l.o.g. that k1o2 − k2o1 > 0, so that k1 > o1 ≥ 0 and o2 > k2 ≥ 0.
Now, assume that one variable among α1 and α2 is null, and assume w.l.o.g. that α2 = 0. In this

case, we necessarily get k1 = o1 > 0 and α1 = 1/o1, and the value of the objective function becomes
ln(f1(2o1))−ln(f1(o1)). Anyway, we obtain the same value of the objective function by using in (7) the values
of α1 and α2 considered in (8), and by setting k1 = o1 > 0 and o2 > k2 ≥ 0. We also observe that, if o1 = 0
and α1, α2 > 0, the value of the objective function is ln(f2(k2 + o2))− ln(f2(o2)) ≤ ln(f2(2o2))− ln(f2(o2)),
i.e., at most equal to the value of the objective function in which one of the two variables among α1 and α2

is null. Thus, we may omit the case o1 = 0.
We conclude that, by considering the objective function of (7) with the values α1 and α2 defined in (8),

and by considering the supremum of the objective function over k1 ≥ o1 > 0 and o2 > k2 ≥ 0, we obtain the
upper bound of the claim.

A.2 Proof of Theorem 2

First of all, we deal with part (ii) of the claim: Let us assume that C is abscissa-scaling, ordinate-
scaling, and unbounded-including. In order to prove part (ii), we equivalently show that for any M <

supk1≥o1>0,o2>k2≥0,f1,f2∈C
(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

there exists a game LB ∈ WLB(C) such

that NPoA(LB) > M .
Let f1, f2 ∈ C, k1, k2, o1, o2 ≥ 0 such that k1 ≥ o1 > 0, o2 > k2 ≥ 0, and a sufficiently small ε > 0

such that
(
f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)
f2(o2)

) (k1−o1)o2
k1o2−k2o1

> M + ε. Let f, g ∈ C be such that f(x) := f1(o1x) and

g(x) := f2(o2x), and let k := k1/o1 and h := k2/o2. Since(
f1(k1 + o1)

f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2 + o2)

f2(o2)

) (k1−o1)o2
k1o2−k2o1

=

(
f(k + 1)

f(1)

) 1−h
k−h

(
g(h+ 1)

g(1)

) k−1
k−h

we have that(
f(k + 1)

f(1)

) 1−h
k−h

(
g(h+ 1)

g(1)

) k−1
k−h

> M + ε, for some f, g ∈ C, k ≥ 1, and h < 1. (9)

Observe that f and g can be chosen in such a way that they are non-constant functions. Indeed, if one of
them is constant, it is sufficient replacing it with an arbitrary non-constant function, so that (9) holds as well.
Since C is unbounded-including and f, g are non-constant, we have that limx→∞ f(x) = limx→∞ g(x) =∞.



14 V. Bil et al.

First of all, we assume that h > 0. Given two integers m ≥ 3 and s ≥ 1, let LB(m, s) be a symmetric
weighted load balancing game where the resources are partitioned into 2m groups R1, R2, R3 . . . , R2m. Each
group Rj has sj−1 resources and the latency function of each resource r ∈ Rj is defined as `r(x) := αj f̂j (βjx)
with

f̂j :=

{
f if j ≤ m− 1

g if j ≥ m
, βj :=

{(
s
k

)j−1
if j ≤ m− 1(

s
h

)j−m ( s
k

)m−1
if m ≤ j ≤ 2m

, (10)

αj :=



(
f(k)
f(k+1)

)j−1
if j ≤ m− 1(

g(h)
g(h+1)

)j−m (
f(k)
g(h+1)

)(
f(k)
f(k+1)

)m−2
if m ≤ j ≤ 2m− 1

g(h)
g(1)

(
g(h)
g(h+1)

)m−1 (
f(k)
g(h+1)

)(
f(k)
f(k+1)

)m−2
if j = 2m

. (11)

The set of players N is partitioned into 2m − 1 sets N1, N2, . . . , N2m−1, and each group Nj has sj players
having weight wj := 1/βj+1. Let σ be the strategy profile in which, for any j ∈ [2m − 1], each resource
of group Rj is selected by exactly s players of group Nj (see Figure 1.a). Observe that, by construction of
αj , βj , wj , the following properties hold:

αjf(k) = αj+1f(k + 1) if j ≤ m− 2

αjf(k) = αj+1g(h+ 1) if j = m− 1

αjg(h) = αj+1g(h+ 1) if m ≤ j ≤ 2m− 2

αjg(h) = αj+1g(1) if j = 2m− 1

,


βjwjs = k, wj |Nj | = kj if j ≤ m− 1

βjwjs = h, wj |Nj | = hj+1−mkm−1 if m ≤ j ≤ 2m− 1

βj+1wj = 1 if j ≤ 2m− 1

(12)

We now show that, by choosing a sufficiently large s, the strategy profile σ is a pure Nash equilibrium of
LB(m, s). Let j ∈ [2m− 1], t ∈ [2m], and i be an arbitrary player selecting a resource rj of group Rj in the
strategy profile σ, and assume that she deviates to a resource rt of group Rt. We have three cases:

• t = j + 1: First of all, assume that j ≤ m − 2. By using (12), we get costi(σ) =

`rj (krj (σ)) = αj f̂j (βjswj) = αjf (k) = αj+1f (k + 1) = αj+1f (βj+1swj+1 + βj+1wj) =

αj+1f̂j+1 (βj+1(swj+1 + wj)) = `rh(krh(σ−i, {rt})) = costi(σ−i, {rt}). The cases j = m − 1, m ≤ j ≤
2m − 2, and j = 2m − 1 can be separately considered by exploiting (12), so that one can analogously

show costi(σ) = αj f̂j(βjswj) = αj+1f̂j+1(βj+1(swj+1 +wj)) = costi(σ−i, {rt}), where we set w2m := 0.
• t ≤ j : From the previous case, we have that if one player is playing a resource at some level l, and deviates

to some resource at level l+ 1, her cost does not change. Thus, we necessarily have that the cost of each
resource in strategy profile σ is a non-increasing function of the level l ∈ [2m] which it belongs to. Thus,
since t ≤ j, we necessarily have that costi(σ) ≤ costi(σ−i, {rt}).

• t > j + 1 : If we consider the asymptotic behaviour of costi(σ) and costi(σ−i, {rt}) with respect to pa-

rameter s, we get costi(σ) = αj f̂j(βjswj) = αj f̂j(Θ(sj−1 · s · s−j)) = Θ(1), thus costi(σ) does not

depend on s; furthermore, we get costi(σ−i, {rt}) ≥ αj f̂j(βtwj+1) = αj f̂j(Θ(st−1s−j)) ≥ αj f̂j(Θ(s)),

thus, since limx→∞ f̂(x) = ∞, we have that costi(σ−i, {rt}) can be arbitrarily large as s increases. We
conclude that, by taking a sufficiently large s, we get costi(σ) ≤ costi(σ−i, {rt}) for any j and t > j+ 1.

The previous case-analysis shows that player i does not improve her cost after deviating in favour of any
resource rt at level t, for any t ∈ [2m], and thus that σ is a pure Nash equilibrium of LB(m, s). For any
integer m ≥ 3, let sm be a sufficiently large integer such that (according to the previous case-analysis) σ is
a pure Nash equilibrium of the game LB(m, sm).

Now, let σ∗ be the strategy profile of LB(m, sm) in which, for any j ∈ [2m − 1], each resource of group
Rj+1 is selected by exactly one player of group Nj (see Figure 1.b). By exploiting the definitions of αj ,βj ,

f̂j , wj , and Nj , we have that:

NPoA(LB(m, sm))

≥ NSW(σ)

NSW(σ∗)

=


∏2m−1
j=1

(
αj f̂j (βjsmwj)

)|Nj |wj
∏2m
j=2

(
αj f̂j (βjwj−1)

)|Nj−1|wj−1


1∑2m−1

j=1
|Nj |wj
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=


(∏m−1

j=1 (αjf (k))|Nj |wj
)(∏2m−1

j=m (αjg (h))|Nj |wj
)

(∏m−1
j=2 (αjf (1))|Nj−1|wj−1

)(∏2m
j=m (αjg (1))|Nj−1|wj−1

)


1∑2m−1
j=1

|Nj |wj

(13)

=


(∏m−1

j=1 (αjf (k))k
j
)(∏2m−1

j=m (αjg (h))h
j+1−mkm−1

)
(∏m−1

j=2 (αjf (1))k
j−1
)(∏2m

j=m (αjg (1))h
j−mkm−1

)


1∑2m−1
j=1

|Nj |wj

=


(∏m−2

j=1 (αj+1f (k + 1))k
j
)(∏2m−2

j=m−1 (αj+1g (h+ 1))h
j+1−mkm−1

)
(α2mg (1))h

mkm−1(∏m−1
j=2 (αjf (1))k

j−1
)(∏2m

j=m (αjg (1))h
j−mkm−1

)


1∑2m−1
j=1

|Nj |wj

(14)

=


(∏m−2

j=1 (αj+1f (k + 1))k
j
)(∏2m−2

j=m−1 (αj+1g (h+ 1))h
j+1−mkm−1

)
(α2mg (1))h

mkm−1(∏m−2
j=1 (αj+1f (1))k

j
)(∏2m−1

j=m−1 (αj+1g (1))h
j+1−mkm−1

)


1∑2m−1
j=1

|Nj |wj

=


(∏m−2

j=1 (αj+1f (k + 1))k
j
)(∏2m−2

j=m−1 (αj+1g (h+ 1))h
j+1−mkm−1

)
(∏m−2

j=1 (αj+1f (1))k
j
)(∏2m−2

j=m−1 (αj+1g (1))h
j+1−mkm−1

)


1∑m−2
j=1

kj+
∑2m−1
j=m−1

hj+1−mkm−1

=

((
m−2∏
j=1

(
f(k + 1)

f(1)

)kj)( 2m−2∏
j=m−1

(
g(h+ 1)

g(1)

)hj+1−mkm−1)) 1∑m−2
j=1

kj+
∑2m−1
j=m−1

hj+1−mkm−1

=

((
f(k + 1)

f(1)

)∑m−2
j=1 kj (

g(h+ 1)

g(1)

)∑2m−2
j=m−1 h

j+1−mkm−1) 1∑m−2
j=1

kj+
∑2m−1
j=m−1

hj+1−mkm−1

, (15)

where (13) and (14) come from (12). We have two cases: k > 1 and k = 1. If k > 1, by continuing from (15)
and by considering a sufficiently large m, we get

((
f(k + 1)

f(1)

)∑m−2
j=1 kj (

g(h+ 1)

g(1)

)∑2m−2
j=m−1 h

j+1−mkm−1) 1∑m−2
j=1

kj+
∑2m−1
j=m−1

hj+1−mkm−1

=

(f(k + 1)

f(1)

) km−1−k
k−1

(
g(h+ 1)

g(1)

)km−1( 1−hm
1−h )

 1

km−1−k
k−1

+km−1
(

1−hm+1

1−h

)

=

(
f(k + 1)

f(1)

) km−1−k
k−1

km−1−k
k−1

+km−1
(

1−hm+1

1−h

) (
g(h+ 1)

g(1)

) km−1( 1−hm
1−h )

km−1−k
k−1

+km−1
(

1−hm+1

1−h

)

=

(
f(k + 1)

f(1)

) 1−h
1−hm+1

1−h
1−hm+1 +km−1

(
k−1

km−1−k

) (
g(h+ 1)

g(1)

) km−1
(

k−1

km−1−k

)(
1−hm

1−hm+1

)
1−h

1−hm+1 +km−1
(

k−1

km−1−k

)

≥ lim
m→∞

(
f(k + 1)

f(1)

) 1−h
1−hm+1

1−h
1−hm+1 +km−1

(
k−1

km−1−k

) (
g(h+ 1)

g(1)

) km−1
(

k−1

km−1−k

)(
1−hm

1−hm+1

)
1−h

1−hm+1 +km−1
(

k−1

km−1−k

)
− ε (16)

=

(
f(k + 1)

f(1)

) 1−h
(1−h)+(k−1)

(
g(h+ 1)

g(1)

) k−1
(1−h)+(k−1)

− ε (17)

=

(
f(k + 1)

f(1)

) 1−h
k−h

(
g(h+ 1)

g(1)

) k−1
k−h

− ε

>M + ε− ε (18)

=M, (19)

where (16) holds if m is sufficiently large, (17) comes from the fact that k > 1 and h < 1, and (18) comes
from (9).
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If k = 1, by continuing from (15), we get:((
f(k + 1)

f(1)

)∑m−2
j=1 kj (

g(h+ 1)

g(1)

)∑2m−2
j=m−1 h

j+1−mkm−1) 1∑m−2
j=1

kj+
∑2m−1
j=m−1

hj+1−mkm−1

=

(
f(k + 1)

f(1)

) m−2

m−2+ 1−hm+1

1−h

(
g(h+ 1)

g(1)

) 1−hm
1−h

m−2+ 1−hm+1

1−h

≥ lim
m→∞

(
f(k + 1)

f(1)

) m−2

m−2+ 1−hm+1

1−h

(
g(h+ 1)

g(1)

) 1−hm
1−h

m−2+ 1−hm+1

1−h − ε (20)

=

(
f(k + 1)

f(1)

)1(
g(h+ 1)

g(1)

)0

− ε

=

(
f(k + 1)

f(1)

) 1−h
k−h

(
g(h+ 1)

g(1)

) k−1
k−h

− ε (21)

>M + ε− ε (22)

=M, (23)

where (20) holds if m is sufficiently large, (21) comes from the fact that k = 1 and h < 1, and (22) comes
from (9). By (19) and (23), we have that, for a sufficiently large m, NPoA(LB(m, sm)) ≥ M , thus showing
part (ii) of the claim.

If h = 0, we consider a load balancing game defined as LB(m, sm), but restricted to the resources of
groups R1, . . . , Rm and to the players of groups N1, . . . , Nm−1. By using the same proof arguments as those
used for h > 0, one can show the claim as well.

We now show part (i). Assume that C is abscissa-scaling and ordinate-scaling. Analogously to the proof
of part (ii), we have that (9) holds. Moreover, let LB′(m, s) be a weighted load balancing game equal to game
LB(m, s) defined in the proof of part (ii), except for the strategy set of each player: for any j ∈ [2m− 1], the
strategy set of each player of group Nj is Σj := Rj ∪Rj+1. Let σ and σ∗ be the strategy profiles defined as
in game LB(m, s). By considering the case h = j + 1 analyzed in the proof of part (ii) of the claim, it also
holds that σ is a pure Nash equilibrium of LB′(m, s) for any s ≥ 1. Therefore, if we take a sufficiently large
m, an arbitrary s ≥ 1, and by applying to game LB′(m, s) the same inequalities as in (19) and (23), part (i)
follows.

A.3 Proof of Lemma 1

We have that

sup
k1≥o1>0,o2>k2≥0,f1,f2∈P(p)

(
f1(k1 + o1)

f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2 + o2)

f2(o2)

) (k1−o1)o2
k1o2−k2o1

= sup
k1≥o1>0,
o2>k2≥0,
α0,...,αp,≥0
β0,...,βp≥0

(∑p
d=0 αd(k1 + o1)d∑p

d=0 αdo
d
1

) (o2−k2)o1
k1o2−k2o1

(∑p
d=0 βd(k2 + o2)d∑p

d=0 βdo
d
2

) (k1−o1)o2
k1o2−k2o1

= sup
k1≥o1>0,
o2>k2≥0

(
max

d∈[p]∪{0}
(k1 + o1)d

od1

) (o2−k2)o1
k1o2−k2o1

(
max

d∈[p]∪{0}
(k2 + o2)d

od2

) (k1−o1)o2
k1o2−k2o1

= sup
k1≥o1>0,o2>k2≥0

((
k1 + o1
o1

)p) (o2−k2)o1
k1o2−k2o1

((
k2 + o2
o2

)p) (k1−o1)o2
k1o2−k2o1

= sup
k≥1,0≤h<1

(
(k + 1)

1−h
k−h (h+ 1)

k−1
k−h

)p
, (24)
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where (24) can be obtained by setting k := k1/o1 and h := k2/o2. Now, we show that the maximum

value of function F (k, h) := (k + 1)
1−h
k−h (h + 1)

k−1
k−h over k ≥ 1 and 0 ≤ h < 1 is equal to 2. Observe that

ln(F (k, h)) = 1−h
k−h ln(k+ 1) + k−1

k−h ln(h+ 1) ≤ ln
(

1−h
k−h (k + 1) + k−1

k−h (h+ 1)
)

, where the last inequality holds

since ln(F (k, h)) is defined as convex combination of ln(k + 1) and ln(h + 1), and because of the concavity
of the natural logarithm. Thus, we get

F (k, h) ≤ 1− h
k − h

(k + 1) +
k − 1

k − h
(h+ 1) =

(k − h) + (k − h)

k − h
= 2. (25)

Finally, since F (k, h) = 2 for k = 1 and h = 0, and because of (25), we have that the maximum of F (k, h)
over k ≥ 1 and 0 ≤ h < 1 is 2. Thus, we get that (24) is at most 2p.

A.4 Proof of Corollary 2

Let ε > 0. Let LB′(m) be the load balancing game defined as the game LB′(m, s) considered in the proof of
part (i) of Theorem 2, with s = 2, k = 1, h = 0, and f, g defined as f(x) = g(x) = xp. One can easily observe
that LB′(m) is a game with identical resources. Furthermore, because of the proof of Theorem 2, there exists
a sufficiently large integer m such that NPoA(LB′(m)) > 2p − ε, and the claim follows by the arbitrariness
of ε > 0.

B Missing Proofs of Subsection 3.2

B.1 Proof of Theorem 3

Let LB ∈ ULB(C) be an unweighted load balancing game with latency functions in C, and let σ and σ∗ be
a worst-case pure Nash equilibrium and an optimal strategy profile of LB, respectively. Let kj denote kj(σ)
and oj denote kj(σ

∗). As in Theorem 1, we get∏
j∈R(σ)

`j(kj)
kj ≤

∏
j∈R(σ∗)

`j(kj + 1)oj . (26)

By exploiting the properties of the logarithmic function, we get

ln (NPoA(LB)) = ln


(∏

j∈R(σ) `j(kj)
kj
) 1
n

(∏
j∈R(σ∗) `j(oj)

oj

) 1
n



≤ ln


(∏

j∈R(σ∗) `j(kj + 1)oj
) 1
n

(∏
j∈R(σ∗) `j(oj)

oj

) 1
n

 (27)

=

∑
j∈R(σ∗) oj(ln(`j(kj + 1))− ln(`j(oj)))∑

j∈R kj
,

where (27) comes from (26). Now, let R+ := {j ∈ R(σ∗) : kj ≥ oj}. We have that∑
j∈R(σ∗) oj(ln(`j(kj + 1))− ln(`j(oj)))∑

j∈R kj

≤
∑
j∈R(σ∗) oj(ln(`j(kj + 1))− ln(`j(oj)))∑

j∈R(σ∗) kj

≤
∑
j∈R+

oj(ln(`j(kj + 1))− ln(`j(oj)))∑
j∈R+

kj
(28)
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≤ max
j∈R+

oj(ln(`j(kj + 1))− ln(`j(oj)))

kj

≤ sup
f∈C,k∈N,o∈[k]

o(ln(f(k + 1))− ln(f(o)))

k
,

where (28) holds because for any j ∈ R(σ∗) \R+, it holds that oj(ln(`j(kj + 1))− ln(`j(oj))) ≤ 0. Therefore,
we conclude that

ln (NPoA(LB)) ≤ sup
f∈C,k∈N,o∈[k]

o(ln(f(k + 1))− ln(f(o)))

k
,

and by exponentiating the previous inequality we get the claim.

B.2 Tightness of the Upper Bound in Theorem 3

Theorem 6. Let C be a class of latency functions. If C is ordinate-scaling, then NPoA(ULB(C)) ≥

supf∈C,k∈N,o∈[k]
(
f(k+1)
f(o)

) o
k

.

Proof. In order to prove the theorem, we equivalently show that, for any M < supf∈C,k∈N,o∈[k]
(
f(k+1)
f(o)

) o
k

,

there exists a game LB ∈ ULB(C) such that NPoA(LB) > M .

Fix an arbitrary M < supf∈C,k∈N,o∈[k]
(
f(k+1)
f(o)

) o
k

. Let f ∈ C, k ∈ N, o ∈ [k], and a sufficiently small ε > 0

such that (
f(k + 1)

f(o)

) o
k

> M + ε. (29)

Given an integer m > 0, let LB(m) be an unweighted load balancing game with (k−o+1)m+o resources,
partitioned into m groups R1, R2, . . . , Rm such that Rj := {rj,0, rj,1, . . . , rj,k−o} for any j ∈ [m − 1], and
Rm := {rm,0, rm,1, . . . , rm,k}. Each resource rj,h has latency function `rj,h(x) := αj,hf(x), with

αj,h :=


(

f(k)
f(k+1)

)j−1
if h = 0

f(k)
f(1)

(
f(k)
f(k+1)

)j−1
otherwise.

We have n := mk players split into m groups N1, N2, . . . , Nm of k players each. For j ∈ [m − 1], the set of
strategies Σj of players of group Nj is Rj ∪ {rj+1,0}, and the set of strategies Σm of players in Nm is Rm.

Let σ be the strategy profile such that, for any j ∈ [m], all k players of group Nj select resource rj,0, so
that each resource rj,0 has congestion k, and all the remaining resources have null congestion (see Figure 2.a).
We show that σ is a pure Nash equilibrium. Given an arbitrary player i of group Nj with j ∈ [m], such player

has a cost equal to `rj,0(k) = αj,0f(k) =
(

f(k)
f(k+1)

)j−1
f(k) when playing strategy σi. If j ∈ [m−1], and player

i unilaterally deviates to strategy rj+1,0, her cost is `rj+1,0(k + 1) = αj+1,0f(k + 1) =
(

f(k)
f(k+1)

)j
f(k + 1) =(

f(k)
f(k+1)

)j−1
f(k) = `rj,0(k), thus her cost does not improve. Analogously, if j ∈ [m], and player i unilaterally

deviates to any strategy rj,h with h 6= 0, her cost is `rj,h(1) = αj,hf(1) = f(k)
f(1)

(
f(k)
f(k+1)

)j−1
f(1) = `rj,0(k),

thus her cost does not improve as well. We conclude that σ is a pure Nash equilibrium.
Now, let σ∗ be a strategy profile defined as follows: (i) for any j ∈ [m− 1], o players of group Nj select

resource rj+1,0, and each of the k − o remaining players of Nj selects a distinct resource of Rj \ {rj,0}, (ii)
all the k players of group Nm select a distinct resource of Em \ {rm,0}. Thus, in σ∗, any resource of type
rj,0 with j > 1 has congestion o, resource r1,0 has null congestion, and the remaining resources have unitary
congestion (see Figure 2.b). By some algebraic manipulation, it holds that

NSW(σ)

NSW(σ∗)
=
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Fig. 2. The LB used in the proof of Theorem 6. Columns represent resources and squares represent players (number
j inside a square means that the player belongs to group Nj). (a): The Nash equilibrium σ; (b): The strategy profile
σ∗.

=

 ∏m
j=1 `j,0(k)k∏m−1

j=1

(
`rj+1,0(o)o

∏
r∈Rj\{rj,0} `r(1)

)∏
r∈Rm\{rm,0} `r(1)

 1
km

=


∏m
j=1

((
f(k)
f(k+1)

)j−1
f(k)

)k
∏m−1
j=1

[((
f(k)
f(k+1)

)j
f(o)

)o(
f(k)
f(1)

(
f(k)
f(k+1)

)j−1
f(1)

)k−o](
f(k)
f(1)

(
f(k)
f(k+1)

)m−1
f(1)

)k


1
km

=


∏m
j=1

((
f(k)
f(k+1)

)j
f(k + 1)

)k
∏m−1
j=1

[((
f(k)
f(k+1)

)j
f(o)

)o((
f(k)
f(k+1)

)j
f(k + 1)

)k−o]((
f(k)
f(k+1)

)m
f(k + 1)

)k


1
km

=


(∏m

j=1

(
f(k)
f(k+1)

)kj)
f(k + 1)km(∏m−1

j=1

(
f(k)
f(k+1)

)kj)
f(o)o(m−1)f(k + 1)(k−o)(m−1)

(
f(k)
f(k+1)

)km
f(k + 1)k


1
km

=

(
f(k + 1)km

f(o)o(m−1)f(k + 1)(k−o)(m−1)f(k + 1)k

) 1
km

=

(
f(k + 1)o(m−1)

f(o)o(m−1)

) 1
km

=

(
f(k + 1)

f(o)

) o(m−1)
km

. (30)

By using (29) and (30), and by choosing a sufficiently large m, we get

NPoA(LB(m)) ≥ NSW(σ)

NSW(σ∗)
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=

(
f(k + 1)

f(o)

) o(m−1)
km

≥ lim
m→∞

(
f(k + 1)

f(o)

) o(m−1)
km

− ε

=

(
f(k + 1)

f(o)

) o
k

− ε

> M + ε− ε
= M,

thus showing the claim. ut

B.3 Proof of Corollary 3

The claim follows from the following lemma.

Lemma 2. supf∈P(p),k∈N,o∈[k]
(
f(k+1)
f(o)

) o
k

= 2p.

Proof. We have that

sup
f∈P(p),k∈N,o∈[k]

(
f(k + 1)

f(o)

) o
k

= sup
α0,α1,...,αp≥0,k∈N,o∈[k]

(∑p
d=0 αd(k + 1)d∑p

d=0 αdo
d

) o
k

= sup
k∈N,o∈[k]

(
max

d∈[p]∪{0}
(k + 1)d

od

) o
k

= sup
k∈N,o∈[k]

((
k + 1

o

)p) o
k

=

(
sup

k∈N,o∈[k]

(
k + 1

o

) o
k

)p
= 2p, (31)

where (31) holds for the following reasons: First of all, we have that (k+1
o )

o
k = 2 if o = k = 1, thus showing

that 2 ≤ supk∈N,o∈[k]
(
k+1
o

) o
k ; furthermore, by setting x := k/o, we obtain (k+1

o )
o
k =

(
x+ 1

o

) 1
x ≤ (x+1)

1
x ≤ 2,

where the last inequality is equivalent to the well-known inequality 2x ≥ x+1 which holds for any x ≥ 1. ut

C Missing Proofs of Subsection 3.3

C.1 Proof of Theorem 4

Let NLB ∈ NLB(C) be a non-atomic load balancing game with latency functions in C, and let ∆ and ∆∗

be a worst-case pure Nash equilibrium and an optimal strategy profile of NLB, respectively. Let kj denote
kj(∆) and oj denote kj(∆

∗).
For any player type i and pair (j, j∗) of resources, let αij,j∗ be the amount of players of type i selecting

resource j in ∆ and resource j∗ in ∆∗. Clearly, it holds that, for any i ∈ N ,
∑
j,j∗∈R α

i
j,j∗ = ri.

Since ∆ is a pure Nash equilibrium, if there exists i ∈ N such that αij,j∗ > 0, we have that costj(∆) ≤
costj∗(∆). For any j, j∗ ∈ R, let Aj,j∗ =

∑
i∈N α

i
j,j∗ . Clearly, it holds that

costj(∆)Aj,j∗ ≤ costj∗(∆)Aj,j∗ . (32)

Since, for any j ∈ R(∆),
∑
j∗∈RAj,j∗ = kj and, symmetrically, for any j∗ ∈ R(∆∗),

∑
j∈RAj,j∗ = oj , it

follows that ∏
j,j∗∈R

costj(∆)Aj,j∗ =
∏

j∈R(∆)

costj(∆)kj (33)
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and ∏
j,j∗∈R

costj∗(∆
∗)Aj,j∗ =

∏
j∈R(∆∗)

costj(∆)oj . (34)

By multiplying (32) over all pairs of resources in R and by exploiting (33) and (34), we obtain∏
j∈R(∆)

`j(kj)
kj =

∏
j∈R(∆)

costj(∆)kj =
∏

j,j∗∈R
costj(∆)Aj,j∗

≤
∏

j,j∗∈R
costj∗(∆)Aj,j∗ =

∏
j∈R(∆∗)

costj(∆)oj =
∏

j∈R(∆∗)

`j(kj)
oj . (35)

By exploiting the properties of the logarithmic function, we get

ln (NPoA(LB)) = ln


(∏

j∈R(∆) `j(kj)
kj
) 1∑

i∈N ri(∏
j∈R(∆∗) `j(oj)

oj

) 1∑
i∈N ri



≤ ln


(∏

j∈R(∆∗) `j(kj)
oj
) 1∑

i∈N ri(∏
j∈R(∆∗) `j(oj)

oj

) 1∑
i∈N ri

 (36)

=

∑
j∈R(∆∗) oj ln(`j(kj))−

∑
j∈R(∆∗) oj ln(`j(oj))∑

i∈N ri

=

∑
j∈R(∆∗) oj(ln(`j(kj))− ln(`j(oj)))∑

j∈R kj
,

≤
∑
j∈R+

oj(ln(`j(kj))− ln(`j(oj)))∑
j∈R+

kj
(37)

≤ max
j∈R+

oj(ln(`j(kj))− ln(`j(oj)))

kj

≤ sup
f∈C,k≥o>0

o(ln(f(k))− ln(f(o)))

k
,

where (36) comes from (35), and (37) is obtained by using similar arguments as in Theorem 3 (in particular,
see inequalities (28)). Therefore, we conclude that

ln (NPoA(NLB)) ≤ sup
f∈C,k≥o>0

o(ln(f(k))− ln(f(o)))

k
,

and by exponentiating the previous inequality we get the claim.

C.2 Tightness of the Upper Bound of Theorem 4

Theorem 7. Let C be a class of latency functions. If C is all-constant-including, then NPoA(NLB(C)) =

NPoA(SNLB(C)) ≥ supf∈C,k≥o>0

(
f(k)
f(o)

) o
k

.

Proof. To show the theorem, we equivalently show that, for any M < supf∈C,k≥o>0

(
f(k)
f(o)

) o
k

, there exists a

symmetric non-atomic load balancing game NLB ∈ SNLB(C) such that NPoA(NLB) > M . Fix an arbitrary

M < supf∈C,k≥o>0

(
f(k)
f(o)

) o
k

. Let f ∈ C and k ≥ o > 0 such that
(
f(k)
f(o)

) o
k

> M . Let NLB be a symmetric

non-atomic load balancing game with a unique player type, say 1, and two resources having latency defined
as `1(x) := f(x) and `2(x) := f(k). Assume that the amount of players of type 1 is r1 = k. Let ∆ be the
strategy profile in which all players select resource 1, and let ∆∗ be the strategy profile in which an amount o
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of players selects resource 1 and the remaining one (i.e., k−o) selects resource 2. We trivially have that ∆ is a

pure Nash equilibrium. Thus, we obtain NPoA(NLB) ≥ NSW(∆)
NSW(∆∗) =

(
`1(k)

k

`1(o)o`2(k−o)k−o
) 1
k

=
(

f(k)k

f(o)of(k)k−o

) 1
k

=(
f(k)
f(o)

) o
k

> M, and the claim follows. ut

C.3 Proof of Corollary 4

We have that

NPoA(NLB(P(p))) = NPoA(SNLB(P(p))) (38)

= sup
f∈C,k≥o>0

(
f(k)

f(o)

) o
k

(39)

= sup
α0,α1,...,αp≥0,k≥o>0

(∑p
d=0 αdk

d∑p
d=0 αdo

d

) o
k

= sup
k≥o>0

(
max

d∈[p]∪{0}
kd

od

) o
k

= max
d∈[p]∪{0}

sup
k≥o>0

(
kd

od

) o
k

= max
d∈[p]∪{0}

(
sup
k≥o>0

(
k

o

) o
k

)d

=

(
sup
k≥o>0

(
k

o

) o
k

)p
,

=

(
sup
x>0

x
1
x

)p
, (40)

=
(
e

1
e

)p
, (41)

where (38) and (39) come from Theorems 4 and 7 (observe that polynomial latency functions are all-constant-
including), (40) can be obtained by setting x := k/o, and (41) comes from the fact that function F (x) := x1/x

is maximized by x = e.

D Missing Proofs of Section 4

D.1 Proof of Theorem 5

Let I ∈ WLB(C) be a load balancing instance with latency functions in C, and let σ and σ∗ be the states
returned by the greedy algorithm and an optimal strategy profile of LB, respectively.

Let kj denote kj(σ) and oj denote kj(σ
∗). For any i ∈ N and resource j, let (σi) be the partial state

in which the first i clients have been assigned according to σ, and let (σi−1, j) be the state in which
the first i − 1 clients have been assigned according to σ and client i is assigned to resource j. By defi-

nition of greedy algorithm, we have that σi ∈ arg minj∈R NSW(σi−1, j) = arg minj∈R
∏
l≤i costl(σ

i−1,j)∏
l≤i−1 costl(σ

i−1) =

arg minj∈R
`j(kj(σ

i−1,j))kj(σ
i−1,j)

`j(kj(σi−1))kj(σ
i−1)

, where we set `j(0)0 := 1. Thus, we can equivalently define the greedy

assignment by saying that each client i is assigned to the resource j minimizing
`j(kj(σ

i−1,j))kj(σ
i−1,j)

`j(kj(σi−1))kj(σ
i−1)

, so that

`σi(kσi(σ
i))kσi (σ

i)

`σi(kσi(σ
i−1))kσi (σ

i−1)
≤
`σ∗i (kσi(σ

i−1, σ∗i ))
kσ∗
i
(σi−1,σ∗i )

`σ∗i (kσ∗i (σi−1))
kσ∗
i
(σi−1)

. (42)
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We have that: ∏
i∈N

`σi(kσi(σ
i))kσi (σ

i)

`σi(kσi(σ
i−1))kσi (σ

i−1)
=

∏
j∈R(σ)

∏
i∈N :σi=j

`j(kj(σ
i))kj(σ

i)

`j(kj(σi−1))kj(σ
i−1)

=
∏

j∈R(σ)

`j(kj(σ
n))kj(σ

n) (43)

=
∏

j∈R(σ)

`j(kj)
kj , (44)

where (43) is obtained by exploiting telescoping properties. Furthermore, we get

∏
i∈N

`σ∗i (kσ∗i (σi−1, σ∗i ))
kσ∗
i
(σi−1,σ∗i )

`σ∗i (kσ∗i (σi−1))
kσ∗
i
(σi−1)

=
∏
i∈N

`σ∗i (kσ∗i (σi−1) + wi)
kσ∗
i
(σi−1)+wi

`σ∗i (kσ∗i (σi−1))
kσ∗
i
(σi−1)

≤
∏
i∈N

`σ∗i (kσ∗i + wi)
kσ∗
i
+wi

`σ∗i (kσ∗i )
kσ∗
i

(45)

=
∏

j∈R(σ∗)

∏
i∈N :σ∗i=j

`j(kj + wi)
kj+wi

`j(kj)kj

≤
∏

j∈R(σ∗)

∏
i∈N :σ∗i=j

`j(kj +
∑
t≤i:σ∗t=j wt)

kj+
∑
t≤i:σ∗t=j wt

`j(kj +
∑
t<i:σ∗t=j

wt)
kj+

∑
t<i:σ∗t=j wt

(46)

=
∏

j∈R(σ∗)

`j(kj +
∑
t:σ∗t=j

wt)
kj+

∑
t:σ∗t=j wt

`j(kj)kj
(47)

=
∏

j∈R(σ∗)

`j(kj + oj)
kj+oj

`j(kj)kj
, (48)

where (47) is obtained by exploiting telescoping properties, and (45) and (46) easily come from the following
fact:

Fact 2 Given a quasi-log-convex latency function f , we have that f(x+z)
x+z

f(x) ≤ f(x+y+z)x+y+z

f(x+y)x+y for any x, y, z ≥
0.

Proof. Since the function g such that g(t) = t ln(f(t)) is convex, we have that g(x + z) − g(x) ≤ g(x + y +
z)− g(x+ y) for any x, y, z ≥ 0, thus, by exponentiating the previous inequality, the claim follows. ut

By putting together (42), (44), and (48), we get

∏
j∈R(σ)

`j(kj)
kj =

∏
i∈N

`σi(kσi(σ
i))kσi (σ

i)

`σi(kσi(σ
i−1))kσi (σ

i−1)

≤
∏
i∈N

`σ∗i (kσ∗i (σi−1, σ∗i ))
kσ∗
i
(σi−1,σ∗i )

`σ∗i (kσ∗i (σi−1))
kσ∗
i
(σi−1)

≤
∏

j∈R(σ∗)

`j(kj + oj)
kj+oj

`j(kj)kj
. (49)

By exploiting the properties of the logarithmic function, we obtain

ln (CRG(I))
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= ln


(∏

j∈R(σ) `j(kj)
kj
) 1∑

i∈N wi(∏
j∈R(σ∗) `j(oj)

oj

) 1∑
i∈N wi



≤ ln


(∏

j∈R(σ∗)
`j(kj+oj)

kj+oj

`j(kj)
kj

) 1∑
i∈N wi

(∏
j∈R(σ∗) `j(oj)

oj

) 1∑
i∈N wi

 (50)

=

∑
j∈R(σ∗) ((kj + oj) ln(`j(kj + oj))− kj ln(`j(kj))− oj ln(`j(oj)))∑

i∈N wi
, (51)

where (50) comes from (49). Since
∑
i∈N wi =

∑
j∈R kj =

∑
j∈R oj , we have that (51) is upper bounded by

the optimal solution of the following optimization problem on some new linear variables (αj)j∈R:

max

∑
j∈R(σ∗) αj ((kj + oj) ln(`j(kj + oj))− kj ln(`j(kj))− oj ln(`j(oj)))∑

j∈R αjkj

s.t.
∑
j∈R

αjkj =
∑
j∈R

αjoj , αj ≥ 0 ∀j ∈ R.

By normalizing the denominator of the objective function, we obtain the following equivalent linear program:

max
∑

j∈R(σ∗)

αj ((kj + oj) ln(`j(kj + oj))− kj ln(`j(kj))− oj ln(`j(oj))) (52)

s.t.
∑
j∈R

αjkj = 1,
∑
j∈R

αjoj = 1, αj ≥ 0 ∀j ∈ R.

We have the following fact, whose proof is omitted, since it is similar to that of Fact 1.

Fact 3 The maximum value of the linear program considered in (3) is at most

sup
k1≥o1>0,o2>k2≥0,f1,f2∈C

(o2 − k2)F (f1, o1, k1) + (k1 − o1)F (f2, o2, k2)

k1o2 − k2o1
,

where F (f, o, k) := (k + o) ln(f(k + o))− k ln(f(k))− o ln(f(o)).

By continuing from (51) and by using Fact 3, we get

ln (CRG(I)) ≤ sup
k1≥o1>0,o2>k2≥0,f1,f2∈C

(o2 − k2)F (f1, o1, k1) + (k1 − o1)F (f2, o2, k2)

k1o2 − k2o1
.

By exponentiating the previous inequality, we get the claim.

D.2 Tightness of the Upper Bound of Theorem 5

Theorem 8. Let C be a class of latency functions and let G be the greedy algorithm. If C is abscissa-scaling
and ordinate-scaling, then

CRG(WLB(C))

≥ sup
k1≥o1>0,
o2>k2≥0,
f1,f2∈C

(
f1(k1 + o1)k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2 + o2)k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

. (53)

Proof. Let us assume that C is abscissa-scaling and ordinate-scaling. We equivalently show that for any

M < supk1≥o1>0,o2>k2≥0,f1,f2∈C
(
f1(k1+o1)

k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2+o2)

k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

there exists an instance

I ∈WLB(C) such that NPoA(I) > M .
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Let f1, f2 ∈ C, k1, k2, o1, o2 ≥ 0 such that k1 ≥ o1 > 0, o2 > k2 ≥ 0, and let ε > 0 be a sufficiently small

number such that
(
f1(k1+o1)

k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2+o2)

k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

> M + ε. Let f, g ∈ C be such that

f(x) := f1(o1x) and g(x) := f2(o2x), and let k := k1/o1 and h := k2/o2. Since

(
f1(k1 + o1)k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2 + o2)k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

=

(
f(k + 1)k+1

f(k)kf(1)

) 1−h
k−h

(
g(h+ 1)h+1

g(h)hg(1)

) k−1
k−h

we have that(
f(k + 1)k+1

f(k)kf(1)

) 1−h
k−h

(
g(h+ 1)h+1

g(h)hg(1)

) k−1
k−h

> M + ε, for some f, g ∈ C, k ≥ 1, and h < 1. (54)

First of all, we assume that h > 0. Given an integer m ≥ 3, let I(m) be a load balancing instance having
2m resources r1, r2, r3 . . . , r2m and 2m− 1 clients such that the set of strategies of each client j is {rj , rj+1}.
Each resource rj has a latency function defined as `j(x) := αj f̂j (βjx), and the weight of each client j is

defined as wj := 1/βj+1, where αj , f̂j , and βj are defined as follows:

f̂j :=

{
f if j ≤ m− 1

g if j ≥ m
, βj :=

{(
1
k

)j−1
if j ≤ m− 1(

1
h

)j−m ( 1
k

)m−1
if m ≤ j ≤ 2m

, (55)

αj :=



(
f(k)k+1

f(k+1)k+1

)j−1
if j ≤ m− 1(

g(h)h+1

g(h+1)h+1

)j−m (
f(k)g(h)h

g(h+1)h+1

)(
f(k)k+1

f(k+1)k+1

)m−2
if m ≤ j ≤ 2m− 1

g(h)
g(1)

(
g(h)h+1

g(h+1)h+1

)m−1 (
f(k)g(h)h

g(h+1)h+1

)(
f(k)k+1

f(k+1)k+1

)m−2
if j = 2m

. (56)

Observe that, by construction of αj , βj , wj , the following properties hold:
αjf(k) = αj+1

f(k+1)k+1

f(k)k
if j ≤ m− 2

αjf(k) = αj+1
g(h+1)h+1

g(h)h
if j = m− 1

αjg(h) = αj+1
g(h+1)h+1

g(h)h
if m ≤ j ≤ 2m− 2

αjg(h) = αj+1g(1) if j = 2m− 1

,


βjwj = k, wj = kj if j ≤ m− 1

βjwj = h, wj = hj+1−mkm−1 if m ≤ j ≤ 2m− 1

βj+1wj = 1 if j ≤ 2m− 1

(57)

Let σ be the strategy profile in which each client j is assigned to resource rj . We show that σ is a state
that can be possibly returned by the greedy algorithm when clients are processed in reverse order w.r.t.

index j. We equivalently show that NSW(σj)
NSW(σj+1) ≤

NSW(σj+1,rj+1)
NSW(σj+1) for any j ≤ 2m − 1, where σj denotes the

partial assignment in which each client t ≥ j is assigned to resource rt, and (σj+1, rj+1) denotes the partial
assignment in which each client t ≥ j + 1 is assigned to resource rt and client j is assigned to resource rj+1.
Let j ∈ [2m− 1]. First of all, assume that j ≤ m− 2. By using (57), we get

NSW(σj)

NSW(σj+1)
= `rj (krj (σ))krj (σ) =

(
αj f̂j (βjwj)

)wj
= (αjf (k))wj =

(
αj+1

f (k + 1)
k+1

f(k)k

)wj

= α
wj
j+1

f (k + 1)
kwj+wj

f(k)kwj
= α

wj
j+1

f (k + 1)
wj+1+wj

f(k)wj+1
=

(αj+1f (k + 1))
wj+1+wj

(αj+1f(k))
wj+1

=
(αj+1f (βj+1(wj+1 + wj)))

wj+1+wj

(αj+1f(βj+1wj+1))
wj+1

=

(
αj+1f̂j+1 (βj+1(wj+1 + wj))

)wj+1+wj(
αj+1f̂j+1(βj+1wj+1)

)wj+1

=
`rj+1

(krj+1
(σj+1, rj+1))krj+1

(σj+1,rj+1)

`rj+1(krj+1(σj+1))krj+1
(σj+1)

=
NSW(σj+1, rj+1)

NSW(σj+1)
.
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The cases j = m− 1, m ≤ j ≤ 2m− 2, and j = 2m− 1 can be separately considered by exploiting (57), so
that one can analogously get

NSW(σj)

NSW(σj+1)
=
(
αj f̂j (βjwj)

)wj
=

(
αj+1f̂j+1 (βj+1(wj+1 + wj))

)wj+1+wj(
αj+1f̂j+1(βj+1wj+1)

)wj+1
=

NSW(σj+1, rj+1)

NSW(σj+1)
, (58)

where we set
(
α2mf̂2m(β2mw2m)

)w2m

:= 1 and w2m := 0. Now, let σ∗ be the strategy profile of I(m) in

which each client j ∈ [m− 1] is assigned to resource rj+1. By exploiting the definitions of αj ,βj , f̂j , and wj ,
and by considering a sufficiently large m, we have that:

NPoA(I(m))

≥ NSW(σ)

NSW(σ∗)

=

 ∏2m−1
j=1

(
αj f̂j (βjwj)

)wj
∏2m
j=2

(
αj f̂j (βjwj−1)

)wj−1


1∑2m−1

j=1
wj

=


∏2m−1
j=1

(
(αj+1f̂j+1(βj+1(wj+1+wj)))

wj+1+wj

(αj+1f̂j+1(βj+1wj+1))
wj+1

)
∏2m
j=2

(
αj f̂j (βjwj−1)

)wj−1


1∑2m−1

j=1
wj

(59)

=


∏2m−1
j=1

(
(αj+1f̂j+1(βj+1(wj+1+wj)))

wj+1+wj

(αj+1f̂j+1(βj+1wj+1))
wj+1

)
∏2m−1
j=1

(
αj+1f̂j+1 (βj+1wj)

)wj


1∑2m−1
j=1

wj

=

2m−1∏
j=1


(
αj+1f̂j+1 (βj+1(wj+1 + wj))

)wj+1+wj(
αj+1f̂j+1(βj+1wj+1)

)wj+1
(
αj+1f̂j+1 (βj+1wj)

)wj



1∑2m−1
j=1

wj

=

(
m−2∏
j=1

(
f(k + 1)k

j+1+kj

f(k)kj+1f(1)kj

)
2m−2∏
j=m−1

(
g(h+ 1)h

j+2−mkm−1+hj+1−mkm−1

g(h)hj+2−mkm−1g(1)hj+1−mkm−1

)) 1∑m−2
j=1

kj+
∑2m−1
j=m−1

hj+1−mkm−1

=

(
m−2∏
j=1

(
f(k + 1)k+1

f(k)kf(1)

)kj 2m−2∏
j=m−1

(
g(h+ 1)h+1

g(h)hg(1)

)hj+1−mkm−1) 1∑m−2
j=1

kj+
∑2m−1
j=m−1

hj+1−mkm−1

≥
(
f(k + 1)k+1

f(k)kf(1)

) 1−h
k−h

(
g(h+ 1)h+1

g(h)hg(1)

) k−1
k−h

− ε (60)

>M + ε− ε (61)

=M, (62)

where (59) comes from (58), (60) can be shown by using similar arguments as in the proof of Theorem 2 (see
steps (17) and (21)), and (61) comes from (54). By (62), the claim follows.

If h = 0, we consider a load balancing instance defined as I(m), but restricted to resources r1, r2, . . . , rm
and to players in [m − 1]. By using the same proof arguments as those used for h > 0, one can show the
claim as well. ut

D.3 Proof of Corollary 5

The proof follows from the following lemma.

Lemma 3.

sup
k1≥o1>0,
o2>k2≥0,
f1,f2∈C

(
f1(k1 + o1)k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2 + o2)k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

= 4p.
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Proof. We have that

sup
k1≥o1>0,o2>k2≥0,f1,f2∈C

(
f1(k1 + o1)k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2 + o2)k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

= sup
k1≥o1>0,
o2>k2≥0,
α0,...,αp≥0,
β0,...,βp≥0

( (∑p
d=0 αd(k1 + o1)d

)k1+o1(∑p
d=0 αdk

d
1

)k1 (∑p
d=0 αdo

d
1

)o1
) o2−k2
o2k1−o1k2

( (∑p
d=0 βd(k2 + o2)d

)k2+o2(∑p
d=0 βdk

d
2

)k2 (∑p
d=0 βdo

d
2

)o2
) k1−o1
o2k1−o1k2

= sup
k1≥o1>0,o2>k2≥0,
α0,...,αp,β0,...,βp≥0

((∑p
d=0 αd(k1 + o1)d∑p

d=0 αdk
d
1

)k1 (∑p
d=0 αd(k1 + o1)d∑p

d=0 αdo
d
1

)o1) o2−k2
o2k1−o1k2

·

((∑p
d=0 βd(k2 + o2)d∑p

d=0 βdk
d
2

)k2 (∑p
d=0 βd(k2 + o2)d∑p

d=0 βdo
d
2

)o2) k1−o1
o2k1−o1k2

= sup
k1≥o1>0,o2>k2≥0

((
max

d∈[p]∪{0}
(k1 + o1)d

kd1

)k1 (
max

d∈[p]∪{0}
(k1 + o1)d

od1

)o1) o2−k2
o2k1−o1k2

·

((
max

d∈[p]∪{0}
(k2 + o2)d

kd2

)k2 (
max

d∈[p]∪{0}
(k2 + o2)d

od2

)o2) k1−o1
o2k1−o1k2

= sup
k1≥o1>0,
o2>k2≥0

((
(k1 + o1)p

kp1

)k1 ( (k1 + o1)p

op1

)o1) o2−k2
o2k1−o1k2

((
(k2 + o2)p

kp2

)k2 ( (k2 + o2)p

op2

)o2) k1−o1
o2k1−o1k2

= sup
k≥1,0≤h<1

( (k + 1)k+1

kk

) 1−h
k−h

(
(h+ 1)h+1

hh

) k−1
k−h

p

, (63)

where (63) can be obtained by setting k := k1/o1 and h := k2/o2. Now, we show that the maxi-

mum value of function F (k, h) :=
(

(k+1)k+1

kk

) 1−h
k−h

(
(h+1)h+1

hh

) k−1
k−h

over k ≥ 1 and 0 ≤ h < 1 is equal

to 4. Observe that ln(F (k, h)) = 1−h
k−h ((k + 1) ln(k + 1) − k ln(k)) + k−1

k−h ((h + 1) ln(h + 1) − h ln(h)) ≤(
1−h
k−h (k + 1) + k−1

k−h (h+ 1)
)

ln
(

1−h
k−h (k + 1) + k−1

k−h (h+ 1)
)

, where the second last inequality holds because

of the concavity of the function g defined as g(x) := (x+1) ln(x+1)−x ln(x) and since ln(F (k, h)) is defined
as convex combination of g(k) and g(h). Thus, we get

F (k, h) ≤
(

1− h
k − h

(k + 1) +
k − 1

k − h
(h+ 1)

) 1−h
k−h (k+1)+ k−1

k−h (h+1)

=

(
(k − h) + (k − h)

k − h

) (k−h)+(k−h)
k−h

= 22 = 4. (64)

Finally, since F (k, h) = 4 for k = 1 and h = 0, and because of (64), we have that the maximum of F (k, h)
over k ≥ 1 and 0 ≤ h < 1 is 4. Thus, we get that (63) is at most 4p. ut

D.4 Tightness of the Upper Bound of Corollary 5 w.r.t. any Online Algorithm.

Theorem 9. The competitive ratio of any online algorithm A applied to load balancing instances with poly-
nomial latencies of maximum degree p is at least CRA(P(p)) ≥ 4p, even for instances with identical resources.

Proof. We equivalently show that, for any online algorithm A and ε > 0, there exists a load balancing
instance I such that CRA(I) ≥ 4p − ε. We construct an instance similar to that defined in Theorem 17 of
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[22]. Given an integer m ≥ 0 and a real number w > 0, let I(m) be a load balancing instance with identical
polynomial latency functions of type `(x) = xp, and recursively defined as follows:

– If m = 0, I(m) has no clients and there is a unique resource denoted as fundamental resource of I(0).
– If m ≥ 1, then: (i) I(m) contains a sub-instance equivalent to I(i − 1) for any i ∈ [m]; (ii) I(m) has a

further resource r denoted as fundamental resource of I(m); (iii) there are further m clients such that,
for any i ∈ [m], the i-th client has weight wi := 2i−1 and can select among r and the fundamental
resource r(i) of the sub-instance of type I(i− 1) included in I(m); (iv) for any client i ∈ [m], r and r(i)
are respectively denoted as first and second resource of the i-th client included in I(m).

Let σ and σ∗ be the states of I(m) in which each client is assigned to her first and second resource, respectively.
We have that σ is a state that can be returned by any online algorithm if clients are processed according
to the following partial ordering: (i) given two clients i1 and i2 having their first resource in sub-instances
of type I(m1) and I(m2) respectively, if m1 < m2 then client i1 is processed before client i2; (ii) the clients
defined in the same sub-instance are processed in increasing order with respect to their weights. This fact is
true since each time the greedy algorithm processes some client i according to the partial ordering defined
above, the congestions of the first and the second resource of that client are equal. Thus, since the latency
functions are equal too, any online algorithm cannot distinguish between the two resources selectable by
each client, and by symmetry both choices can potentially lead to the same worst-case competitive ratio.

We have the following fact:

Fact 4 Given two integers m ≥ 1 and i ∈ [m−1]∪{0} such that j ≥ i, the number N(m, i) of sub-instances
of I(m) equivalent to I(j) for some j ≥ i is N(m, i) = 2m−i.

Proof. We show the claim by induction on h(i) := m− i ≥ 0. If h(i) = 0 the unique sub-instance equivalent
to I(j) for some j ≥ i is the entire instance I(m), thus N(m, i) = 1 = 2h(i) = 2m−i and the base step
holds. Now, assume that the claim holds for any h(i) ≥ 0. Observe that we can associate in a one-to-one
correspondence each sub-instance that is equivalent to I(j) for some j ≥ i, with a sub-instance equivalent
to I(i − 1), that is N(m, i) = N(m, i − 1) − N(m, i) ⇒ N(m, i − 1) = 2N(m, i). Thus, we have that
N(m, i− 1) = 2N(m, i) = 2 · 2h(i) = 2m−i+1 = 2h(i)+1, and the inductive step holds. ut

Let N(m, i) be defined as in Fact 4 and let R(i) be the set of fundamental resources for sub-instances of
type I(i). Observe that, for any i ∈ [m] and resource r such that i clients select r as first resource, r is the
fundamental resource of a sub-instance of type I(i), i.e., r ∈ R(i). Thus, by exploiting Fact 4, we get

NSW(σ) =

 ∏
i∈[m]

∏
r∈R(i)

`(kr(σ))kr(σ)

 1∑
r∈R kr(σ)

=

 ∏
i∈[m]

`

 i∑
j=1

wj

(
∑i
j=1 wj)|R(i)|

1∑
i∈[m](

∑i
j=1

wj)|R(i)|

=

 ∏
i∈[m]

`

 i∑
j=1

2j−1

(
∑i
j=1 2j−1)(N(m,i)−N(m,i+1))


1∑

i∈[m](
∑i
j=1

2j−1)(N(m,i)−N(m,i+1))

=

 ∏
i∈[m]

(
2i − 1

)p(2i−1)2m−i−1

 1∑
i∈[m](2

i−1)2m−i−1

(65)

and

NSW(σ∗) =

 ∏
i∈[m]

∏
r∈R(i)

∏
j∈[i]

`(kr(j)(σ
∗))kr(j)(σ

∗)

 1∑
r∈R kr(σ)
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=

 ∏
i∈[m]

∏
j∈[i]

` (wj)
wj(N(m,i)−N(m,i+1))

 1∑
i∈[m](2

i−1)2m−i−1

=

 ∏
i∈[m]

∏
j∈[i]

(
2j−1

)p2j−12m−i−1

 1∑
i∈[m](2

i−1)2m−i−1

=

 ∏
i∈[m]

2p(
∑i−1
j=0 j2

j)2m−i−1

 1∑
i∈[m](2

i−1)2m−i−1

=

 ∏
i∈[m]

2p(i2
i−2(2i−1))2m−i−1

 1∑
i∈[m](2

i−1)2m−i−1

(66)

Let ε > 0. By (65) and (66), and by taking a sufficiently large integer m > 1, we get

CRA(I) ≥ NSW(σ)

NSW(σ∗)

=

∏i∈[m]

(
2i − 1

)p(2i−1)2m−i−1∏
i∈[m] 2p(i2i−2(2i−1))2m−i−1


1∑

i∈[m](2
i−1)2m−i−1

=

∏i∈[m]

(
2i − 1

)p(2i−1)2−i−1∏
i∈[m] 2p(i2i−2(2i−1))2−i−1


1∑

i∈[m](2
i−1)2−i−1

=

 ∏
i∈[m]

(
2i
)p(2i−1)2−i−1∏

i∈[m] 2p(i2i−2(2i−1))2−i−1


1∑

i∈[m](2
i−1)2−i−1 ∏

i∈[m]

(
2i − 1

2i

) p(2i−1)2−i−1∑
i∈[m](2

i−1)2−i−1

= (2p)

∑
i∈[m](−i2−i−1+1−2−i)∑

i∈[m](1/2−2−i−1)
∏
i∈[m]

(
2i − 1

2i

) p(1/2−2−i−1)∑
i∈[m](1/2−2−i−1)

(67)

We have the following fact:

Fact 5

lim
m→∞

∏
i∈[m]

(
2i − 1

2i

) p(1/2−2−i−1)∑
i∈[m](1/2−2−i−1)

= 1.

Proof. Set αi := p ln
(

2i−1
2i

)
and βi :=

(
1/2− 2−i−1

)
. We will equivalently show that limm→∞

∑m
i=1 αiβi∑m
i=1 βi

= 0,

since, by exponentiating this equality, we get the claim. Set am :=
∑m
i=1 αiβi and bm :=

∑m
i=1 βi. We

have that sequence (bm)m≥1 is positive, increasing, and unbounded. Thus, by the Stolz-Cesaro Theorem,

we have that limm→∞
am
bm

= limm→∞
am+1−am
bm+1−bm . We conclude that limm→∞

∑m
i=1 αiβi∑m
i=1 βi

= limm→∞
am
bm

=

limm→∞
am+1−am
bm+1−bm = limm→∞

αmβm
βm

= limm→∞ p ln
(
2m−1
2m

)
= 0, and the claim follows. ut

By continuing from (67), we get

= (2p)

∑
i∈[m](−i2−i−1+1−2−i)∑

i∈[m](1/2−2−i−1)
∏
i∈[m]

(
2i − 1

2i

) p(1/2−2−i−1)∑
i∈[m](1/2−2−i−1)

≥ lim
m→∞

(2p)

∑
i∈[m](−i2−i−1+1−2−i)∑

i∈[m](1/2−2−i−1)
∏
i∈[m]

(
2i − 1

2i

) p(1/2−2−i−1)∑
i∈[m](1/2−2−i−1)

− ε
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= lim
m→∞

(2p)

∑
i∈[m](−i2−i−1+1−2−i)∑

i∈[m](1/2−2−i−1) − ε (68)

= lim
m→∞

(2p)
2−m−1m+m+21−m−2

1/2(m+2−m−1) − ε

= (2p)

(
limm→∞

2−m−1m+m+21−m−2

1/2(m+2−m−1)

)
− ε

= (2p)(
limm→∞

m
1/2(m) ) − ε

= (2p)
2 − ε

= 4p − ε,

where (68) comes from Fact 5. We conclude that there exists a load balancing instance I such that CRA(I) ≥
4p − ε, thus, for the arbitrariness of ε, the claim follows.

E Lower bound for Linear Congestion Games

Unweighted congestion games are a further generalization of unweighted load balancing games. The difference
is that the strategy set of each player i ∈ N is a collection Σi ⊆ 2R \ {∅}, i.e., a strategy is a non-empty
subset of R. Furthermore, given a strategy profile σ = (σ1, . . . , σn) (with σi ∈ Σi), the cost of each player
i ∈ N is costi(σ) :=

∑
j∈σi `j(kj(σ)), where kj(σ) := |i ∈ N : j ∈ σi| is the congestion of resource j in

strategy profile σ. In the following theorem, we show that, even for linear latency functions, the Nash price
of anarchy of unweighted congestion games with linear latency functions is non-constant in the number of
players, differently from the case of load balancing games. This fact exhibits a substantial difference with
respect to the case of the price of anarchy when the considered social function is the sum of the players’
costs. Indeed, in such case, the price of anarchy for linear congestion games is finite, and the price of anarchy
of load balancing games is as high as that of general linear congestion games.

Theorem 10. The Nash price of anarchy of linear congestion games is at least n1−o(1), where n is the
number of players (and o(1) is an infinitesimal w.r.t. to n).

Proof. We show that, for any ε ∈ (0, 1/2), there exists a congestion game CG with linear latency functions
and n ≥ 2 players such that:

NPoA(CG) ≥ dnεe1−
dnεe
n , (69)

and this fact will imply the claim, as dnεe1−
dnεe
n ∈ Θ(n1−ε) for any fixed ε ∈ (0, 1/2). Let ε ∈ (0, 1/2),

n ≥ 2, and m := dnεe. Let CG(n, ε) be an unweighted congestion game with n players defined as follows: The
set of resources is organized into three groups R1, R2, R3, with Rj := {rj,1, . . . , rj,n−m} for any j ∈ [2], and
R3 := {r3,1, . . . , r3,m}. The latency function of each resource rj,h is `rj,h(x) := αjx, where α1 = m+1, α2 = 1,
and α3 = m. There are two groups of players N1, N2, with N1 := {i1,1, . . . , i1,n−m} and N2 := {i2,1, . . . , i2,m}.
Each player i1,h ∈ N1 has two strategies S1,h and S∗1,h defined as S1,h := {r1,h} and S∗1,h := {r2,h}, and each
player i2,h ∈ N2 has two strategies S2,h and S∗2,h defined as S2,h := R2 and S∗3,h := {r3,h}. Let σ (resp. σ∗)
be the strategy profile such that each player it,h plays strategy St,h (resp. S∗t,h), for any t ∈ [2]. One can
easily show that costi(σ) = costi(σ−i, σ∗i ) for any player i, thus σ is a pure Nash equilibrium. We have that:

NPoA(CG(n, ε))

≥ NSW(σ)

NSW(σ∗)

=

((∏
i∈N1

costi(σ)

costi(σ∗)

)(∏
i∈N2

costi(σ)

costi(σ∗)

)) 1
n

=

((∏
i∈N1

costi(σ−i, σ∗i )

costi(σ∗)

)(∏
i∈N2

costi(σ−i, σ∗i )

costi(σ∗)

)) 1
n
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=

((
α2(m+ 1)

α2

)n−m(
α3

α3

)m) 1
n

= (m+ 1)
n−m
n

≥ dnεe1−
dnεe
n , (70)

thus (69) holds, and the claim follows. ut
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