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Abstract. Consensus halving refers to the problem of dividing a resource into two parts so
that every agent values both parts equally. Prior work shows that, when the resource is rep-
resented by an interval, a consensus halving with at most n cuts always exists but is hard to
compute even for agents with simple valuation functions. In this paper, we study consensus
halving in a natural setting in which the resource consists of a set of items without a linear
ordering. For agents with linear and additively separable utilities, we present a polynomial-
time algorithm that computes a consensus halving with at most n cuts and show that n cuts
are almost surely necessary when the agents’ utilities are randomly generated. On the other
hand, we show that, for a simple class of monotonic utilities, the problem already becomes
polynomial parity argument, directed version–hard. Furthermore, we compare and contrast
consensus halving with the more general problem of consensus k-splitting, with which we
wish to divide the resource into k parts in possibly unequal ratios and provide some conse-
quences of our results on the problem of computing small agreeable sets.
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1. Introduction
Given a set of resources, how can we divide it between two groups of agents in such a way that every member of
both groups believes that the two resulting parts have the same value? This is an important problem in resource
allocation and has been addressed several times under different names (Alon [1], Hobby and Rice [29], Neyman
[37]) with consensus halving being the name by which it is best known today (Simmons and Su [50]). In the context
of operations research, the two groups could be trying to agree upon a scheduling of machine processing time
(Moulin [36]), a division of real estate (Segal-Halevi et al. [49]), or an allocation of other divisible resources, some-
times referred to metaphorically as a “cake” (Deng et al. [17]). Consensus halving can be seen as a strong form of
group fairness, with which we require all agents to view the two parts of the resource as being equal.

In prior studies of consensus halving, the resource is represented by an interval, and the goal is to find an
equal division into two parts that makes a small number of cuts in the interval.1 Using the Borsuk–Ulam theorem
from topology, Simmons and Su [50] establish that, for any continuous preferences of the n agents involved,
there is always a consensus halving that uses no more than n cuts—this matches the number of cuts required in
the worst case. In addition, the same authors develop an algorithm that computes an ε-approximate solution for
any given ε > 0, meaning that the values of the two parts differ by at most ε for every agent. Although the algo-
rithm is more efficient than a brute-force approach, its running time is exponential in the parameters of the prob-
lem. This is, in fact, not a coincidence: Filos-Ratsikas and Goldberg [19] recently showed that ε-approximate con-
sensus halving is polynomial parity argument (PPA)-complete, implying that the problem is unlikely to admit a
polynomial-time algorithm. Filos-Ratsikas et al. [22] strengthens this result by proving that the problem remains
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hard even when the agents have simple valuations over the interval. In particular, the PPA-completeness result
holds for agents with “two-block uniform” valuations, that is, valuation functions that are piecewise uniform
over the interval and assign nonzero value to at most two separate pieces.

Whereas these hardness results stand in contrast to the positive existence result, they rely crucially on the
resource being in the form of an interval. Most practical division problems do not fall under this assumption,
including when we divide assets, such as houses, cars, stocks, business ownership, or facility usage. When each
item is homogeneous, a consensus halving can be easily obtained by splitting every item in half. However,
because splitting individual assets typically involves an overhead, for example, in managing a joint business or
sharing the use of a house, we want to achieve a consensus halving while splitting only a small number of assets.
Fortunately, a consensus halving that splits at most n items is guaranteed to exist regardless of the number of
items; this can be seen by arranging the items on a line in arbitrary order and applying the aforementioned exis-
tence theorem of Simmons and Su [50]. The bound n is also tight: if each agent only values a single item and the
n valued items are distinct, all of them clearly need to be split. Nevertheless, given that the items do not inher-
ently lie on a line, the hardness results from previous work do not carry over. Could it be that computing a con-
sensus halving efficiently is possible when the resource consists of a set of items?

The complexity classes polynomial parity argument, directed version (PPAD) and PPA2 turn out to be most
important in the study of computational problems arising in economic theory. PPAD contains many diverse
problems for which solutions are guaranteed to exist, but for which algorithms have high worst-case complexity.
PPAD-hardness, as evidence of worst-case computational intractability, takes a central role in algorithmic game
theory, starting with the works of Daskalakis et al. [14] and Chen et al. [13] in the context of Nash equilibrium
computation. In the context of distributing divisible items among a set of agents, Garg et al. [25] and Chaudhury
et al. [12] show PPAD-completeness for computing market-clearing prices, indicating that, whereas a
polynomial-time algorithm is unlikely, containment in PPAD admits algorithms that are practically efficient via
the “path-following” approach that exploits the structure of this complexity class. Deng et al. [17] give a related
result in the context of fair division, showing PPAD-completeness for envy-free division of an interval among a
set of agents having diverse valuations for divisions of the interval. The present paper is also concerned with the
related class PPA; as a superclass of PPAD, PPA-hardness also indicates worst-case intractability of a problem.
Recently, PPA has been found to characterize the complexity of problems in consensus division; for details, see
Section 1.2.

1.1. Overview of Results
We assume throughout the paper that the resource is composed of m items. Each item is homogeneous, so the
utility of an agent for a (possibly fractional) set of items depends only on the fractions of the m items in that set.
For the most part, we consider utility functions that are additively separable across items, meaning that an
agent’s utility for a bundle of fractional items is the sum of utilities for each fractional item. For this overview,
we focus on the more interesting case in which n ≤m, but all of our results can be extended to arbitrary n and m.

We begin in Section 2 by considering agents with linear utilities, in which the utility of each agent is additively
separable across items and linear in the fraction of each item. Under this assumption, we present a polynomial-
time algorithm that computes a consensus halving with at most n cuts by finding a vertex of the polytope defined
by the relevant constraints (Theorem 1). This positive result stands in stark contrast with our PPA-hardness
when the items lie on a line (Theorem 2), which we obtain by discretizing an analogous hardness result of
Filos-Ratsikas et al. [22]. We then show that improving the number of cuts beyond n is difficult: even computing
a consensus halving that uses at most n – 1 cuts more than the minimum possible for a given instance is NP-hard
(Theorem 3).

Next, in Section 3, we address the broader class of monotonic utilities, wherein an agent’s utility for a set does
not decrease when any fraction of an item is added to the set. For such utilities, we show that the problem of
computing a consensus halving with at most n cuts becomes PPAD-hard (Theorem 4), thereby providing strong
evidence of its computational hardness. Perhaps surprisingly, this hardness result holds even for the class of util-
ity functions that we call “symmetric-threshold utilities,” which are very close to being linear. Such utility func-
tions are additively separable across items, and for each item, having a sufficiently small fraction of the item is
the same as not having the item at all; having a sufficiently large fraction of it is the same as having the whole
item; and the utility increases linearly in between. We obtain this hardness by reducing from the “generalized
circuit problem,” which is used to establish the hardness of computing Nash equilibria in various settings (Chen
et al. [13], Daskalakis et al. [14], Rubinstein [42]). In fact, in Appendix B, we prove that even a simplified version
of the generalized circuit problem remains PPAD-hard, which, in addition to being of independent interest,3 also
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significantly simplifies our reduction to the consensus halving problem. On the other hand, we present a number
of positive results for monotonic utilities when the number of agents is constant in Appendix A.

In Section 4, we provide some implications of our results on the “agreeable sets” problem studied by Manur-
angsi and Suksompong [33]. A set of discrete items is said to be agreeable to an agent if the agent likes it at least as
much as the complement set. Manurangsi and Suksompong [33] prove that a set of size at most �m+n

2 � that is
agreeable to all agents always exists, and this bound is tight. They then give polynomial-time algorithms that
compute an agreeable set matching the tight bound for two and three agents. We significantly generalize this
result by exhibiting efficient algorithms for any number of agents with additive utilities across items as well as
any constant number of agents with monotonic utilities (Theorem 6). In addition, we present a short alternative
proof for the bound �m+n

2 � via consensus halving.
In Section 5, we study the more general problem of consensus k-splitting for agents with linear utilities. Our aim

in this problem is to split the items into k parts so that all agents agree that the parts are split according to some
given ratios α1, : : : ,αk; consensus halving corresponds to the special case in which k�2 and α1 � α2 � 1=2. Unlike
for consensus halving, however, in consensus k-splitting, we may want to cut the same item more than once
when k > 2, so we cannot assume without loss of generality that the number of cuts is equal to the number of
items cut. For any k and any ratios α1, : : : ,αk, we show that there exists an instance in which cutting (k− 1)n items
is necessary (Theorem 7). On the other hand, a generalization of our consensus halving algorithm from Section 2
computes a consensus k-splitting with at most (k− 1)n cuts in polynomial time (Theorem 8), thereby implying
that the bound (k− 1)n is tight for both benchmarks. We also illustrate a further difference between consensus k-
splitting and consensus halving with respect to item ordering (Theorem 9).

Finally, in Section 6, we examine consensus halving and consensus k-splitting from a probabilistic viewpoint.
Whereas our result from Section 2 reveals the difficulty of improving the number of cuts beyond n in consensus
halving, we establish that instances admitting a solution with fewer than n cuts are rare. In particular, if the
agents’ utilities for items are drawn independently from nonatomic distributions (i.e., distributions that do not
put a positive probability on any single point), it is almost surely the case that every consensus halving requires
no fewer than n cuts (Theorem 10). On the other hand, we show that, for consensus k-splitting, the required num-
ber of cuts is not usually (k− 1)n as one might expect: even when n�1 and the utilities are drawn from the uni-
form distribution on [0, 1], this number is 1 rather than k – 1 (Theorem 11).

1.2. Related Work
Consensus halving falls under the broad area of fair division, which studies how to allocate resources among
interested agents in a fair manner (Brams and Taylor [9, 10], Moulin [35]). Common fairness notions include
envy-freeness—no agent envies another agent in view of the bundles the agents receive—and equitability—all
agents have the same utility for their own bundle. The fair division literature typically assumes that each recipi-
ent of a bundle is either a single agent or a group of agents represented by a single preference. However, a num-
ber of recent papers consider an extension of the traditional setting to groups, thereby allowing us to capture the
differing preferences within the same group as in our introductory example with two groups (Kyropoulou et al.
[31], Manurangsi and Suksompong [32, 34], Segal-Halevi and Nitzan [46], Segal-Halevi and Suksompong [47,
48], Suksompong [53]). Note that a consensus halving is envy-free for all members of the two groups; moreover,
it is equitable provided that the utilities of the agents are linear and normalized so that every agent has the same
value for the entire set of items.

A classical fair-division algorithm that dates back over two decades is the adjusted winner procedure, which com-
putes an envy-free and equitable division between two agents (Brams and Taylor [9]).4 The procedure is sug-
gested for resolving divorce settlements and international border disputes with one of its advantages being the
fact that it always splits at most one item. Sandomirskiy and Segal-Halevi [43] investigate the problem of attain-
ing fairness while minimizing the number of shared items and give algorithms and hardness results for several
variants of the problem. As in our work, both the adjusted winner procedure and the work of Sandomirskiy and
Segal-Halevi [43] assume that items are homogeneous and, as in Section 2, that the agents’ utilities are linear in
the fraction of each item and additively separable across items. Moreover, both of them require the assumption
that all items can be shared; if some items are indivisible, then an envy-free or equitable allocation cannot neces-
sarily be obtained.5

Besides consensus halving, another problem that also involves dividing items into equal parts is necklace split-
ting, which can be seen as a discrete analog of consensus halving (Alon [1], Alon and West [3], Goldberg and
West [26]). In a basic version of necklace splitting, there is a necklace with beads of n colors with each color hav-
ing an even number of beads. Our task is to split the necklace using at most n cuts and arrange the resulting
pieces into two parts so that the beads of each color are evenly distributed between both parts. Observe that the
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difficulty of this problem lies in the spatial ordering of the beads—the problem would be trivial if the beads were
unordered items as in our setting. Whereas consensus halving and necklace splitting have long been studied by
mathematicians, they recently gained significant interest among computer scientists thanks in large part to new
computational complexity results (Alon and Graur [2], Batziou et al. [6], Deligkas et al. [15, 16], Filos-Ratsikas
and Goldberg [19, 20], Filos-Ratsikas et al. [21, 22, 23]). In particular, the PPA-completeness result of Filos-
Ratsikas and Goldberg [19] for approximate consensus halving was the first such result for a problem that is
“natural” in the sense that its description does not involve a general Boolean circuit.

2. Linear Utilities
We first formally define the problem of consensus halving for a set of items. There is a set N � [n] of n agents and
a set M � [m] of m items, where [r] :� {1, 2, : : : , r} for any positive integer r. A fractional set of items contains a frac-
tion xj ∈ [0, 1] of each item j. We are mostly interested in fractional sets of items in which only a small number of
items are fractional—that is, most items have xj�0 or 1. Agent i has a utility function ui that describes the agent’s
nonnegative utility for any fractional set of items; for an item j ∈M, we sometimes write ui( j) to denote ui({ j}). A
partition of M into fractional sets of items M1, : : : ,Mk has the property that, for every item j ∈M, the fractions of
item j in the k fractional sets sum up to exactly one.

Definition 1. A consensus halving is a partition of M into two fractional sets of items M1 and M2 such that
ui(M1) � ui(M2) for all i ∈N. An item is said to be cut if there is a positive fraction of it in both parts of the
partition.

A utility function is said to be additively separable if the utility for any fractional set of items is the sum of the
utilities for each fractional item in the set. In this section, we assume that, in addition to being additively separa-
ble, the agents’ utility functions are linear. This means that, for a set M′ containing a fraction xj of item j, the util-
ity of agent i is given by ui(M′) � ∑

j∈Mxj · ui( j). Observe that, under linearity, M′ forms one part of a consensus
halving exactly when ∑

j∈M
xj · ui( j) � 1

2

∑
j∈M

ui( j) ∀i ∈N, (1)

where xj denotes the fraction of item j contained in M′. As we mention in the introduction, a consensus halving
with no more than n cuts is guaranteed to exist regardless of the number of items. Our first result shows that
such a division can be found efficiently for linear utilities.

Theorem 1. For n agents with linear utilities, there exists a polynomial-time algorithm that computes a consensus halving
with at mostmin{n,m} cuts.
Proof. If n ≥m, a partition that divides every item in half is clearly a consensus halving and makes m �
min{n,m} cuts. We, therefore, assume from now on that n ≤m and describe a polynomial-time algorithm that
computes a consensus halving using no more than n cuts.

The main idea of our algorithm is to start with the trivial consensus halving by which x1 � x2 �⋯� xm � 1=2
and then gradually reduce the number of cuts. We stop when the process cannot be continued, at which point
we show that the consensus halving must contain at most n cuts. Our algorithm is presented as follows.

1. Let x1 � x2 �⋯� xm � 1=2.
2. Let S denote the set of n equations

∑
j∈M(yj − 1

2
) · ui( j) � 0 for i ∈N and let T � ∅.

3. While there exists a solution (y1, : : : ,ym)≠ (x1, : : : ,xm) to S ∪ T, do the following:
a. For every j ∈M such that yj ≠ xj, compute

γj :�
1− xj
yj − xj

if yj > xj;

xj
xj − yj

if yj < xj:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
b. Let j∗ � arg minj∈M,yj≠xjγj.
c. For every j ∈M, let sj :� (1− γj∗ ) · xj + γj∗ · yj, and update the value of xj to sj.
d. Add the equation yj∗ � xj∗ to T.

4. Output (x1, : : : ,xm).
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Finding a solution (y1, : : : ,ym) to S ∪ T that is not equal to (x1, : : : ,xm) or determining that such a solution does
not exist (step 3) can be done in polynomial time via Gaussian elimination.6 Moreover, it is obvious that the other
steps of the algorithm run in polynomial time.

We next prove the correctness of our algorithm, starting with arguing that (x1, : : : ,xm) forms a consensus halv-
ing. Because we start with a consensus halving x1 �⋯� xm � 1=2, it suffices to show that each execution of the
loop in step 3 preserves the validity of the solution. Observe that, because both (x1, : : : ,xm) and (y1, : : : ,ym) are sol-
utions to Equations (1), their convex combination (in step 3c) also satisfies Equations (1). Furthermore, for each j
such that yj ≠ xj, the value γj is chosen so that, if we replace γj∗ by γj in the formula for sj, we would have sj�1
for the case yj > xj and sj�0 for the case yj < xj. Because γj∗ ≤ γj, we have that sj ∈ [0, 1] for all j such that yj ≠ xj. In
addition, the value of xj does not change for j such that yj�xj. Thus, (x1, : : : ,xm) remains a consensus halving
throughout the algorithm.

Finally, we are left to show that at most n items are cut in the output (x1, : : : ,xm). As noted, our definition of γj
ensures that xj∗ ∈ {0, 1} after the execution of step 3c. Furthermore, as the constraint yj∗ � xj∗ is then immediately
added to T, the value of xj∗ does not change for the rest of the algorithm. As a result, every item j for which the
equation yj�xj belongs to T is uncut. Thus, it suffices to show that |T| ≥m− n at the end of the execution.

When the while loop in step 3 terminates, (x1, : : : ,xm)must be the unique solution to S ∪ T. Recall that a system
of linear equations with m variables can only have a unique solution when the number of constraints is at least
m. This means that |S ∪ T| ≥m at the end of the algorithm. Because |S| � n, we must have |T| ≥m− n, as
desired. w

Note that this algorithm can be viewed as finding a vertex of the polytope defined by Constraints (1) and 0 ≤
xj ≤ 1 for all j ∈M. In fact, it suffices to use a generic algorithm for this task; however, to the best of our knowl-
edge, such algorithms often involve solving a linear program, whereas the algorithm presented here is conceptu-
ally simple and can be implemented directly. We also remark that our algorithm works even when some utilities
ui( j) are negative, that is, some of the items are goods, whereas others are chores. Allocating a combination of
goods and chores has received increasing attention in the fair division community (Aziz et al. [5], Bogomolnaia
et al. [8], Segal-Halevi [45]).

As we discuss in the introduction, an important reason behind the positive result in Theorem 1 is the lack of lin-
ear order among the items. Indeed, as we show next, if the items lie on a line and we are only allowed to cut the
line using n cuts, finding a consensus halving becomes computationally hard. This follows from discretizing the
hardness result of Filos-Ratsikas et al. [22] and holds even if we allow the consensus halving to be approximate
instead of exact. Formally, when the items lie on a line, we may place a number of cuts with each cut lying either
between two adjacent items or at some position within an item. All (fractional or whole) items between any two
adjacent cuts must belong to the same fractional set of items in a partition, in which the left and right ends of the
line also serve as cuts in this requirement (see Figure 1 for an example). We say that a partition into fractional sets
of items (M1,M2) is an ε-approximate consensus halving if |ui(M1) − ui(M2)|≤ ε · ui(M) for every agent i.

Theorem 2. Suppose that the items lie on a line. There exists a polynomial p such that finding a 1=p(n)-approximate con-
sensus halving for n agents with at most n cuts on the line is PPA-hard even if the valuations are binary and every agent
values at most two contiguous blocks of items.

Proof. We prove this by discretizing the hard instances constructed by Filos-Ratsikas et al. [22, theorem 2]. In
their setting, there are n agents who have piecewise-uniform valuation functions v1, : : : ,vn over the interval
[0, 1].7 By a closer inspection of their proof, we note that the instances they construct have some useful properties.
Namely, there exist polynomials p and q such that

Figure 1. Consensus halving for items on a line: in this example, there are 15 items (represented by gray balls) that lie on a line,
and we have used four cuts to obtain a partition into fractional sets of items (M1, M2). The labels M1 and M2 indicate the set to
which each segment belongs.
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1. Every agent has a two-block uniform valuation on [0, 1]; that is, the density of the valuation function is
piecewise-uniform and nonzero in at most two intervals. In other words, every agent has (at most) two blocks of
value, and they have the same height.

2. There exists an integer d ≤ q(n) such that, for all agents, the endpoints of the blocks are rational numbers with
denominator d.

3. Finding a 1=p(n)-approximate consensus halving is PPA-hard.
Using these properties, we can construct an equivalent instance in our setting. We position m� d items on a

line, where the jth item represents the interval Ij :� [( j− 1)=d, j=d] in the original instance. Note that, for every
agent of the original instance, the density of their valuation function is constant over Ij for each j. Thus, by letting

ui( j) � 1 if vi(( j− 1)=d, j=d) > 0;
0 if vi(( j− 1)=d, j=d) � 0

{
for all i ∈ [n] and j ∈ [d], we have exactly recreated the same valuation functions in our setting, up to normaliza-
tion. In particular, any 1=p(n)-approximate consensus halving of the items using at most n cuts on the line imme-
diately yields a 1=p(n)-approximate consensus halving of v1, : : : ,vn using at most n cuts on [0, 1], implying that
our problem is also PPA-hard. w

Although Theorem 1 allows us to efficiently compute a consensus halving with no more than n cuts in any
instance, for some instances, there exists a solution using fewer cuts. An extreme example is when all agents
have the same utility function, in which case a single cut already suffices. This raises the question of determining
the least number of cuts required for a given instance. Unfortunately, when there is a single agent, deciding
whether there is a consensus halving that leaves all items uncut is already equivalent to the well-known
NP-hard problem PARTITION. For general n, even computing the minimum number of cuts required within an
additive error of n – 1 is still computationally hard as the following theorem shows.

Theorem 3. For n agents with linear utilities, it is NP-hard to compute the minimum number of cuts required in a consen-
sus halving even if an additive error of n – 1 is allowed.

Proof. We reduce from the NP-hard problem PARTITION. Let w1, : : : ,wr be the integers that form a PARTITION

instance. We construct a consensus halving instance I with n agents and a set of n · r items
M � {(ℓ, j) : ℓ ∈ [n], j ∈ [r]}. Every agent values a distinct set of items according to the numbers w1, : : : ,wr. For-
mally,

ui((ℓ, j)) � wj if ℓ � i;
0 if ℓ ≠ i

{
for all i,ℓ ∈ [n] and j ∈ [r]. It is easy to see that this instance has the following properties:

1. Ifw1, : : : ,wr can be partitioned into two sets of equal sum, then our instance I admits a consensus halving using
no cut.

2. If w1, : : : ,wr cannot be partitioned into two sets of equal sum, then any consensus halving of our instance I uses
at least n cuts. This is because, in that case, for every agent i ∈N, at least one of the items (i, 1), : : : , (i, r)must be cut.

As a result, in the first case, the minimum number of cuts is zero, whereas in the second case, this number is at
least n. Thus, PARTITION reduces to the problem of computing the minimum number of cuts within an additive
error of n – 1. w

An immediate consequence of Theorem 3 is that the problem of computing a consensus halving that uses at
most n – 1 cuts more than the minimum number of cuts for the same instance is also NP-hard.

As our final remark of this section, consider utility functions that are again additively separable across items,
but for which the utility of each item scales quadratically as opposed to linearly in the fraction of the item. That is,
for a set M′ containing a fraction xj of item j, the utility of agent i is given by ui(M′) � ∑

j∈Mx
2
j · ui( j). Even though

these utility functions appear different from the ones we consider so far, it turns out that the set of consensus
halvings remains exactly the same. Indeed, a partition (M1, M2) is a consensus halving under the quadratic func-
tions if and only if ∑

j∈M
x2j · ui( j) �

∑
j∈M

(1− xj)2 · ui( j) ∀i ∈N:

Because x2j − (1− xj)2 � xj − (1− xj) � 2xj − 1, the preceding condition is equivalent to (1), so all of our results in
this section apply to the quadratic functions as well.
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3. Monotonic Utilities
Next, we turn our attention to utility functions that are no longer linear as in Section 2. We assume that the utili-
ties are monotonic, meaning that the utility of an agent for a set of items cannot decrease upon adding any frac-
tion of an item to the set. Our main result is that finding a consensus halving is computationally hard for such
valuations; in fact, the hardness holds even when the utilities take on a specific structure that we call symmetric
threshold. Symmetric-threshold utilities are additively separable across items and linear with symmetric thresh-
olds within every item. Formally, the utility of agent i for a fractional set of items M′ containing a fraction xj ∈
[0, 1] of each item j can be written as ui(M′) � ∑

j∈M fij(xj) · ui( j), where

fij(xj) :�
0 if xj ≤ cij;

xj − cij
1− 2cij

if cij < xj < 1− cij;

1 if xj ≥ 1− cij,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

where cij ∈ [0, 1=2) is the threshold or cap of agent i for item j. Intuitively, symmetric-threshold utilities model settings
in which having a small fraction of an item is the same as not having the item at all, whereas having a large fraction of
the item is the same as having the whole item. The point at which this threshold behavior occurs is controlled by the
cap c

ij

, which can be different for every pair (i, j) ∈N ×M. It is easy to see that the resulting utility functions are indeed
monotonic. Note that, although general monotonic utility functions do not necessarily admit a concise representation
(see the discussion preceding Theorem 6), symmetric-threshold utility functions can be described succinctly.

Even though symmetric-threshold utility functions are superficially similar to linear ones, we show that finding
a consensus halving for such utilities is computationally hard. Recall that a partition (M1,M2) is an ε-approximate
consensus halving if |ui(M1) − ui(M2)| ≤ ε · ui(M) for every agent i.

Theorem 4. There exists a constant ε > 0 such that finding an ε-approximate consensus halving for n agents with mono-
tonic utilities that uses at most n cuts is PPAD-hard even if all agents have symmetric-threshold utilities.

Proof. We prove this result by reducing from a modified version of the generalized circuit problem. The general-
ized circuit problem is the main tool that has been used (implicitly or explicitly) to prove the hardness of comput-
ing Nash equilibria in various settings (Chen et al. [13], Daskalakis et al. [14], Rubinstein [42]). A generalized
circuit is a generalization of an arithmetic circuit because it allows cycles, which means that, instead of a simple
computation, the circuit now represents a constraint satisfaction problem. The version of the problem we use is
different from the standard one in two aspects. First, instead of the domain [0, 1], we use [−1, 1], which is more
adapted to the consensus halving problem. Second, we only allow the circuit to use three types of arithmetic
gates. As we show, these modifications do not change the complexity of the problem.

Formally, we consider the following simplified generalized circuits.

Definition 2. A simple generalized circuit is a pair (V,T ), where V is a set of nodes and T is a set of gates. Every
gate T ∈ T is a five-tuple T � (G,u1,u2,v,ζ), where G ∈ {G+,G×−ζ,G1} is the type of gate; u1, u2 are the input nodes
(if applicable); ζ ∈ (0, 1] is the parameter (if applicable); and v is the output node. In more detail,

• If G � G+, then u1,u2,v ∈ V (distinct) and ζ � nil.
• If G � G×−ζ, then u1,v ∈ V (distinct), u2 � nil, and ζ ∈ (0, 1].
• If G�G1, then u1 � u2 � ζ � nil and v ∈ V.
We require that, for any two gates T � (G,u1,u2,v,ζ) and T′ � (G′,u′1,u′2,v′,ζ

′) in T with T ≠ T′, it holds that
v≠ v′.

Before we proceed, let us introduce some notation. We let T[−1,1] : R→ [−1, 1] denote truncation to [−1, 1], that
is, T[−1,1](x) �max{−1,min{1,x}}. Similarly, we also let T[0,1] denote truncation to [0, 1]. Finally, we use the nota-
tion x � y6 z as a shorthand for |x− y| ≤ z.

Definition 3. Let ε > 0. The problem ε-SIMPLE-GCIRCUIT is defined as follows: given a simple generalized circuit (V,T ),
find an assignment x : V → [−1, 1] that ε-approximately satisfies all the gates T � (G,u1,u2,v,ζ) in T , namely,
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• If G � G+, then x[v] � T[−1,1](x[u1] + x[u2])6ε (addition).
• If G � G×−ζ, then x[v] � −ζ · x[u1]6ε (multiplication by −ζ for ζ ∈ (0, 1]).
• If G�G1, then x[v] � 16ε (constant 1).
As mentioned earlier, it turns out that this modified version of the generalized circuit problem is also PPAD-hard.

This can be proved by reducing from the standard ε-GCIRCUIT problem, which is shown to be PPAD-hard even for
constant ε by Rubinstein [42]. The idea is that these simple gates are enough to simulate all the gates in the standard
version of the problem. Both problems are, in fact, PPAD-complete because they can be reduced to the problem of
finding an approximate Brouwer fixed point, but here, we are only interested in the hardness.

Lemma 1. There exists a constant ε > 0 such that the ε-SIMPLE-GCIRCUIT problem is PPAD-hard.

The proof of Lemma 1 can be found in Appendix B.
Let ε̂ > 0 be a constant for which the ε̂-SIMPLE-GCIRCUIT problem is PPAD-hard. We now show that the ε̂-SIMPLE-

GCIRCUIT problem reduces to the problem of finding an ε-approximate consensus halving for n agents with
symmetric-threshold utilities that uses at most n cuts.

Let (V,T ) be an instance of ε̂-SIMPLE-GCIRCUIT. Partition V into four sets V0 ∪ V+ ∪ V× ∪ V1, where
• V0 contains every node that is not the output of any gate in T .
• V+ contains every node that is the output of a G+ gate in T .
• V× contains every node that is the output of a G×−ζ gate in T .
• V1 contains every node that is the output of a G1 gate in T .
We construct a consensus halving instance with n � 2 |V+| + |V×| + |V1 | agents and m � |V0 | +2 |V+| + |V×| + |V1 |

+1 items. For any node v ∈ V+ ∪ V× ∪ V1, let i(v) ∈N � [n] denote the corresponding agent, and for every v ∈ V+,
let i′(v) ∈N denote the second corresponding agent. For every v ∈ V, let j(v) ∈M � [m] denote the corresponding
item, and for every v ∈V+, let j′(v) ∈M denote the second corresponding item. Finally, let j∗ ∈M denote the single
remaining item, which we call the special item.

It remains to specify the utility functions for the agents and the constant ε > 0. We see that, in any partition of
M into two fractional sets of items (M1, M2), there is a simple way to associate a value val( j) ∈ [−1, 1] to every
item j ∈M. We pick the agents’ utilities so that, in any ε-approximate consensus halving (with at most n cuts),
these values must satisfy the gate constraints in T .

3.1. Value Encoding
Consider any partition of M into two fractional sets of items (M1, M2). Let xj ∈ [0, 1] denote the fraction of item j
inM1. This fraction xj ∈ [0, 1] encodes a number val( j) ∈ [−1, 1] as follows:

val( j) �
−1 if xj ≤ 1=3;

6(xj − 1=2) if 1=3 < xj < 2=3;
1 if xj ≥ 2=3:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
In other words, val( j) � T[−1,1](6xj − 3).

The main idea of the reduction is that the value x[v] of node v ∈ V is given by val( j(v)). Next, we show how to
pick the utility functions in order to enforce the gate constraints in T . In the following construction, we assume
that ε ≤ 1=10; the exact value of ε is picked at the end.

3.2. G32z Gates
For any gate (G×−ζ,u1,nil,v,ζ) ∈ T , where u1 ∈ V\{v}, v ∈ V× and ζ ∈ (0, 1], we do the following. Let j1 � j(u1), j �
j(v) and i � i(v). We want to ensure that, in any solution to ε-approximate consensus halving, we have
val( j) � −ζ · val(j1)6 ε̂. To achieve this, we define the symmetric-threshold utility function of agent I as follows.
For any item ℓ ∉ {j1, j}, we let ui(ℓ) � 0 and ciℓ � 0. We let ui( j) � 1=ζ and cij�0. For j1, we use what we call a stan-
dard input utility function, which is defined as follows: ui(j1) � 1=3 and cij1 � 1=3. Note that ui(M) � 1=3+ 1=ζ.

Consider any ε-approximate consensus halving (M1, M2). Then, it must hold that ui(M1) � ui(M2)6ε · ui(M).
First of all, because ui( j) > ui(M\{ j}) + ε · ui(M) and by monotonicity, this implies that item j must be fractional in
the partition (M1,M2), that is, xj ∈ (0, 1). Furthermore, we must have

fij1(xj1)ui(j1) + fij(xj)ui( j) � fij1(1− xj1)ui(j1) + fij(1− xj)ui( j)6ε · ui(M):
Because fiℓ(1− x) � 1− fiℓ(x) for any x ∈ [0, 1] and ℓ ∈M, this equation can be rewritten as

(2fij(xj) − 1)ui( j) � −(2fij1(xj1) − 1)ui(j1)6ε · ui(M):
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By noting that fiℓ(x) � T[0,1]((x− ciℓ)=(1− 2ciℓ)), we obtain

(2xj − 1) · (1=ζ) � −(2T[0,1](3xj1 − 1) − 1) · (1=3)6ε · ui(M):
Finally, by observing that 2T[0,1](3xj1 − 1) − 1 � T[−1,1](2(3xj1 − 1) − 1) � T[−1,1](6xj1 − 3) � val(j1), we obtain

(6xj − 3) � −ζ · val(j1)63ζε · ui(M):
Now, this yields

val( j) � T[−1,1](6xj − 3) � T[−1,1](−ζ · val(j1))6 3ζε · ui(M) � −ζ · val(j1)6 4ε,

where we use the fact that −ζ · val(j1) ∈ [−1, 1], ui(M) � 1=3+ 1=ζ and ζ ≤ 1. Thus, as long as 4ε ≤ ε̂, this construc-
tion correctly enforces the gate constraint.

3.3. G1 Gates
For any gate (G1,nil,nil,v,nil) ∈ T , where v ∈ V1, we do the following. Let j � j(v) and i � i(v). We use the same
construction as for G×−ζ gates with j1 � j∗ (the special item) and ζ�1. By the same arguments, it follows that, in
any ε-approximate solution, it must hold that val( j) � −val(j∗)64ε, and item j must be fractional, that is,
xj ∈ (0, 1). Thus, as long as 4ε ≤ ε̂ and val(j∗) � −1, this correctly enforces the gate constraint.

3.4. G1 Gates
For any gate (G+,u1,u2,v,nil) ∈ T , where u1 ∈ V\{v}, u2 ∈ V\{v,u1} and v ∈ V+, we do the following. Let
j1 � j(u1), j2 � j(u2), j � j(v), and j′ � j′(v). We are going to ensure that val( j′) � −T[−1,1](val(j1) + val(j2))6 ε̂=2 and
val( j) � −val( j′)6 ε̂=2. Together, these two constraints enforce the gate constraint. The second constraint can eas-
ily be enforced by using the same construction as for G×−ζ with j1 � j′(v), j � j(v), i � i(v) and ζ�1. By the same
arguments, this yields an error of at most ε̂=2 as long as 8ε ≤ ε̂ and ensures that item j is fractional.

To enforce the first constraint, we define the utilities of agent i′ � i′(v) as follows. For any item ℓ ∉ {j1, j2, j′}, we
let ui′ (ℓ) � 0 and ci′ℓ � 0. We let ui′ ( j′) � 1 and ci′j′ � 0. For j1 and j2, we use the standard input utility function as
defined earlier. Note that ui′ (M) � 5=3.

Consider any ε-approximate consensus halving (M1, M2). Then, it must hold that ui′ (M1) � ui′ (M2)6ε · ui′ (M).
First of all, because ui′ ( j′) > ui′ (M\{ j′}) + ε · ui′ (M) and by monotonicity, this implies that item j′ must be frac-
tional in the partition (M1, M2), that is, xj′ ∈ (0, 1). Furthermore, by the same arguments as for G×−ζ gates, we
obtain that

6xj′ − 3 � −val(j1) − val(j2)63ε · ui(M):
Because val( j′) � T[−1,1](6xj′ − 3), it follows that val( j′) � −T[−1,1](val(j1) + val(j2))65ε. Thus, this constraint is cor-
rectly enforced as long as 10ε ≤ ε̂.

We are now ready to complete the proof. Set ε � ε̂=10. Consider any ε-approximate consensus halving (M1,
M2) that uses at most n cuts. We claim that letting x[v] � val( j(v)) for all v ∈ V yields a solution to the ε̂-SIMPLE-
GCIRCUIT instance. Indeed, by construction, all gates of type G+ and G×−ζ are correctly enforced. For gates of type
G1, they are correctly enforced if val(j∗) � −1, which we now prove. Note that, in our construction, we have
ensured that, for every v ∈ V+ ∪ V× ∪ V1, item j(v) must be fractional, and for every v ∈ V+, item j′(v) must also be
fractional. Because these 2 |V+| + |V×| + |V1 |� n items are fractional, and we use at most n cuts, this means that all
other items are not fractional. In particular, j∗ is not fractional, that is, xj∗ ∈ {0, 1}. Without loss of generality,
assume that xj∗ � 0 (if xj∗ � 1, then swap the roles ofM1 andM2). It follows that val(j∗) � −1. w

4. Connections to Agreeable Sets
We now present some implications of results from consensus halving on the setting of computing agreeable sets.
Let us first formally define the agreeable set problem, introduced by Manurangsi and Suksompong [33].8 As in
consensus halving, there is a set N of n agents and a set M of m items. Agent i has a monotonic utility function ui
over nonfractional sets of items, in which we assume the normalization ui(∅) � 0; this corresponds to a set func-
tion. Note that, because we are only concerned with discrete items, we use the term “additive” instead of addi-
tively separable in this section.

Definition 4. A subset of itemsM′ ⊆M is said to be agreeable to agent i if ui(M′) ≥ ui(M\M′).
As one of their main results, Manurangsi and Suksompong [33] show that, for any n and m, there exists a set of

at most min �m+n
2 �,m{ }

items that is agreeable to all agents, and this bound is tight. Their proof relies on a graph-
theoretic statement often referred to as “Kneser’s conjecture,” which specifies the chromatic number for a
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particular class of graphs called Kneser graphs. Here, we present a short alternative proof that works by arrang-
ing the items on a line in arbitrary order, applying consensus halving, and rounding the resulting fractional par-
tition. As a bonus, our proof yields an agreeable set that is composed of at most �n=2� + 1 blocks on the line.

Theorem 5 (Manurangsi and Suksompong [33]). For n agents with monotonic utilities, there exists a subsetM′ ⊆M such that

|M′ | ≤min
⌊
m+ n
2

⌋
,m

{ }
and M′ is agreeable to all agents.

Proof. Let s � �m+n
2 �. If s ≥m, the entire set of itemsM has size m �min{s,m} and is agreeable to all agents because

of monotonicity, so we may assume that s ≤m. Arrange the items on a line in arbitrary order and extend the util-
ity functions of the agents to fractional sets of items in a continuous and monotonic fashion.9 Consider a consen-
sus halving with respect to the extended utilities that uses at most n cuts on the line; some of the cuts may cut
through items, whereas the remaining cuts are between adjacent items. Let r ≤ n be the number of items that are
cut by at least one cut. Without loss of generality, assume that the first part M′ contains no more full items than
the second part M′′, so M′ contains at most �m−r

2 � full items. By moving all cut items from M′′ to M′ in their
entirety,M′ contains at most �m−r

2 � + r � �m+r
2 � ≤ s items. Because we start with a consensus halving and only move

fractional items from M′′ to M′, we have that M′ is agreeable to all agents. Moreover, one can check that M′ is
composed of at most �n+12 � � �n2� + 1 blocks on the line. w

In light of Theorem 5, an important question is how efficiently we can compute an agreeable set whose size
matches the worst-case bound. Manurangsi and Suksompong [33] address this question by providing a
polynomial-time algorithm for two agents with monotonic utilities and three agents with “responsive” utilities, a
class that lies between additive and monotonic utilities. They leave the complexity for higher numbers of agents
as an open question and conjecture that the problem is hard even when the number of agents is a larger constant.
We show that this is, in fact, not the case: the problem can be solved efficiently for any number of agents with
additive utilities as well as for any constant number of agents with monotonic utilities. Note that, because the
input of the problem for monotonic utilities can involve an exponential number of values (even for constant n)
and, consequently, may not admit a succinct representation, we assume a “utility oracle model” in which the
algorithm is allowed to query the utility ui(M′) for any i ∈N andM′ ⊆M.

Theorem 6. There exists a polynomial-time algorithm that computes a set containing at most min �m+n
2 �,m{ }

items that is
agreeable to all agents for each of the following two cases:

i. All agents have additive utilities.
ii. All agents have monotonic utilities, and the number of agents is constant (assuming access to a utility oracle).

Proof. Similarly to Theorem 5, if n ≥m, we can simply include all items in our set, so we may focus on the case
n ≤m. For (i), we first use our polynomial-time algorithm from Theorem 1 to find a consensus halving and then
compute an agreeable set of size at most �m+n

2 � by rounding the consensus halving as in the proof of Theorem 5.
Next, consider (ii). Recall that, for any ordering of the items on a line, Theorem 5 guarantees the existence of

an agreeable set of size at most �m+n
2 � involving no more than n cuts on the line. Fix an ordering of the items; we

perform a brute-force search over all (nonfractional) partitions involving at most n cuts with respect to the order-
ing. For t ∈ [n], there are O(mt) ways to place t cuts, and for each way, we have two candidate sets to check: one
including the leftmost item and one not including it. A candidate set is valid if and only if it has size at most
�m+n

2 � and is agreeable to all agents. Hence, the brute-force search runs in time
∑n

t�1O(mt) �O(n ·mn) �O(mn),
which is polynomial because n is constant. w

5. Consensus k-Splitting
In this section, we address two important generalizations of consensus halving, both of which are mentioned by
Simmons and Su [50]. In consensus splitting, instead of dividing the items into two equal parts, we want to
divide them into two parts so that all agents agree that the split satisfies some given ratio, say two to one. In con-
sensus 1=k-division, we want to divide the items into k parts that all agents agree are equal. We consider a prob-
lem that generalizes both of these problems at once.
Definition 5. Let α1, : : : ,αk > 0 be real numbers such that α1+ ⋯ +αk � 1. A consensus k-splitting with ratios
α1, : : : ,αk is a partition ofM into k fractional sets of itemsM1, : : : ,Mk such that

ui(M1)
α1

� ui(M2)
α2

�⋯� ui(Mk)
αk

∀i ∈N:

When the ratios are clear from context, we simply refer to such a partition as a consensus k-splitting.
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As in Section 2, we assume that the utility functions are linear, in which case our desired condition is equiva-
lent to ui(Mℓ) � αℓ · ui(M) for all i ∈N and ℓ ∈ [k].

Whereas there is no reason to cut an item more than once in consensus halving, one may sometimes wish to
cut the same item multiple times in consensus k-splitting in order to split the item across three or more parts.
Hence, even though the number of cuts made is always at least the number of items cut, the two quantities are
not necessarily the same in consensus k-splitting. If there are n items and each agent only values a single distinct
item, then it is clear that we already need to make (k− 1)n cuts for any ratios α1, : : : ,αk, in particular, k – 1 cuts for
each item. Nevertheless, it could still be that, for some ratios, it is always possible to achieve a consensus k-split-
ting by cutting fewer than (k− 1)n items. We show that this is not the case: for any set of ratios, cutting (k− 1)n
items is necessary in the worst case.

Theorem 7. For any ratios α1, : : : ,αk > 0, there exists an instance with linear utilities in which any consensus k-splitting
with these ratios cuts at least (k− 1)n items.

Proof. Fix α1, : : : ,αk > 0. We construct an instance such that each agent i has utility 1=b for each of the b items in a
set Bi, where b is an integer that we choose later, and utility zero for every other item. The sets B1, : : : ,Bn are pair-
wise disjoint. Note that ui(M) � ui(Bi) � 1 for every i. It suffices to choose b such that at least k – 1 items in each
set Bi must be cut in any consensus k-splitting with ratios α1, : : : ,αk. By symmetry, we may focus on the first agent
and the corresponding set B1.

For any real number x, denote by �x� its floor function, and let {x} � x− �x�. We choose b such that

{α1b} + {α2b}+ ⋯ +{αkb} > k− 2: (2)

To see why this is sufficient, observe that each uncut item must belong to one of the k parts in its entirety. The
number of uncut items in B1 is, therefore, at most⌊ α1

1=b

⌋
+ ⋯ +

⌊ αk

1=b

⌋
� �α1b�+ ⋯ +�αkb�,

meaning that the number of cut items in B1 is at least

b − (�α1b�+ ⋯ +�αkb�) � (α1b+ ⋯ +αkb) − (�α1b�+ ⋯ +�αkb�)
� (α1b − �α1b�)+ ⋯ +(αkb − �αkb�)
� {α1b}+ ⋯ +{αkb}
> k − 2,

where the first equality follows from α1+ ⋯ +αk � 1. Because b, �α1b�, : : : , �αkb� are all integers, this implies that
at least k – 1 items in B1 must be cut.

It remains to show the existence of b for which (2) is satisfied. Let s be an integer such that

s > max k,
1
α1

, ⋯ ,
1
αk

,
1

1 − α1
, ⋯ ,

1
1 − αk

{ }
:

Divide the interval [0, 1] into subintervals of length at most 1=s each. By the pigeonhole principle, there exist
positive integers p, q such that q ≥ p+ 2, and {αip} and {αiq} fall in the same subinterval for every i ∈ [k]. Letting
c � q− p, we have that for each i ∈ [k], either {αic} < 1=s or {αic} > 1− 1=s.

Take b � c− 1 ≥ 1. From our choice of s, we have 1=s < αi < 1− 1=s for all i ∈ [k]. Thus, for each i, if {αic} < 1=s,
then {αic} < αi, whereas if {αic} > 1− 1=s, then {αic} > αi. In either case, we have {αib} � {αic− αi} > 1− 1=s− αi,
so

{α1b}+⋯ +{αkb} > k− k=s− (α1+⋯ +αk) > k− 2,

where we use the assumption that s > k. Hence, (2) is satisfied, and the proof is complete. w

Next, we show that computing a consensus k-splitting with at most (k− 1)n cuts can be done efficiently using a
generalization of our algorithm for consensus halving (Theorem 1). Note that such a splitting also cuts at most
(k− 1)n items.

Theorem 8. For n agents with linear utilities and ratios α1, : : : ,αk, there is a polynomial-time algorithm that computes a
consensus k-splitting with these ratios using at most (k− 1) ·min{n,m} cuts.
Proof. Let us start with the case k� 2, which can then be used as a subroutine for the case k > 2. Our algorithm
for consensus two-splitting generalizes the consensus halving algorithm in Theorem 1, so we only highlight the
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differences. To find a consensus two-splitting with ratios α1,α2, the only change to the algorithm in Theorem 1 is
that we initialize x1 �⋯� xm � α1 and let S be the set of n equations

∑
j∈M(yj − α1) · ui( j) for i ∈N. By analogous

arguments as in Theorem 1, this modified algorithm produces a consensus two-splitting with ratios α1,α2 in
polynomial time and uses at most min{n,m} cuts.

We now move on to the case k > 2. In this case, we simply apply the consensus two-splitting algorithm succes-
sively, each time producing one additional part at the expense of at most min{n,m} cuts. This is stated more
precisely:

1. LetMremaining �M.
2. For ℓ � 1, : : : , k− 1,

a. (Mℓ,Mremaining) ← consensus two-splitting ofMremaining with ratios αℓ

αℓ+⋯+αn
, αℓ+1+⋯+αn

αℓ+⋯+αn
.

3. Output (M1, : : : ,Mk−1,Mremaining).
It is clear that the output is a consensus k-splitting with ratios α1, : : : ,αk and that the algorithm runs in polynomial

time. Finally, observe that, each time we apply the consensus two-splitting algorithm, if there are m′ items left, we
additionally use at most min{n,m′} ≤min{n,m} cuts. As a result, the total number of cuts is at most (k− 1) ·
min{n,m} as desired. w

As in Theorem 1, our algorithm does not require the nonnegativity assumption on the utilities and, therefore,
works for combinations of goods and chores.

When the items lie on a line, there is always a consensus halving that makes at most n cuts on the line and,
therefore, cuts at most n items; this matches the upper bound on the number of items cut in the absence of a lin-
ear order. Theorem 8 shows that the bound n continues to hold for consensus splitting into two parts with any
ratios. As we show next, however, this bound is no longer achievable for some ratios with ordered items, thereby
demonstrating another difference that the lack of linear order makes.10

Theorem 9. Let n ≥ 2, k � 2 and (α1,α2) � (1n , n−1n ). There exists an instance such that the n agents have linear utilities, the
items lie on a line, and any consensus k-splitting with ratios α1 and α2 makes at least 2n− 4 cuts on the line.

Proof. We discretize a slight modification of an instance used by Stromquist and Woodall [51] to show a lower
bound on the number of cuts when the resource is represented by a one-dimensional circle. Suppose that there
are n2 − 1 “primary items,” which we label as 1, 2, : : : ,n2 − 1 according to their linear order. Moreover, there are
n2 − 2 “secondary items,” one between every adjacent pair of primary items. The utilities of the agents are as
follows:

• For i ∈ [n− 1], agent i has utility 1
n+1 for each of the n + 1 primary items i, i+ (n− 1), : : : , i+ n(n− 1) and utility

zero for all secondary items.
•Agent n has value 1

n2−2 for each secondary item and value zero for all primary items.
Note that ui(M) � 1 for all i. Let M′ be a fractional set of items for which all agents have utility 1=n. Because

each agent i ∈ [n− 1] has utility 1
n+1 for a primary item,M′ must contain a positive fraction of at least two primary

items that the agent values. These items are disjoint for different agents, so M′ necessarily contains a positive
fraction of at least 2n− 2 primary items. On the other hand, the utility function of agent n implies that M′ can
contain at most � 1=n

1=(n2−2)� � n− 1 entire secondary items.
Suppose that M′ is composed of r nonadjacent intervals I1, : : : , Ir. Notice that, for any interval I on the line, if

the interval contains a positive fraction of t1(I) primary items along with t2(I) entire secondary items, then
t1(I) ≤ t2(I) + 1. Hence, we have

2n− 2 ≤∑r
i�1

t1(Ii) ≤
∑r
i�1

t2(Ii) + r ≤ n− 1+ r,

implying that r ≥ n− 1. This means that the consensus two-splitting with M′ as one part involves at least 2(n−
1) � 2n− 2 cuts, possibly including endpoints of the line. At most two of these cuts can correspond to endpoints,
so the number of cuts made is at least 2n− 4 as desired. w

6. Probabilistic Results
In this section, instead of considering consensus halving and consensus k-splitting from a worst-case perspective
as we have done so far, we examine these problems from an average-case perspective. We assume throughout
the section that the agents have linear utilities.

First, Theorem 3 implies that there is no hope of finding a consensus halving with the minimum number of
cuts or even a nontrivial approximation thereof in polynomial time provided that P ≠ NP. Nevertheless, we
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show that instances that admit a consensus halving with fewer than n cuts are rare: if the utilities are drawn inde-
pendently at random from probability distributions, then it is almost surely the case that any consensus halving
needs at least n cuts. We say that a distribution is nonatomic if it does not put a positive probability on any single
point.

Theorem 10. Suppose that, for each i ∈N and j ∈M, the utility ui( j) is drawn independently from a nonatomic distribu-
tion Di,j. Then, with probability one, every consensus halving uses at leastmin{n,m} cuts.
Proof. The high-level idea is to show that, if there are fewer than min{n,m} cuts, then a certain utility ui( j) needs
to take on a specific value; this event occurs with probability zero because the distribution Di,j is nonatomic.

Let mcut �min{n,m} − 1. Recall that a consensus halving corresponds to a tuple (x1, : : : ,xm) ∈ [0, 1]m for which
Constraint (1) is satisfied and that item j is cut if and only if xj ∉ {0, 1}. As a result, from the union bound, it suffi-
ces to show that, for any fixedMcut ⊆M of size mcut, we have

Pr [∃(x1, : : : ,xm) ∈ [0, 1]m that satisfies (1) and xj ∈ {0, 1} for all j ∉Mcut] � 0: (3)

For notational convenience, we only show that (3) holds for Mcut � {1, : : : ,mcut}; because of symmetry, the same
bound also holds for everyMcut ⊆M of size mcut.

To show (3) forMcut � {1, : : : ,mcut}, we may apply the union bound again to derive

Pr [∃(x1, : : : ,xm) ∈ [0, 1]m that satisfies (1) and xj ∈ {0, 1} for all j ∈ {mcut + 1, : : : ,m}]
≤ ∑

tmcut+1, : : : , tm∈{0,1}
Pr [∃x1, : : : ,xmcut ∈ [0, 1] such that (x1, : : : ,xmcut , tmcut+1, : : : , tm) satisfies (1)]:

Hence, it suffices to show that, for any fixed tmcut+1, : : : , tm ∈ {0, 1}, we have

Pr [∃x1, : : : ,xmcut ∈ [0, 1] such that (x1, : : : ,xmcut , tmcut+1, : : : , tm) satisfies (1)] � 0:

To see that this is the case, consider any fixed values of ui( j) for all i ∈N, j ∈Mcut; we show that the preceding
probability is zero over the randomness of the utilities ui( j) for i ∈N, j ∉Mcut. We may rearrange Constraint (1) as∑

j∈Mcut

ui( j) · xj � 1
2

∑
j∈Mcut

ui( j) +
∑
j∉Mcut

1
2
− tj

( )
· ui( j) ∀i ∈N: (4)

Now, because there are n linear equations and only mcut < n variables x1, : : : ,xmcut , the coefficient vectors
(u1(1), : : : ,u1(mcut)), : : : , (un(1), : : : ,un(mcut)) must be linearly dependent. In other words, there exists (a1, : : : , an)≠
(0, : : : , 0) such that ∑

i∈N
ai · ui( j) � 0 ∀j ∈Mcut:

Hence, by taking the corresponding linear combination of (4), we have

0 � ∑
j∈Mcut

xj
∑
i∈N

ai · ui( j)
( )

� ∑
i∈N

ai
∑
j∈Mcut

xj · ui( j)
( )

� ∑
i∈N

ai
1
2
· ∑
j∈Mcut

ui( j) +
∑
j∉Mcut

1
2
− tj

( )
· ui( j)

( )
:

From (a1, : : : , an)≠ (0, : : : , 0), there exists i∗ ∈N such that ai∗ ≠ 0. Moreover, because mcut <m, we have m ∉Mcut.
This equality, therefore, implies that

ui∗ (m) � 1

tm − 1
2

( ) (∑
i ∈N
i≠ i∗

ai
ai∗

1
2
· ∑
j∈Mcut

ui( j) +
∑
j∉Mcut

1
2
− tj

( )
· ui( j)

( )

+ 1
2
· ∑
j∈Mcut

ui∗ ( j) +
∑

j ∉Mcut

j≠m

1
2
− tj

( )
· ui∗ ( j)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
)
,

Goldberg et al.: Consensus Halving for Sets of Items
Mathematics of Operations Research, 2022, vol. 47, no. 4, pp. 3357–3379, © 2022 The Author(s) 3369

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

86
.2

4.
19

3.
62

] 
on

 0
3 

A
pr

il 
20

23
, a

t 0
1:

07
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



where tm − 1=2 is nonzero because tm ∈ {0, 1}. Because Di∗,m is nonatomic and the utilities are drawn indepen-
dently, the equality occurs with probability zero, which implies that

Pr [∃x1, ⋯ ,xmcut ∈ [0, 1] such that (x1, : : : ,xmcut , tmcut+1, : : : , tm) satisfies (1)] � 0:

As discussed, this, in turn, implies that the probability that there is a consensus halving with at most mcut cuts
is zero, concluding our proof. w

We now comment on the necessity of the two distributional assumptions in Theorem 10.
• Nonatomicity condition: Suppose n� 1 and D1,j is the Bernoulli distribution with p�1/2 for all j ∈M; that is,

u1( j) � 0 and u1( j) � 1 with probability 1/2 each. Then, the minimum number of cuts is one if ui( j) � 1 for an odd
number of j and zero otherwise; the probability that each event occurs is 1/2.

• Independence condition: Suppose all agents have the same utility function; that is, the dependence between
the utilities is such that u1( j) � : : : � un( j) for all j ∈ [m]. In this case, it is clear that no more than one cut is needed
regardless of n andm.

Theorem 10 shows that, in a random consensus halving instance, any solution almost surely uses at least the
worst-case number of cuts min{n,m}. One might consequently expect that an analogous statement holds for con-
sensus k-splitting with (k− 1) ·min{n,m} cuts almost always being required. However, we show that this is not
true: even in the simple case in which n�1 and the agent’s utilities are drawn from the uniform distribution over
[0, 1], it is likely that we only need to make one cut (instead of k – 1) for large m.

Theorem 11. Let n � 1 and suppose that the agent’s utility for each item is drawn independently from the uniform distribu-
tion on [0, 1]. For any ratios α1, : : : ,αk > 0 with probability approaching one as m→∞, there exists a consensus k-splitting
with these ratios using at most one cut. Moreover, there is a polynomial-time algorithm that computes such a solution.

In what follows, we denote the agent’s utility function by u and say that an event happens “with high proba-
bility” if the probability that it happens approaches one as m→∞. The proof of Theorem 11 proceeds by identi-
fying a simple (deterministic) condition that guarantees a solution cutting only a single item; this is done in
Lemma 2. Then, we show that this condition is satisfied with high probability.

Lemma 2. Suppose that there is a single agent. Let j∗ :� arg maxju( j) denote a most preferred item and let Mlow-utility :�
j ∈M |u( j) ≤ 1

k · u(j∗)
{ }

denote the set of items whose utility is less than 1=k times the utility of j∗. For any ratios
α1, : : : ,αk > 0, if

∑
j∈Mlow-utilityu( j) ≥ k · u(j∗), then there is a consensus k-splitting with these ratios that cuts only j∗. More-

over, there is a polynomial-time algorithm that computes such a solution.

Proof. For each ℓ ∈ [k], let wℓ :� αℓ · ∑
j∈Mu( j)

( )
be the “target utility” for part ℓ of the partition. Consider the fol-

lowing greedy algorithm.
• Let P1 �⋯� Pk � ∅.
• LetM0 �M\{j∗} and jmax � arg maxj∈M0u( j).
•While there exists ℓ ∈ [k] such that u(Pℓ ∪ {jmax}) ≤ wℓ:

—Add jmax to Pℓ.
— Remove jmax fromM0. IfM0 � ∅, terminate. Else, update jmax � arg maxj∈M0u( j).

The algorithm clearly runs in polynomial time. We claim that it terminates with M0 � ∅ provided that∑
j∈Mlow-utilityu( j) ≥ k · u(j∗). This implies the statement of the lemma because it would then suffice to split only item

j∗.
Suppose for the sake of contradiction thatM0 ≠ ∅ at the end of the execution. Consider the following two cases

based on whether jmax at termination belongs toMlow-utility.
Case 1: jmax ∉Mlow-utility. Because the algorithm terminates, it must be that u(Pℓ) > wℓ − u(jmax) ≥ wℓ − u(j∗) for

each ℓ. Summing this over ℓ ∈ [k], we get

u P1 ∪ : : : ∪ Pk( ) > w1 + ⋯ + wk − k · u(j∗) � u(M) − k · u(j∗):

On the other hand, because jmax ∉Mlow-utility, it must be that Mlow-utility is disjoint from P1 ∪⋯∪ Pk. As a result,
we have

u P1 ∪ : : : ∪ Pk( ) ≤ u(M) − ∑
j∈Mlow-utility

u( j) ≤ u(M) − k · u(j∗),

where the second inequality is from the assumption of the lemma. These two inequalities imply the desired
contradiction.
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Case 2: jmax ∈Mlow-utility. In this case, we must have u(Pℓ) > wℓ − u(jmax) ≥ wℓ − u(j∗)=k for each ℓ. Summing this
over ℓ ∈ [k], we get

u P1 ∪⋯∪ Pk( ) > w1 +⋯ + wk − u(j∗) � u(M) − u(j∗):
However, because j∗ ∉ P1 ∪⋯∪ Pk, we have u P1 ∪ : : : ∪ Pk( ) ≤ u(M) − u(j∗), which is a contradiction.
In both cases, we arrive at a contradiction, and our proof is complete. w

With Lemma 2 ready, we can now prove Theorem 11.

Proof of Theorem 11. Because each u(j) is drawn independently from the uniform distribution on [0, 1], the
probability that u(j∗) ≥ 1=2 is 1− 1=2m, which converges to one for large m. In addition, because u( j) ∈
[0:1=k, 0:5=k] with probability 0:4=k for each j, a standard Chernoff bound argument implies that with probability
approaching one, we have

M′ :�|{ j ∈M |u( j) ∈ [0:1=k, 0:5=k]}| ≥ 0:3m=k:

The union bound implies that both events occur simultaneously with high probability. Suppose that they both
occur and m ≥ 40k3. From the first event, we have u( j) ≤ 0:5=k ≤ u(j∗)=k for each j ∈M′, and so M′ ⊆Mlow-utility.
Hence, the second event implies that∑

j∈Mlow-utility
u( j) ≥ ∑

j∈M′
u( j) ≥ (0:3m=k)(0:1=k) ≥ k ≥ k · u(j∗):

From this and Lemma 2, we conclude that, with high probability, we can efficiently find a consensus k-splitting
that cuts only a single item as claimed. w

7. Conclusion
In this paper, we study a natural version of the consensus halving problem in which, in contrast to prior work,
the items do not have a linear ordering. We show that computing a consensus halving with at most n cuts in our
version can be done in polynomial time for linear utilities but already becomes PPAD-hard for a class of mono-
tonic utilities that are very close to linear. We also demonstrate several extensions and connections to the prob-
lems of consensus k-splitting and agreeable sets.

Whereas our PPAD-hardness result serves as strong evidence that consensus halving for a set of items is com-
putationally hard for nonlinear utilities, it remains open whether the result can be strengthened to PPA-
completeness; indeed, the membership of the problem in PPA follows from a reduction to consensus halving on
a line as explained in the introduction. Obtaining a PPA-hardness result will most likely require new ideas and
perhaps even new insights into PPA because all existing PPA-hardness results for consensus halving heavily
rely on the linear ordering. Of course, it is also possible that the problem is, in fact, PPAD-complete. In addition
to consensus halving, settling the computational complexity of the agreeable sets problem for a nonconstant
number of agents with monotonic utilities would also be of interest.

We conclude with further interesting questions that remain from our work.
• Whereas the class of symmetric-threshold utilities that we introduce is a natural generalization of linear utili-

ties, one could also consider other known generalizations. For example, it would be interesting to understand the
complexity of consensus halving for separable piecewise linear concave (SPLC) or constant elasticity of substitution
(CES) utilities, which are typically considered in economics. Note that symmetric-threshold utilities are separable
piecewise linear but usually not concave. Does the concavity of SPLC utilities allow for an extension of our positive
results or is the problem also PPAD-hard? For CES utilities, it seems likely that solutions are irrational in general.
In that case, the problem of computing an approximate solution remains in PPA, but if one is really interested in
exact solutions, then other tools can be used (Batziou et al. [6], Deligkas et al. [16], Etessami and Yannakakis [18]).

• A consensus k-splitting always exists for linear utilities because of Theorem 8, and a consensus 1=k-division
always exists even for nonlinear utilities because we can simply divide every item into k equal parts. However, per-
haps surprisingly, a consensus k-splitting does not necessarily exist for nonlinear utilities even for k�2. To see this,
suppose that α1 � 0:3 and α2 � 0:7 and there is only one item. If one agent has a linear utility, we have to split the
item according to the ratio 0:3 : 0:7; however, such a split may not satisfy another agent with a nonlinear utility. In
light of this observation, what is the “best” approximation to a consensus k-splitting that we can provide for nonlin-
ear utilities?

• When k is a prime number, a consensus 1=k-division using at most (k− 1)n cuts exists for the problem on the
line even for nonlinear utilities (Filos-Ratsikas et al. [23, theorem 6.5]. As a result, (k− 1)n cuts are also sufficient
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when the items do not lie on a line. From Filos-Ratsikas et al. [23], we also immediately obtain that the correspond-
ing computational problem lies in the class PPA-k, a modulo-k analog of PPA (Göös et al. [27], Hollender [30], Papa-
dimitriou [39]). Is it possible to prove a corresponding hardness result, ideally again for simple monotonic utilities?
Currently, it is only known that consensus 1/3-division is PPAD-hard on the line (Filos-Ratsikas et al. [22]), but the
proof heavily relies on the linear ordering, and it is unclear how to extend this to our setting.

• Can we generalize Theorem 11 to arbitrary n, that is, for any fixed n with probability approaching one, as
m→∞, there exists a consensus k-splitting with any specified ratios using at most n cuts? We conjecture that this is
the case, but it does not seem that our proof of Theorem 11 can be easily extended; indeed, when n > 1, in order to
use a similar approach, we would have to group the items carefully so that the utilities with respect to these groups
are similar for all n agents. More generally, for any fixed n,m, k, and α1, : : : ,αk, what is the likely minimum number
of cuts required in a consensus k-splitting with ratios α1, : : : ,αk?
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Appendix A. Constant Number of Agents
In this section, we provide additional results for the case in which there are a constant number of agents who are
endowed with monotonic utilities.

A.1. Discrete Consensus Halving
We begin by introducing a discrete version of consensus halving, which allows us to focus solely on the agents’ utilities
for nonfractional sets of items.

Definition A.1. A discrete consensus halving is a partition of the items into three (nonfractional) sets of items M0,M1,M2

such that ui(M0 ∪M1) ≥ ui(M2) and ui(M0 ∪M2) ≥ ui(M1) for all i ∈N.
Note that, for any r, a consensus halving with r cuts yields a discrete consensus halving with |M0 | ≤ r simply by mov-

ing all cut items into M0. Hence, a discrete consensus halving with |M0 | ≤ n is guaranteed to exist. The bound n is also
tight here: when each agent values a single distinct item, all valued items must be included in M0.

The following result shows that, for constant n, a discrete consensus halving with |M0 | ≤ n can be found efficiently.
Similarly to Theorem 5, the proof involves arranging the items on a line and appealing to the existence of a consensus
halving with at most n cuts on the line. As in Theorem 6, we assume a utility oracle model in which the algorithm can
query the utility ui(M′) for any i ∈N and M′ ⊆M.

Theorem A.1. For any constant number of agents with monotonic utilities, there exists a polynomial-time algorithm that computes
a discrete consensus halving with |M0 | ≤min{n,m} (assuming access to a utility oracle).

Proof. If n ≥m, we can simply include all items in M0, so assume that n ≤m. Arrange the items on a line in arbitrary
order and extend the utility functions of the agents to fractional sets of items in a continuous and monotonic fashion (see
Endnote 9). Consider a consensus halving with respect to the extended utilities that uses at most n cuts on the line and
move all cut items to M0. The resulting discrete consensus halving has the property that, for any pair of consecutive
items in M0, the block of items in between either all belong to M1 or all belong to M2.

We perform a brute-force search over all possible partitions of the items into M0,M1,M2 satisfying the preceding prop-
erty. For t ∈ [n], there are O(mt) sets of items that we can choose as M0, and for each choice of M0, there are at most 2t+1

ways to assign the resulting blocks of items to M1 or M2. Hence, the brute-force search runs in time
∑n

t�1O(2t+1mt)
�O(mn), which is polynomial because n is constant. w

With two agents, the algorithm in Theorem A.1 runs in quadratic time. We next present a more sophisticated algo-
rithm that uses only linear time for this special case. In fact, we show a stronger statement based on a notion introduced
by Kyropoulou et al. [31].

Definition A.2. Let n� 2. A partition of the items into two (nonfractional) sets of items M1 and M2 is said to be Exact1 if,
for each pair i,k ∈ {1, 2}, either M3−k � ∅ or there exists an item j ∈M3−k such that ui(Mk) ≥ ui(M3−k\{ j}).

In words, Exact1 means that, for each agent and each part of the partition, this part can be made at least as valuable as
the other part in the agent’s view by removing at most one item from the latter part. Given an Exact1 partition, we can
easily obtain a discrete consensus halving as follows. From the partition, each agent i proposes (at most) one item to
include in M0. Specifically, if ui(M1) < ui(M2), then agent i proposes an item j such that ui(M1) ≥ ui(M2\{ j}); the opposite
case is analogous. (If ui(M1) � ui(M2), agent i does not need to propose any item.) It is clear that |M0 | ≤ 2, and one can
check that (M0,M1,M2) forms a discrete consensus halving.
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Kyropoulou et al. [31] shows that an Exact1 partition exists for two agents with “responsive utilities,” a class that lies
between additive and monotonic utilities. Here, we present an algorithm that computes an Exact1 partition for arbitrary
monotonic utilities in linear time; to the best of our knowledge, even the existence of such a partition has not been estab-
lished before.

Our algorithm is based on carefully discretizing a procedure of Austin [4], which computes a (nondiscrete) consensus
halving for two agents assuming that the resource is represented by the circumference of a circle. Austin’s procedure
works by letting the first agent place two knives on the circle so that the item is cut in half according to the agent’s valu-
ation. The agent then moves both knives continuously clockwise, maintaining the invariant that the knives divide the
items into two equal halves in the agent’s opinion. The first agent stops moving the knives when the two parts are equal
according to the valuation of the second agent, and the procedure returns the resulting partition. Because the second
knife reaches the initial position of the first knife at the same time as the first knife reaches the starting point of the sec-
ond knife, it follows from the intermediate value theorem that the procedure necessarily terminates.

The main challenge in applying this procedure to our discrete item setting is that it is not a priori clear how to imple-
ment moving both knives simultaneously; indeed, moving each of the knives over one item does not always maintain
the invariant that the partition is Exact1. Nevertheless, as we show, this invariant can be maintained by either moving
both knives or moving one of the two knives, whichever option is appropriate at each stage. In fact, for this algorithm
and proof, we use a slightly stronger definition of Exact1 wherein the items lie on a circle, each part of the partition
forms a contiguous block on the circle, and the item j in Definition A.2 is only allowed to be one of the items at the end
of block M3−k.11 We say that a partition is Exact1 for agent i if the (stronger) Exact1 condition is fulfilled for agent i and
both k ∈ {1,2}.
Algorithm A.1 (For Two Agents with Monotonic Utilities)

Step 1: Arrange the items on a circle in arbitrary order. Place the first knife between two arbitrary consecutive items on the cir-
cle and the second knife between two items so that the partition induced by the two knives is Exact1 for the first agent.

Step 2: If the current partition is Exact1 for the second agent, return this partition.
Step 3: If one of the knives is at the initial position of the other knife, go to step 4. Else, perform one of the following actions so

that the new partition remains Exact1 for the first agent:
a. Move the first knife clockwise by one position.
b. Move the second knife clockwise by one position.
c. Move each of the two knives clockwise by one position.
Go back to step 2.
Step 4: Move the knife that is not at the initial position of the other knife clockwise by one position. Go back to step 2.

Theorem A.2. For two agents with monotonic utilities, Algorithm A.1 computes an Exact1 partition in time linear in m (assum-
ing access to a utility oracle).

Proof. Observe that, throughout the algorithm, the partition induced by the two knives is Exact1 for the first agent.
Moreover, a partition is returned only if it is Exact1 for the second agent. Hence, if the algorithm terminates, the partition
that it outputs is Exact1 for both agents. It, therefore, suffices to establish that the algorithm is well-defined and always
terminates. For convenience, we say that a bundle is envy-free up to one item (EF1) for a specific agent if the Exact1 con-
dition (specifically, the stronger version described before the algorithm) is fulfilled for the agent when that bundle is
taken as Mk.

First, we need to show that in step 1, there exists a position of the second knife such that the resulting partition is
Exact1 for the first agent. It turns out that this already follows from Oh et al. [38, theorem 3.1], so the first step can be
implemented.

Next, the key part of our proof is to show that, in step 3, at least one of the three actions keeps the new partition
Exact1 for the first agent. Assume that actions (a) and (b) do not; we claim that action (c) does. Call the two parts of the
partition M1 and M2 and assume without loss of generality that moving the first knife clockwise enlarges M1. Suppose
that the next item that the first knife moves over is j, and the next item that the second knife moves over is j′. (See Figure
A.1 for an illustration.) Let O1 � (M1 ∪ { j})\{ j′} and O2 � (M2 ∪ { j′})\{ j} be the two parts of the partition that results
from action (c). Because action (a) does not keep the partition Exact1, we have that M2\{ j} is not EF1 for the first agent.
Hence,

u1(O1) � u1((M1 ∪ { j})\{ j′}) > u1(M2\{ j}) � u1(O2\{ j′}),
implying that O1 is EF1 for the first agent. By symmetry, because action (b) does not keep the partition Exact1, we have
that M1\{ j′} is not EF1 for the first agent. This implies that O2 is EF1 for the agent. It follows that action (c) keeps the par-
tition Exact1 for the first agent as claimed.

Now, consider step 4. Because each knife never moves by more than one position at a time, unless the algorithm termi-
nates beforehand, this step eventually is reached. Suppose that the first knife has arrived at the initial position of the sec-
ond knife, but the second knife is not yet at the initial position of the first knife. The current partition is Exact1 for the
first agent. Also, if the second knife moves clockwise to the initial position of the first knife, again we have an Exact1
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partition for the agent. Hence, monotonicity of the EF1 property implies that every partition in between is also Exact1 for
the agent.

Finally, we show that the algorithm necessarily terminates. Suppose that this is not the case. Assume that, in the initial
partition with parts M1 and M2, the second agent believes that M2 is not EF1. This means that u2(M2) < u2(M1\{ j}) for
any j at the end of block M1. In one iteration of step 3 or 4, M1 loses at most one end item to M2—call this item j′ (if M1

does not lose any item, take j′ to be an arbitrary end item in M1)—and the respective parts of the partition after the itera-
tion O1 and O2. Because u2(M1\{ j′}) > u2(M2) � u2((M2 ∪ { j′})\{ j′}), we have that O1 is also EF1 for the second agent.
However, because the algorithm does not terminate here by assumption, O2 is not EF1 for the second agent. The same
argument tells us that, in further iterations, the second bundle (i.e., M2, O2, and so on) is still not EF1 for the agent. How-
ever, the algorithm must reach a point at which the first knife is at the initial position of the second knife and, at the
same time, the second knife is also at the initial position of the first knife. At this point, the second bundle coincides
with the initial first bundle, so it must be EF1 for the second agent. This yields the desired contradiction.

Regarding the running time, note that each knife moves clockwise around the circle only once, so the number of parti-
tions considered by the algorithm is linear. For each partition, checking the relevant Exact1 condition can be done in
constant time because it involves hypothetically removing only a constant number of items. Hence, the algorithm runs in
linear time as claimed. w

A.2. Continuous Extensions
The discrete consensus halving problem allows us to concern ourselves exclusively with the agents’ utilities for non-

fractional sets of items, which are represented by set functions. For an additive set function, there exists an obvious
extension to fractional sets of items: the linear extension used in Section 2. This is, however, not the case for general
monotonic functions. In this section, we address two extensions that are studied in the literature, namely, the Lovász and
multilinear extensions. We refer to the lecture notes of Vondrák [54] for further discussion of these extensions.

Let x � (x1, : : : ,xm), and for each subset S ⊆ [m], denote by 1S the vector of length m such that the ith component is one
if i ∈ S and zero otherwise.

Definition A.3. Given a function f : {0, 1}m → R, the Lovász extension f L : [0, 1]m → R of f is defined by

f L(x) �∑m
i�0

λif (Si),

where ∅ � S0 ⊂ S1 ⊂⋯⊂ Sm � [m] is a chain such that
∑m

i�0 λi1Si � x for λ0,λ1, : : : ,λm ≥ 0 with
∑m

i�0 λi � 1.
As an example, suppose that m� 3 and x � (1, 0:1,0:3). Then, we have S1 � {1}, S2 � {1, 3}, S3 � {1,2, 3}, and

(λ0,λ1,λ2,λ3) � (0, 0:7, 0:2, 0:1), meaning that

f L(x) � 0:7 · f ({1}) + 0:2 · f ({1, 3}) + 0:1 · f ({1, 2, 3}):

Definition A.4. Given a function f : {0, 1}m → R, the multilinear extension F : [0, 1]m → R of f is defined by

F(x) � ∑
S⊆[m]

f (S)∏
i∈S

xi
∏

i∈[m]\S
(1− xi):

For this example, we have

F(x) � 0:9 · 0:7 · f ({1}) + 0:1 · 0:7 · f ({1, 2}) + 0:9 · 0:3 · f ({1, 3}) + 0:1 · 0:3 · f ({1, 2, 3})
� 0:63 · f ({1}) + 0:07 · f ({1, 2}) + 0:27 · f ({1, 3}) + 0:03 · f ({1, 2, 3}):

Vondrák [54] proves that, if f is a monotonic set function, then its multilinear extension F is also monotonic; that is,
increasing a component xi by any amount does not decrease the value of the function F(x). For completeness, we show
an analogous result for the Lovász extension.

Figure A.1. An illustration of AlgorithmA.1.
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Proposition A.1. If a function f : {0, 1}m → R is monotonic, then so is its Lovász extension f L.

Proof. Let f be a monotonic set function and f L be its Lovász extension. Let x ∈ [0, 1]m and assume that x1 ≤ x2 ≤⋯≤ xm
(other orderings can be handled analogously). In this case, we have

f L(x) � x1f ({1, 2, : : : ,m}) + (x2 − x1)f ({2, 3, : : : ,m}) + : : :

+ (xi − xi−1)f ({i, : : : ,m}) + (xi+1 − xi)f ({i+ 1, : : : ,m}) + : : :

+ (xm − xm−1)f ({m}):
It suffices to show that, for any i, the value f L(x) does not decrease upon increasing xi. This is obvious if i�m. For

1 ≤ i ≤m− 1, we only need to prove that f L(x) does not decrease when we increase xi until it reaches xi+1; indeed, if we
want to increase xi further, we can swap the roles of xi and xi+1 and apply the same argument. When we increase xi in
the range [xi−1,xi+1], the only terms that change are xi · f ({i, : : : ,m}) and −xi · f ({i+ 1, : : : ,m}). The net change is

xi · ( f ({i, : : : ,m}) − f ({i+ 1, : : : ,m})),
which is nonnegative because of the monotonicity of f. The conclusion follows. w

When n is constant, computing a consensus halving for a utility function given by the Lovász extension of a monotonic
set function can be done efficiently.

Theorem A.3. For a constant number of agents with monotonic utilities, each given by the Lovász extension of a set function,
there exists a polynomial-time algorithm that computes a consensus halving with at most min{n,m} cuts (assuming access to a util-
ity oracle for the set function).

Proof. If n ≥m, we can simply divide every item in half, so assume that n ≤m. Arrange the items on a line in arbitrary
order. Similarly to the proof of Theorem A.1, there exists a consensus halving that uses at most n cuts on the line such
that, for any pair of consecutive cut items, the block of whole items in between all belong to either M1 or M2. We per-
form a brute-force search over all partitions of items into (M0,M1,M2) such that all cut items belong to M0 and the prop-
erty is satisfied; as in Theorem A.1, this search takes polynomial time.

For each such partition, it remains to determine the ratios by which we should divide the items in M0 between M1 and
M2. Denote by x1, : : : ,xr the fraction of the r ≤ n items in M0 that should go into M1. We iterate over all possible orderings
of x1, : : : ,xr; there are at most n! orderings, which is polynomial because n is constant. For each ordering, one can verify
that the consensus halving condition for each agent reduces to a linear equation in x1, : : : ,xr. Hence, to check the feasibil-
ity of a partition along with an ordering, we can run any efficient linear programming algorithm (with an arbitrary objec-
tive) on the ordering and consensus halving constraints. The previous paragraph implies that at least one combination of
partition and ordering results in a feasible linear program, which, in turn, gives rise to the desired consensus halving. w

A consequence of Theorem A.3 is that, for the Lovász extension, if the set function is rational, then there exists a con-
sensus halving with rational ratios. By contrast, for the multilinear extension, a consensus halving may necessarily
involve splitting items in irrational ratios even if the set function only takes on integer values.

Theorem A.4. There exists an instance with n� 2 and m� 3 in which each agent has a monotonic utility function given by the
multilinear extension of a set function taking on integer values, but every consensus halving with at most two cuts involves splitting
some items in irrational ratios.

Proof. Assume that n� 2 and m� 3. The utility functions of the agents are given in Table A.1. Notice that the function of
the second agent is the same as that of the first agent except with the roles of items 2 and 3 reversed.

Consider a consensus halving (M1, M2) of this instance with at most two cuts. Because u1(2) > u1({1, 3}), item 2 needs to be
cut. Similarly, because u2(3) > u2({1, 2}), item 3 needs to be cut. Hence, item 1 must be uncut; assume without loss of general-
ity that it belongs toM1. Let x2 and x3 be the fractions of item 2 and 3 inM1, respectively. Because u1(M1) � u1(M2), we have

(1− x2)(1− x3) · u1(1) + x2(1− x3) · u1({1, 2}) + x3(1− x2) · u1({1, 3}) + x2x3 · u1({1, 2, 3})
� x2x3 · u1(∅) + x3(1− x2) · u1(2) + x2(1− x3) · u1(3) + (1− x2)(1− x3) · u1({2, 3}):

This is equivalent to

(1 − x2)(1 − x3) · (−13) + x2(1 − x3) · 10 + x3(1 − x2) · (−7) + x2x3 · 20 � 0,

or

−13 + 23x2 + 6x3 + 4x2x3 � 0: (A.1)

By symmetry, u2(M1) � u2(M2) implies that

−13+ 23x3 + 6x2 + 4x2x3 � 0: (A.2)

Goldberg et al.: Consensus Halving for Sets of Items
Mathematics of Operations Research, 2022, vol. 47, no. 4, pp. 3357–3379, © 2022 The Author(s) 3375

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

86
.2

4.
19

3.
62

] 
on

 0
3 

A
pr

il 
20

23
, a

t 0
1:

07
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Subtracting (A.2) from (A.1) yields 17x2 � 17x3, so x2�x3. Plugging this back into (A.1), we get

4x22 + 29x2 − 13 � 0: (A.3)

The only positive solution to (A.3) is x2 �
�����
1049

√ −29
8 ≈ 0:4235: : : , meaning that every consensus halving involves splitting

items 2 and 3 in irrational ratios. w

Theorem A.4 implies that, for the multilinear extension, computing a consensus halving exactly may not be possible if
our computation model only allows representing rational numbers. As we can see, with two agents and two necessary
cuts, the problem already requires solving a quadratic equation. For more agents, we can, therefore, expect that one
would need to solve higher degree polynomial equations; the Abel–Ruffini theorem states that almost all polynomials of
degree at least five do not admit a solution in radicals. Hence, for this extension, finding an approximate consensus halv-
ing is likely the best that one could do even under general computational models.

Appendix B. Proof of Lemma 1
We reduce from the ε-GCIRCUIT problem, which is known to be PPAD-hard even for some constant ε > 0 (Rubinstein [42]).
In this problem, we are given a generalized circuit (V,T ), where there are nine gate types: Gζ, G×ζ, G�, G+, G−, G<, G�, G� ,
and G¬ with ζ ∈ [0, 1] for the first two gates (see Rubinstein [42] for a formal definition of the gates). The last three gate
types correspond to Boolean operations. As shown by Schuldenzucker and Seuken [44, corollary 1], these three gate types
are actually not necessary, and the problem remains PPAD-hard for constant ε even without them. Apart from the set of
gates, the other difference with ε-SIMPLE-GCIRCUIT is that, in ε-GCIRCUIT, we want to assign a number in [0, 1] to each node
(instead of [−1,1]).

Let ε̂ > 0 be a constant such that the ε̂-GCIRCUIT problem without Boolean operation gates is PPAD-hard and let (V,T )
be an instance of ε̂-GCIRCUIT without Boolean gates. We construct an instance (V′,T ′) of ε-SIMPLE-GCIRCUIT, in which ε > 0
is a sufficiently small constant (which we pick later) such that any solution to the new instance yields a solution to the
original instance. We let V′ � V ∪ Vaux, where Vaux is a set of nodes that is used for “intermediate” results when simulat-
ing the gates of the original problem with the restricted set of gates allowed in ε-SIMPLE-GCIRCUIT. We construct T ′ such
that it induces the original constraints of T on the nodes V ⊂ V′. Furthermore, we also ensure that, in any solution
x : V′ → [−1,1], we have x[v] ∈ [0, 1] for all v ∈ V ⊂ V′. Thus, restricting x to V immediately yields a solution to the origi-
nal ε̂-GCIRCUIT instance.

Recall that we only have three types of gates at our disposal: G+, G×−ζ for ζ ∈ (0, 1], and G1. We begin by constructing
some useful gadgets that simulate more operations on the same domain [−1, 1]. Throughout, we denote the input nodes
by u1, u2 (if applicable) and the output node by v.

B.1. G3z: Multiplication by z‰ [21,1]
This gadget ensures that x[v] � ζ · x[u1]62ε. If ζ < 0, then −ζ ∈ (0, 1], and we can simply use a G×−(−ζ) gate with input u1
and output v. If ζ > 0, we use a G×−ζ gate with input u1 and output w ∈ Vaux and then a G×−1 gate with input w and out-
put v, which ensures that x[v] � ζ · x[u1]62ε. Finally, if ζ�0, then we use a G×−1 gate with input u1 and output w ∈ Vaux

and then a G+ gate with inputs u1,w and output v. This ensures that x[v] � 062ε.

B.2. Gz: Constant z‰ [21,1]
This gadget ensures that x[v] � ζ63ε. We use a G1 gate with output w ∈ Vaux and then a G×ζ gadget with input w and

output v, which yields the desired result.

B.3. G32: Multiplication by Two
This gadget ensures that x[v] � T[−1,1](2x[u1])63ε. We use a G×1 gadget with input u1 and output w ∈ Vaux and then a

G+ gate with inputs u1,w and output v, which yields the desired result.

Table A.1. Utility functions for the instance in the proof of Theorem A.4.

Set S u1(S) u2(S)
∅ 0 0
{1} 1 1
{2} 10 2
{3} 2 10
{1, 2} 12 3
{1, 3} 3 12
{2, 3} 14 14
{1, 2, 3} 20 20
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Before we show how to construct gadgets that simulate the gates of ε̂-GCIRCUIT, we need a way to ensure that, for
v ∈ V ⊂ V′, we have x[v] ∈ [0,1]. To achieve this, we make extensive use of the following gadget.

B.4. G[0,1]: Truncation to [0,1]
This gadget ensures that x[v] ∈ [0,1] and x[v] � T[0,1](x[u1])616ε. To achieve this, we use the fact that, for any

t ∈ [−1,1], it holds that T[0,1](t) � T[−1,1][t+ (−1)] + 1. First, we use a G−1 gadget with output w1 ∈ Vaux, and then a G+ gate
with inputs u1, w1 and output w2 ∈ Vaux. Next, we use a G1 gate with output w3 ∈ Vaux and then a G+ gate with inputs w2,
w3 and output w4 ∈ Vaux. Because the G−1 gadget has error at most 3ε and the G+ and G1 gates have error at most ε, we
obtain that x[w4] � T[0,1](x[u1])66ε. Furthermore, it holds that x[w4] ≥ −2ε because x[w4] � T[−1,1](x[w2] +
x[w3])6ε, x[w2] ∈ [−1, 1] and x[w3] ≥ 1− ε. Finally, we also use a G6ε gadget with output w5 ∈ Vaux and a G+ gate with
inputs w4, w5 and output v. This introduces an additional error of at most 4ε and, thus, ensures that
x[v] � T[−1,1](T[0,1](x[u1]) + 6ε)610ε � T[0,1](x[u1])616ε. Furthermore, it also holds that x[v] ≥ T[−1,1](x[w4] + x[w5]) − ε ≥ 0
because x[w4] ≥ −2ε and x[w5] ≥ 6ε− 3ε.

We are now ready to simulate the constraints T of the original instance on the nodes V ⊂ V′. First of all, for any node
v ∈ V that does not appear as the output of any gate in T , we ensure that x[v] ∈ [0, 1] as follows: create a node w ∈ Vaux

and use a G[0,1] gadget with input w and output v. Note that we do not care about the error in this case because we only
want to ensure that x[v] ∈ [0,1]. For all v ∈ V that appear as the output of some gate in T , the gadget that outputs into v
ensures that x[v] ∈ [0, 1].

For every gate T � (G,u1,u2,v,ζ) ∈ T , we ensure that the corresponding constraint holds as follows.

B.5. (G[0,1]
z ,nil,nil, v, z): Constant z‰ [0,1]

This gadget ensures that x[v] ∈ [0, 1] and x[v] � ζ619ε. We use a Gζ gadget with output w ∈ Vaux and then a G[0,1] gad-
get with input w and output v.

B.6. (G[0,1]
3z ,u1,nil, v,z): Multiplication by z‰ [0,1]

This gadget ensures that x[v] ∈ [0,1] and x[v] � T[0,1](ζ · x[u1])618ε. We use a G×ζ gadget with input u1 and output w ∈
Vaux and then a G[0,1] gadget with input w and output v.

B.7. (G[0,1]
5 ,u1,nil, v,nil): Copy

This gadget ensures that x[v] ∈ [0, 1] and x[v] � T[0,1](x[u1])616ε. For this, we simply use the G[0,1] gadget with input u1
and output v.

B.8. (G[0,1]
1 ,u1, u2, v,nil): Addition

This gadget ensures that x[v] ∈ [0,1] and x[v] � T[0,1](x[u1] + x[u2])617ε. We use a G+ gate with inputs u1, u2 and out-
put w ∈ Vaux and then a G[0,1] gadget with input w and output v.

B.9. (G[0,1]
2 ,u1, u2, v,nil): Subtraction

This gadget ensures that x[v] ∈ [0, 1] and x[v] � T[0,1](x[u1] − x[u2])618ε. We use a G×−1 gate with input u2 and output
w1 ∈ Vaux and then a G+ gate with inputs u1, w1 and output w2 ∈ Vaux and, finally, a G[0,1] gadget with input w2 and out-
put v.

B.10. (G[0,1]
< , u1, u2, v,nil): Comparison

This gadget ensures that x[v] ∈ [0,1] and
• If x[u1] < x[u2] − ε̂, then x[v] � 1619ε.
• If x[u1] > x[u2] + ε̂, then x[v] � 0619ε.
We use a G×−1 gate with input u1 and output w ∈ Vaux and then a G+ gate with inputs u2,w and output w0 ∈ Vaux. This

ensures that x[w0] � T[−1,1](x[u2] − x[u1])62ε. Let k � �log 2(1=̂ε)� + 1, so 2=̂ε ≤ 2k ≤ 4=̂ε. Next, for i ∈ [k], we use a G×2 gad-
get with input wi−1 and output wi ∈ Vaux. Finally, we use a G[0,1] gadget with input wk and output v.

For the analysis, we first consider the case x[u1] < x[u2] − ε̂. Then, it holds that x[w0] ≥ ε̂ − 2ε ≥ ε̂ − 3ε. First, let us show
by contradiction that there must exist i ∈ [k] such that x[wi] < 2x[wi−1] − 3ε. Assume that, for all i ∈ [k], we have

x[wi] ≥ 2x[wi−1] − 3ε. Then, it follows that x[wk] ≥ 2kε̂ − 3ε
∑k

i�0 2
i ≥ 2kε̂ − 3ε2k+1 ≥ 2̂ε=̂ε − 3ε · 8=̂ε � 2− 24ε=̂ε. If we ensure

that ε < ε̂=24, then we obtain that x[wk] > 1, which is impossible. Thus, let i ∈ [k] be such that x[wi] < 2x[wi−1] − 3ε. Recall
that the G×2 gadget ensures that x[wi] ≥ T[−1,1](2x[wi−1]) − 3ε. Thus, it must be that T[−1,1](2x[wi−1]) < 2x[wi−1], that is,
2x[wi−1] ≥ 1. This implies that x[wi] ≥ 1− 3ε, and thus, x[wi+1] ≥ T[−1,1](2− 6ε) − 3ε ≥ 1− 3ε if we ensure that ε ≤ 1=6. By
induction, it follows that x[wk] ≥ 1− 3ε, and thus, x[v] ≥ 1− 19ε as desired.

Now, consider the case x[u1] > x[u2] + ε̂. By an analogous argument, we obtain that it must be that x[wk] ≤ −1+ 3ε, and
thus, x[v] � T[0,1](x[wk])616ε � 0619ε.

We can now finish the reduction. We set ε � ε̂=25. This ensures that all the assumptions we have made about ε hold
and that all the gadgets that simulate the gates in T have error at most ε̂.
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Endnotes
1 Simmons and Su [50] assume that the resource is a two- or three-dimensional object but only consider cuts by parallel planes; their model
is, therefore, equivalent to that of a one-dimensional object.
2 These classes were introduced by Papadimitriou [39]. These phrases refer to the combinatorial principles that guarantee the existence of sol-
utions. For details, we refer to Roughgarden [41, chapter 20].
3 This version, together with some further simplifications, is used in subsequent work by Filos-Ratsikas et al. [24] to prove that computing an
approximate equilibrium of a first-price auction with subjective priors is PPAD-hard.
4 See http://www.nyu.edu/projects/adjustedwinner for a demonstration and implementation of the procedure.
5 This motivates relaxations such as envy-freeness up to one item (EF1) and envy-freeness up to any item (EFX), which have been extensively
studied in the last few years (e.g., Caragiannis et al. [11], Plaut and Roughgarden [40]). However, as Sandomirskiy and Segal-Halevi [43]
note, when a divorcing couple decides how to split their children or two siblings try to divide three houses between them, it is unlikely that
anyone will agree to a bundle that is envy-free up to one child or house.
6 Specifically, if the linear equations in S ∪ T lead to a unique solution (x1, : : : ,xm), then Gaussian elimination immediately results in this solu-
tion. Otherwise, Gaussian elimination yields a row echelon form; by setting one of the nonpivots yj to be an arbitrary number not equal to xj,
we obtain a solution that is not equal to (x1, : : : ,xm).
7 This means that, for each agent i, the interval [0, 1] can be partitioned into a finite number of intervals so that the density of the agent’s valu-
ation function is either zero or some constant ci over each interval.
8 The notion of agreeability was introduced in an earlier conference version of the paper (Suksompong [52]). Gourvès [28] considered an
extension of the problem that takes into account matroidal constraints.
9 For example, one can use the Lovász or multilinear extension (see Section A.2).
10 See the definition of the consensus halving problem on a line before Theorem 2.
11 A notion in the same spirit called “envy-freeness up to one outer good” is proposed by Bilò et al. [7].
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