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Abstract. We show that removing sigmoid transformation in the skip-
gram with negative sampling (SGNS) objective does not harm the quality
of word vectors significantly and at the same time is related to factorizing
a squashed shifted PMI matrix which, in turn, can be treated as a con-
nection probabilities matrix of a random graph. Empirically, such graph
is a complex network, i.e. it has strong clustering and scale-free degree
distribution, and is tightly connected with hyperbolic spaces. In short,
we show the connection between static word embeddings and hyperbolic
spaces through the squashed shifted PMI matrix using analytical and
empirical methods.
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1 Introduction

Modern word embedding models (McCann et al., 2017; Peters et al., 2018; Devlin
et al., 2019) build vector representations of words in context, i.e. the same word
will have different vectors when used in different contexts (sentences). Earlier
models (Mikolov et al., 2013b; Pennington et al., 2014) built the so-called static
embeddings: each word was represented by a single vector, regardless of the
context in which it was used.

Despite the fact that static word embeddings are considered obsolete today,
they have several advantages compared to contextualized ones. Firstly, static
embeddings are trained much faster (few hours instead of few days) and do not
require large computing resources (1 consumer-level GPU instead of 8–16 non-
consumer GPUs). Secondly, they have been studied theoretically in a number of
works (Levy and Goldberg, 2014b; Arora et al., 2016; Hashimoto et al., 2016;
Gittens et al., 2017; Tian et al., 2017; Ethayarajh et al., 2019; Allen et al., 2019;
Allen and Hospedales, 2019; Assylbekov and Takhanov, 2019; Zobnin and Elis-
tratova, 2019) but not much has been done for the contextualized embeddings
(Reif et al., 2019). Thirdly, static embeddings are still an integral part of deep
neural network models that produce contextualized word vectors, because em-
bedding lookup matrices are used at the input and output (softmax) layers of
such models. Therefore, we consider it necessary to further study static embed-
dings.
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With all the abundance of both theoretical and empirical studies on static
vectors, they are not fully understood, as this work shows. For instance, it is
generally accepted that good quality word vectors are inextricably linked with
a low-rank approximation of the pointwise mutual information (PMI) matrix or
the Shifted PMI (SPMI) matrix, but we show that vectors of comparable quality
can also be obtained from a low-rank approximation of a Squashed SPMI matrix
(Section 2). Thus, a Squashed SPMI matrix is a viable alternative to standard
PMI/SPMI matrices when it comes to obtaining word vectors.

At the same time, it is easy to interpret the Squashed SPMI matrix with
entries in [0, 1) as a connection probabilities matrix for generating a random
graph. Studying the properties of such a graph, we come to the conclusion that
it is a so-called complex network, i.e. it has a strong clustering property and a
scale-free degree distribution (Section 3).

It is noteworthy that complex networks, in turn, are dual to hyperbolic spaces
(Section 4) as was shown by Krioukov et al. (2010). Hyperbolic geometry has
been used to train word vectors (Nickel and Kiela, 2017; Tifrea et al., 2018)
and has proven its suitability — in a hyperbolic space, word vectors need lower
dimensionality than in the Euclidean space.

Thus, to the best of our knowledge, this is the first work that establishes
simultaneously a connection between word vectors, a Squashed SPMI matrix,
complex networks, and hyperbolic spaces. Figure 1 summarizes our work and
serves as a guide for the reader.

Squashed SPMI Complex Networks

Word Embeddings Hyperbolic Spaces

Section 2

Section 3

Section 4

Fig. 1. Summary of our work

Notation

We let R denote the real numbers. Bold-faced lowercase letters (x) denote vec-
tors, plain-faced lowercase letters (x) denote scalars, 〈x,y〉 is the Euclidean
inner product, (aij) is a matrix with the ij-th entry being aij . ‘i.i.d.’ stands
for ‘independent and identically distributed’. We use the sign ∝ to abbreviate
‘proportional to’, and the sign ∼ to abbreviate ‘distributed as’.

Assuming that words have already been converted into indices, let W :=
{1, . . . , n} be a finite vocabulary of words. Following the setup of the widely
used word2vec model (Mikolov et al., 2013b), we use two vectors per each
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word i: (1) wi ∈ Rd when i ∈ W is a center word, (2) ci ∈ Rd when i ∈ W is a
context word; and we assume that d� n.

In what follows we assume that our dataset consists of co-occurence pairs
(i, j). We say that “the words i and j co-occur” when they co-occur in a fixed-
size window of words. The number of such pairs, i.e. the size of our dataset, is
denoted by N . Let #(i, j) be the number of times the words i and j co-occur,
then N =

∑
i∈W

∑
j∈W #(i, j).

2 Squashed SPMI and Word Vectors

A well known skip-gram with negative sampling (SGNS) word embedding model
of Mikolov et al. (2013b) maximizes the following objective function∑

i∈W
∑
j∈W #(i, j) (log σ(〈wi, cj〉) + k · Ej′∼p[log σ(−〈wi, cj′〉)]) , (1)

where σ(x) = 1
1+e−x is the logistic sigmoid function, p is a smoothed unigram

probability distribution for words1, and k is the number of negative samples to
be drawn. Interestingly, training SGNS is approximately equivalent to finding a
low-rank approximation of a Shifted PMI matrix (Levy and Goldberg, 2014b)

in the form log p(i,j)
p(i)p(j) − log k ≈ 〈wi, cj〉, where the left-hand side is the ij-th

element of the n×n shifted PMI matrix, and the right-hand side is an element of
a matrix with rank ≤ d since wi, cj ∈ Rd. This approximation (up to a constant
shift) was later re-derived by Arora et al. (2016); Assylbekov and Takhanov
(2019); Allen et al. (2019); Zobnin and Elistratova (2019) under different sets
of assuptions. In this section we show that constraint optimization of a slightly
modified SGNS objective (1) leads to a low-rank approximation of the Squashed
Shifted PMI (σSPMI) matrix, defined as σSPMIij := σ(PMIij − log k).

Theorem 1. Assuming 0 < 〈wi, cj〉 < 1, the following objective function

L =
∑
i∈W

∑
j∈W

#(i, j) (log〈wi, cj〉+ k · Ej′∼P [log(1− 〈wi, cj′〉)])︸ ︷︷ ︸
`(wi,cj)

, (2)

reaches its optimum at 〈wi, cj〉 = σSPMIij.

Proof. Expanding the sum and the expected value in (2) as in Levy and Goldberg

(2014b), and defining p(i, j) := #(i,j)
N , p(i) := #(i)

N , we have

L = N
∑
i∈W

∑
j∈W

p(i, j) · log〈wi, cj〉+ p(i) · p(j) · k · log(1− 〈wi, cj〉). (3)

Thus, we can rewrite the individual objective `(wi, cj) in (2) as

` = N [p(i, j) · log〈wi, cj〉+ p(i) · p(j) · k · log(1− 〈wi, cj〉)] . (4)

1 The authors of SGNS suggest p(i) ∝ #(i)3/4.
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Differentiating (4) w.r.t. 〈wi, cj〉 we get

∂`

∂〈wi, cj〉
= N

[
p(i, j)

〈wi, cj〉
− p(i) · p(j) · k

1− 〈wi, cj〉

]
.

Setting this derivative to zero gives

p(i, j)

p(i)p(j)
· 1

k
=

〈wi, cj〉
1− 〈wi, cj〉

⇒ log
p(i, j)

p(i)p(j)
− log k = log

〈wi, cj〉
1− 〈wi, cj〉

⇔ log
p(i, j)

p(i)p(j)
− log k = logit〈wi, cj〉

⇔ σ

(
log

p(i, j)

p(i)p(j)
− log k

)
= 〈wi, cj〉, (5)

where logit(q) := log q
1−q is the logit function which is the inverse of the logistic

sigmoid function, i.e. σ(logit(q)) = q. From (5) we have σSPMIij = 〈wi, cj〉,
which concludes the proof.

Remark 1. Since σ(x) can be regarded as a smooth approximation of the Heav-
iside step function H(x), defined as H(x) = 1 if x > 0 and H(x) = 0 otherwise,
it is tempting to consider a binarized SPMI (BSPMI) matrix H(PMIij − log k)
instead of σSPMI. Being a binary matrix, BSPMI can be interpreted as an ad-
jacency matrix of a graph, however our empirical evaluation below (Table 1)
shows that such strong roughening of the σSPMI matrix degrades the quality
of the resulting word vectors. This may be due to concentration of the SPMI
values near zero (Figure 5), while σ(x) is approximated by H(x) only for x away
enough from zero.

Remark 2. The objective (2) differs from the SGNS objective (1) only in that the
former does not use the sigmoid function (keep in mind that σ(−x) = 1−σ(x)).
We will refer to the objective (2) as Nonsigmoid SGNS.

Direct Matrix Factorization

Optimization of the Nonsigmoid SGNS (2) is not the only way to obtain a low-
rank approximation of the σSPMI matrix. A viable alternative is factorizing the
σSPMI matrix with the singular value decomposition (SVD): σSPMI = UΣV>,
with orthogonal U,V ∈ Rn×n and diagonal Σ ∈ Rn×n, and then zeroing out
the n− d smallest singular values, i.e.

σSPMI ≈ U1:n,1:dΣ1:d,1:dV
>
1:d,1:n, (6)

where we use Aa:b,c:d to denote a submatrix located at the intersection of rows
a, a + 1, . . . , b and columns c, c + 1, . . . , d of A. By the Eckart-Young theorem
(Eckart and Young, 1936), the right-hand side of (6) is the closest rank-d matrix
to the σSPMI matrix in Frobenius norm. The word and context embedding
matrices can be obtained from (6) by setting WSVD := U1:n,1:d

√
Σ1:d,1:d, and

CSVD :=
√

Σ1:d,1:dV
>
1:d,1:n. When this is done for a positive SPMI (PSPMI)

matrix, defined as max(PMIij − log k, 0), the resulting word embeddings are
comparable in quality with those from the SGNS (Levy and Goldberg, 2014b).
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Empirical Evaluation of the σSPMI-based Word Vectors

To evaluate the quality of word vectors resulting from the Nonsigmoid SGNS
objective and σSPMI factorization, we use the well-known corpus, text8.2 We ig-
nored words that appeared less than 5 times, resulting in a vocabulary of 71,290
words. The SGNS and Nonsigmoid SGNS embeddings were trained using our
custom implementation.3 The SPMI matrices were extracted using the hyper-
words tool of Levy et al. (2015) and the truncated SVD was performed using
the scikit-learn library of Pedregosa et al. (2011). The trained embeddings

Table 1. Evaluation of word embeddings on the analogy tasks (Google and MSR)
and on the similarity tasks (the rest). For word similarities evaluation metric is the
Spearman’s correlation with the human ratings, while for word analogies it is the
percentage of correct answers.

Method WordSim MEN M. Turk Rare Words Google MSR

SGNS .678 .656 .690 .334 .359 .394
Nonsigm. SGNS .649 .649 .695 .299 .330 .330

PMI + SVD .663 .667 .668 .332 .315 .323
SPMI + SVD .509 .576 .567 .244 .159 .107
PSPMI + SVD .638 .672 .658 .298 .246 .207
σSPMI + SVD .657 .631 .661 .328 .294 .341
BSPMI + SVD .623 .586 .643 .278 .177 .202

were evaluated on several word similarity and word analogy tasks: WordSim
(Finkelstein et al., 2002), MEN (Bruni et al., 2012), M.Turk (Radinsky et al.,
2011), Rare Words (Luong et al., 2013), Google (Mikolov et al., 2013a), and
MSR (Mikolov et al., 2013c). We used the Gensim tool of Řeh̊uřek and Sojka
(2010) for evaluation. For answering analogy questions (a is to b as c is to ?)
we use the 3CosAdd method of Levy and Goldberg (2014a) and the evaluation
metric for the analogy questions is the percentage of correct answers. We mention
here that our goal is not to beat state of the art, but to compare SPMI-based
embeddings (SGNS and SPMI+SVD) versus σSPMI-based ones (Nonsigmoid
SGNS and σSPMI+SVD). The results of evaluation are provided in Table 1.

As we can see the Nonsigmoid SGNS embeddings in general underperform the
SGNS ones but not by a large margin. σSPMI shows a competitive performance
among matrix-based methods across most of the tasks. Also, Nonsigmoid SGNS
and σSPMI demonstrate comparable performance as predicted by Theorem 1.
Although BSPMI is inferior to σSPMI, notice that such aggressive compression
as binarization still retains important information on word vectors.

2 http://mattmahoney.net/dc/textdata.html.
3 https://github.com/zh3nis/SGNS

http://mattmahoney.net/dc/textdata.html
https://github.com/zh3nis/SGNS
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Fig. 2. Spectral distribution of the σSPMI-induced graphs (left and middle columns),
and of scale-free random graphs with strong clustering property (right top: Goh et al.
(2001), right bottom: Farkas et al. (2001)). When generating several random graphs
from the same σSPMI matrix, their eigenvalue distributions are visually indistinguish-
able, thus we display the results of one run per each matrix.

Fig. 3. Degree distributions of the σSPMI-induced graphs. The axes are on logarithmic
scales.

Table 2. Clustering coefficients of the σSPMI-induced graphs. For each corpus–window
combination we generate ten graphs and report 95% confidence intervals across these
ten runs.

text8 enwik9

window = 2 window = 5 window = 2 window = 5

C .1341± .0006 .1477± .0005 .1638± .0006 .1798± .0004
k̄/n .0014± .0000 .0030± .0000 .0006± .0000 .0012± .0000
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3 σSPMI and Complex Networks

σSPMI matrix has the following property: its entries σSPMIij ∈ [0, 1) can be
treated as connection probabilities for generating a random graph. As usually,
by a graph G we mean a set of vertices V and a set of edges E ⊂ V × V. It
is convenient to represent graph edges by its adjacency matrix (eij), in which
eij = 1 for (i, j) ∈ E , and eij = 0 otherwise. The graph with V := W and
eij ∼ Bernoulli(σSPMIij) will be referred to as σSPMI-induced Graph.

3.1 Spectrum of the σSPMI-induced Graph

First of all, we look at the spectral properties of the σSPMI-induced Graphs.4

For this, we extract SPMI matrices from the text8 and enwik9 datasets using
the hyperwords tool of Levy et al. (2015). We use the default settings for all
hyperparameters, except the word frequency threshold and context window size.
We ignored words that appeared less than 100 times and 250 times in text8

and enwik9 correspondingly, resulting in vocabularies of 11,815 and 21,104 cor-
respondingly. We additionally experiment with the context window size 5, which
by default is set to 2. We generate random graphs from the σSPMI matrices and
compute their eigenvalues using the TensorFlow library (Abadi et al., 2016),
and the above-mentioned threshold of 250 for enwik9 was chosen to fit the GPU
memory (11GB, RTX 2080 Ti). The eigenvalue distributions are provided in
Figure 2.

The distributions seem to be symmetric, however, the shapes of distribu-
tions are far from resembling the Wigner semicircle law x 7→ 1

2π

√
4− x2, which

is the limiting distribution for the eigenvalues of many random symmetric ma-
trices with i.i.d. entries (Wigner, 1955, 1958). This means that the entries of the
σSPMI-induced graph’s adjacency matrix are dependent, otherwise we would
observe approximately semicircle distributions for its eigenvalues. We observe
some similarity between the spectral distributions of the σSPMI-induced graphs
and of the so-called complex networks which arise in physics and network science
(Figure 2).

Notice that the connection between human language structure and complex
networks was observed previously by Cancho and Solé (2001). A thorough review
on approaching human language with complex networks was given by Cong and
Liu (2014). In the following subsection we will specify precisely what we mean
by a complex network.

3.2 Clustering and Degree Distribution of the σSPMI-induced
Graph

We will use two statistical properties of a graph – degree distribution and clus-
tering coefficient. The degree of a given vertex i is the number of edges that
connects it with other vertices, i.e. deg(i) =

∑
j∈V eij . The clustering coefficient

4 We define the graph spectrum as the set of eigenvalues of its adjacency matrix.
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measures the average fraction of pairs of neighbors of a vertex that are also
neighbors of each other. The precise definition is as follows.

Let us indicate by Gi = {j ∈ V | eij = 1} the set of nearest neighbors of a

vertex i. By setting li =
∑
j∈V eij

[∑
k∈Gi; j<k ejk

]
, we define the local clustering

coefficient as C(i) = li

(|Gi|2 )
, and the clustering coefficient as the average over V:

C = 1
n

∑
i∈V C(i).

Let k̄ be the average degree per vertex, i.e. k̄ = 1
n

∑
j∈V eij . For random bi-

nomial graphs, i.e. graphs with edges eij
iid∼ Bernoulli(p), it is well known (Erdős

and Rényi, 1960) that C ≈ k̄
n and deg(i) ∼ Binomial(n − 1, p). A complex

network is a graph, for which C � k̄
n and p(deg(i) = k) ∝ 1

kγ , where γ is some
constant (Dorogovtsev, 2010). The latter property is referred to as scale-free (or
power-law) degree distribution.

We constructed σSPMI-induced Graphs from the text8 and enwik9 datasets
using context windows of sizes 2 and 5 and ignoring words that appeared less
than 5 times, and computed their clustering coefficients (Table 2) as well as de-
gree distributions (Figure 3) using the NetworKit tool (Staudt et al., 2016).
NetworKit uses the algorithm of Schank and Wagner (2005) to compute the
clustering coefficient. As we see, the σSPMI-induced graphs are complex net-
works, and this brings us to the hyperbolic spaces.

4 Complex Networks and Hyperbolic Geometry

Complex networks are “dual” to hyperbolic spaces as was shown by Krioukov
et al. (2010). They showed that any complex network, as defined in Section 3,
has an effective hyperbolic geometry underneath. Apart from this, they also
showed that any hyperbolic geometry implies a complex network: they placed
randomly n points (nodes) into a hyperbolic disk of radius R, and used pij :=
σ (c[R− xij ]) as connection probability for connecting nodes i and j, where xij
is the hyperbolic distance between i and j, and c is a constant. An example of
such random graph is shown in Figure 4. Krioukov et al. (2010) showed that the
resulting graph is a complex network. They establish connections between the
clustering coefficient C and the power-law exponent γ of a complex network and
the curvature of a hyperbolic space.

Comparing the construction of Krioukov et al. (2010) to the way we generate
a random graph from the σSPMI matrix, and taking into account that both
methods produce similar structures (complex networks), we conclude that the
distribution of the SPMI values should be similar to the distribution of R− xij ,
i.e. PMIij − log k ∼ R− xij . To verify this claim we compare the distribution of
SPMI values with the p.d.f. of a random variable R−X, where X is a hyperbolic
distance between two random points on the hyperbolic disk (the exact form of
this p.d.f. is given in the Appendix A). R was chosen according to the formula
R = 2 ln[8n/(πk̄)] (Krioukov et al., 2010), where k̄ is the average degree of the
σSPMI-induced Graph. The results are shown in Figure 5. As we can see, the
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Fig. 4. Rand. hyperbolic graph. Fig. 5. SPMI values distr’n (top) vs R−X.

two distributions are indeed similar and the main difference is in the shift—
distribution of R −X is shifted to the left compared to the distribution of the
SPMI values. This allows us reinterpreting the pointwise mutual information as
the negative of hyperbolic distance (up to scaling and shifting).

5 Conclusion

It is noteworthy that the seemingly fragmented sections of scientific knowledge
can be closely interconnected. In this paper, we have established a chain of con-
nections between word embeddings and hyperbolic geometry, and the key link
in this chain is the Squashed Shifted PMI matrix. Claiming that hyperbolic-
ity underlies word vectors is not novel (Nickel and Kiela, 2017; Tifrea et al.,
2018). However, this work is the first attempt to justify the connection between
hyperbolic geometry and the word embeddings. In the course of our work, we dis-
covered novel objects—Nonsigmoid SGNS and Squashed Shifted PMI matrix—
which can be investigated separately in the future.
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Cancho, R.F.I., Solé, R.V.: The small world of human language. Proceedings of
the Royal Society of London. Series B: Biological Sciences 268(1482), 2261–
2265 (2001)

Cong, J., Liu, H.: Approaching human language with complex networks. Physics
of life reviews 11(4), 598–618 (2014)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of
NAACL-HLT. pp. 4171–4186 (2019)

Dorogovtsev, S.: Lectures on Complex Networks. Oxford University Press, Inc.,
USA (2010)

Eckart, C., Young, G.: The approximation of one matrix by another of lower
rank. Psychometrika 1(3), 211–218 (1936)
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A Auxiliary Results

Proposition 1. Let X be a distance between two points that were randomly
uniformly placed in the hyperbolic disk of radius R. The probability distribution
function of X is given by

fX(x) =

∫ R

0

∫ R

0

sinh(x)

π
√

1−A(r1, r2, x) sinh(r1) sinh(r2)
ρ(r1)ρ(r2)dr1dr2, (7)

where A(r1, r2, x) = cosh(r1) cosh(r2)−cosh(x)
sinh(r1) sinh(r2) , and ρ(r) = sinh r

coshR−1 .

The proof is by direct calculation and is omitted due to page limit.
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