Skip to main content

Self-organising Neural Network Hierarchy

  • Conference paper
  • First Online:
Book cover AI 2020: Advances in Artificial Intelligence (AI 2020)

Abstract

Mammalian brains exhibit functional self-organisation between different neocortical regions to form virtual hierarchies from a physical 2D sheet. We propose a biologically-inspired self-organizing neural network architecture emulating the same. The network is composed of autoencoder units and driven by a meta-learning rule based on maximizing the Shannon entropy of latent representations of the input, which optimizes the receptive field placement of each unit within a feature map. Unlike Neural Architecture Search, here both the network parameters and the architecture are learned simultaneously. In a case study on image datasets, we observe that the meta-learning rule causes a functional hierarchy to form, and leads to learning progressively better topological configurations and higher classification performance overall, starting from randomly initialized architectures. In particular, our approach yields competitive performance in terms of classification accuracy compared to optimal handcrafted architecture(s) with desirable topological features for this network type, on both MNIST and CIFAR-10 datasets, even though it is not as significant for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available on github under: https://github.com/Cerenaut/self-organizing.

  2. 2.

    http://yann.lecun.com/exdb/mnist/.

References

  1. Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: Advances in Neural Information Processing Systems, pp. 8699–8710 (2018)

    Google Scholar 

  2. Corominas-Murtra, B., Goñi, J., Solé, R.V., Rodríguez-Caso, C.: On the origins of hierarchy in complex networks. Proc. Natl. Acad. Sci. 110(33), 13316–13321 (2013)

    Article  MathSciNet  Google Scholar 

  3. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. arXiv preprint arXiv:1808.05377 (2018)

  4. Friston, K.: A free energy principle for biological systems. Entropy 14(11), 2100–2121 (2012)

    Article  MathSciNet  Google Scholar 

  5. Goldberg, E.: Gradiental approach to neocortical functional organization. J. Clin. Exp. Neuropsychol. 11(4), 489–517 (1989)

    Article  Google Scholar 

  6. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  7. Kandel, E.R., et al.: Principles of Neural Science, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  9. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  10. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570 (2015)

    Google Scholar 

  11. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  12. Lin, Z., Memisevic, R., Konda, K.: How far can we go without convolution: improving fully-connected networks. arXiv preprint arXiv:1511.02580 (2015)

  13. Purwani, S., Nahar, J., Twining, C.: Analyzing bin-width effect on the computed entropy. In: AIP Conference Proceedings, vol. 1868, p. 040008. AIP Publishing LLC (2017)

    Google Scholar 

  14. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  15. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Kuala Lumpur (2016)

    MATH  Google Scholar 

  16. Saxe, A.M., et al.: On the information bottleneck theory of deep learning. J. Stat. Mech. Theory Exp. 2019(12), 124020 (2019)

    Article  MathSciNet  Google Scholar 

  17. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810 (2017)

  18. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  19. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  20. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  21. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5. IEEE (2015)

    Google Scholar 

  22. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  23. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satya Borgohain , Gideon Kowadlo , David Rawlinson , Christoph Bergmeir , Kok Loo , Harivallabha Rangarajan or Levin Kuhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borgohain, S. et al. (2020). Self-organising Neural Network Hierarchy. In: Gallagher, M., Moustafa, N., Lakshika, E. (eds) AI 2020: Advances in Artificial Intelligence. AI 2020. Lecture Notes in Computer Science(), vol 12576. Springer, Cham. https://doi.org/10.1007/978-3-030-64984-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64984-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64983-8

  • Online ISBN: 978-3-030-64984-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics