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Abstract. Established experimental procedures for one-shot machine
learning do not test the ability to learn or remember specific instances
of classes, a key feature of animal intelligence. Distinguishing specific
instances is necessary for many real-world tasks, such as remembering
which cup belongs to you. Generalisation within classes conflicts with
the ability to separate instances of classes, making it difficult to achieve
both capabilities within a single architecture. We propose an extension
to the standard Omniglot classification-generalisation framework that
additionally tests the ability to distinguish specific instances after one
exposure and introduces noise and occlusion corruption. Learning is de-
fined as an ability to classify as well as recall training samples. Com-
plementary Learning Systems (CLS) is a popular model of mammalian
brain regions believed to play a crucial role in learning from a single
exposure to a stimulus. We created an artificial neural network imple-
mentation of CLS and applied it to the extended Omniglot benchmark.
Our unsupervised model demonstrates comparable performance to exist-
ing supervised ANNs on the Omniglot classification task (requiring gen-
eralisation), without the need for domain-specific inductive biases. On
the extended Omniglot instance-recognition task, the same model also
demonstrates significantly better performance than a baseline nearest-
neighbour approach, given partial occlusion and noise.

Keywords: CLS · Hippocampus · One-shot · Specifics · Instances · Un-
supervised · Generalisation.

1 Introduction

One-shot learning has seen renewed interest in recent years. Many studies [12,27]
are motivated by the apparent limitations of modern ML relative to animal-like
learning [14]. An ability for one-shot learning alleviates the reliance on large
labelled datasets in which samples are assumed to be i.i.d., implying an un-
changing world. This is particularly relevant for autonomous real-world agents,
where samples are necessarily highly correlated and typically unlabelled.
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However, we believe that the standard approach - classification of general
classes - does not go far enough. Learning specific instances is crucial for intelli-
gent agents, and is something we take for granted. For example, identifying your
own coffee cup from other cups, in addition to recognising that it belongs to the
‘cup’ category. More generally, it underpins memory for singular facts and an
individual’s own autobiographical history, important for future decision making.

At first glance, learning specific instances appears easy. An obvious starting
point is nearest-neighbour lookup in a buffer of past observations. However, this
approach may perform poorly given observational variation such as occlusion,
and have trouble also generalising class recognition ability. Conversely, methods
that can generalise would be unlikely to do well at learning specific instances, as
they are conflicting capabilities.

Learning of specific instances is not to be confused with Instance-based Learn-
ing [24]. Such approaches store instances during training, and use them to clas-
sify test samples e.g. k-nearest neighbour, SVM’s and RBFs. Our objective is
learning a model of the instances, despite observational variation, while being
able to distinguish even very similar instances from each other. We identify two
important aspects of learning - classification and recall (generation) of concept.

Complementary Learning Systems (CLS) is a model of mammalian learning
that describes the interplay between the neocortex and a region called the Hip-
pocampal Formation (HF) [19,22]. CLS is believed to be crucial for fast learning
and is recognised to be important for intelligent agents [10]. Our motivation is
to expand the standard definition of one-shot learning, and to test if the CLS
architecture can satisfy the requirements.

In this paper we propose a broader benchmark for one-shot learning that
includes robust classification of specific instances given observational variance
by introducing image corruption with occlusion and noise. We present an ANN
implementation of CLS using an Artificial Hippocampal Algorithm (AHA) and
apply it to the extended benchmark. The performance of the system is compared
to two baselines, a simplified version of CLS that replaces the hippocampal model
with a conventional ML model optimised for the task, and to the naive solution
for learning specifics - a buffer with nearest neighbour lookup.

2 Background

2.1 One-shot Learning

Following seminal work by Li et al. [15,16], the area was re-invigorated by Lake
et al. [11], who introduced a popular test that has become a standard benchmark
[12]. It is a one-shot classification task on the Omniglot dataset of handwritten
characters. Classification is posed as a matching task, where a given character
must be matched with a character of the same class in a test set, see Section 4
for details. The framework was formalised by Vinyals et al. [27].

A typical approach is to pre-train a model on many classes and use learnt
concepts to recognise new classes quickly from one or few examples. Often framed
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as meta-learning or “learning to learn”, there are multiple implementations us-
ing neural networks that require external labels and supervised learning during
pre-training, such as Siamese networks [8], matching networks [27], and proto-
typical networks [26]. Two notable Bayesian approaches, BPL [12] and RCN [2],
achieve above and close to human level performance respectively. The superior
performance of BPL may be partially explained by its use of prior knowledge
about handwriting via stroke formation. RCN, by virtue of the design which is
modeled on the visual cortex, is also specialised for this type of visual task. It is
less clear how it could be applied to other datasets and problems where contour
topology is less distinct or relevant. A comprehensive review is given in [13].

2.2 Complementary Learning Systems (CLS)

Complementary Learning Systems (CLS) is a standard framework for under-
standing the function of the HF [19,21,10]. CLS consists of two differentially spe-
cialised and complementary structures, neocortex and HF, shown in Figure 1a.
In this framework, the neocortex is analogous to a conventional ML model, incre-
mentally learning regularities across many observations, comprising a long-term
memory (LTM). It forms overlapping and distributed representations that are
effective for inference. In contrast, the HF rapidly learns distinct observations,
forming sparser, non-overlapping and therefore non-interfering representations,
functioning as a short term memory (STM). Recent memories from the HF are
replayed to neocortex, re-instating the original activations resulting in consol-
idation as long-term memory (LTM). Patterns are replayed in an interleaved
fashion, avoiding catastrophic forgetting. In addition, they can be replayed se-
lectively according to salience. There have been numerous implementations of
CLS [20,7,4,23,25] and Rolls et al. presented a similar model with greater neu-
roanatomical detail [22].

Overall, the HF functions as an autoassociative memory that can recall mem-
ories from partial cues. CLS describes the HF in terms of distinct functional units
called subfields. Together they comprise a unification of pattern completion and
pattern separation pathways. Reported implementations (see citations above)
are expressed at the level of individual neurons replicating known biological
plasticity and dynamics, and have not been applied to ML benchmarks.

3 Model

Our approach is to implement a CLS-style STM with an LTM (Figure 1a), with
biological plausibility constraints [9] - all components are trained with local and
immediate credit assignment. The LTM comprises a simple vision component
suitable for image feature extraction. The STM is implemented with AHA, an
Artificial Hippocampal Algorithm, which follows the subfield architecture of the
HF described by CLS. There are two baselines for comparison. Firstly, the LTM
alone is compared to performance of LTM+STM. It constitutes a naive solution
to classifying specific instances (see Section 4). The second baseline, FastNN, is
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an alternate STM comprised of a standard ML component empirically optimised
for the same tasks. We provide the code and configuration required to reproduce
experiments in a GitHub repository1.

3.1 Training and Testing Framework

With complementary systems, training and testing are non-standard, and are
therefore explained here to provide context for the remainder of the paper.
Stage 1: Pre-train LTM: Train LTM on a training set over multiple epochs.
The LTM learns incrementally about common features that can be used com-
positionally to represent unseen classes.
Stage 2: Evaluate LTM+STM: Evaluation is conducted with a disjoint eval-
uation set. The LTM does not learn during this stage. Training and Testing of
STM occurs rapidly, allowing multiple internal cycles but only one exposure to an
external stimulus. The STM is reset after each evaluation2. Evaluation consists
of two steps performed in succession - Train (encoding) and Test (inference).

– Train: A small support set is presented once (referred to as ‘study set’ in
CLS). STM modules are set to train mode to learn the samples.

– Test : A small query set is presented (referred to as ‘recall’ in CLS), STM
modules are in inference mode. For each ‘recall’ sample, the system is ex-
pected to retrieve the corresponding sample from the ‘study’ set. If correct,
it is considered to be ‘recognised’ - an AHA moment!

3.2 LTM - Vision Component

The role of the LTM is to process high-dimensional sensor input, and output
relatively abstract visual features that can be used as compositional primitives.
A single layer convolutional sparse autoencoder based on [17,18] provides the re-
quired embedding. However, in Omniglot there is a lot of empty background that
is encoded with strong hidden layer activity. Lacking an attention mechanism,
this detracts from compositionality of foreground features. To suppress encod-
ing of the background, we added an ‘Interest Filter’ which loosely mimics known
retinal processing (see below). Smoothing is applied to provide some tolerance
to feature location and a final max-pooling stage to reduce dimensionality.

Interest Filter The retina possesses centre-surround inhibitory and excitatory
cells that can be well approximated with a Difference of Gaussians (DoG) kernel
[28]. Positive and negative DoG filters are used to enhance positive and negative
intensity transitions. Local non-maxima suppression merges nearby features and
a ‘top-k’ function creates a mask of the most significant features globally. Positive
and negative masks are combined by summation giving a final 2D mask that is
applied to all channels of the convolutional autoencoder output.

1 https://github.com/Cerenaut/aha
2 Adam Optimizer is reset and trainable parameters are re-initialised.

https://github.com/Cerenaut/aha
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Fig. 1. a) CLS: The STM learns and forgets rapidly. Salient memories are replayed to
the LTM for incremental statistical learning. b) System diagram: Our implementa-
tion of CLS. Local credit assignment via shallow backpropagation is used throughout.
The dense layer in PS (green) is initialised, but not trained.

3.3 STM - Artificial Hippocampal Algorithm (AHA)

AHA is our implementation of CLS. For greater details on CLS, the biologi-
cal basis for AHA design choices, and in-depth implementation details, see [9].
The components and connectivity are shown in Figure 1b. LTM outputs sparse
distributed overlapping patterns. The signal becomes sparser and more orthog-
onal through PS, minimising interference between patterns, resulting in distinct
representations for similar inputs.

In train mode, PS patterns are encoded/memorised into PC, an autoassociative,
content-addressable memory. They form a target, which PR learns to retrieve
from LTM distributed representations. PM learns to map from the stored non-
interfering patterns, to the originating sparse distributed patterns.

In test mode, PR retrieves the corresponding stored PC pattern using input
from LTM, which is used to cue complete recall from PC. PS is not used as a
cue, because even small input differences will result in orthogonal PS outputs.
PC can retrieve a crisp, complete pattern, that in turn enables PM to recall the
original observation. In future work this will be used for improved inference and
consolidation of memories.

The use of PS for encoding and PR for recall is based on the Hippocampal
model by Rolls [22,23]. The role of each subfield is detailed below:

PS - Pattern Separation PS is implemented with a single fully-connected Ar-
tificial Neural Network (ANN) layer with sparsity constraints and temporal in-
hibition. Sparsity is implemented as a ‘top-k’ ranking per sample, mimicking a
local competitive process via inhibitory interneurons. Low k produces outputs
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with low overlap, but orthogonality is further improved by replicating the sparse
connectivity observed in this pathway in the hippocampus [23]. A portion of
the incoming connections are removed by setting weights to zero (similar to the
sparsening technique of [1]). Additionally, after a neuron fires (i.e. it is amongst
the top-k), it is temporarily inhibited, mimicking the refractory period observed
in biological neurons. PS is initialised with uniformly distributed random weights
and does not undergo any training.

PC - Pattern Completion PC is implemented with a Hopfield network [6]. Unlike
a standard Hopfield network, there are separate input pathways for encoding
(PS) and recall (PR). Output layers of PS and PR are the same size as PC. PS
and PR output signals are conditioned from a continuous value [0,1] to a binary
signed unit range [-1,1], chosen for better Hopfield performance.

PR - Pattern Retrieval PR is implemented with a 2-layer fully-connected ANN.
In training, PS output is used as an internally generated label constituting self-
supervised learning [3]. Usually in self-supervised learning, prior task knowledge
is used to set a pre-conceived goal such as rotation, with the motivation of
learning generalisable representations. In the case of AHA, no prior is required.
The motivation is separability and as such, the use of orthogonal patterns as
labels is very effective.

PM - Pattern Mapping PM is implemented with a 2-layer fully-connected ANN.
In this study we trained it to reconstruct the input images rather than the LTM
output, for easy assessment of recalled image quality and correctness.

AHA - Theory of Operation

Compositionality A central capability of AHA is the memorisation of new con-
junctions of primitive concepts. The primitives can be composed in a vast num-
ber of new combinations, a feature of animal-like learning [14]. Memorisation of
conjunctions of concepts is an aspect of episodic memory, as identified in the
hippocampal computational modelling literature [7] (expanded in [9]).

Generalisation to subsequent observations of the new combination is achieved
through unification of separation and completion (below). The scope of general-
isation depends on the level of abstraction of the primitives.

Unifying Separation and Completion Separation and completion are conflicting
capabilities requiring separate pathways. Unification is achieved through the
collaboration of PS and PR. PS sets a target for PR and PC to learn, providing a
common representational ‘space’. This makes it possible to separate PC encoding
and retrieval between the separation and completion pathways respectively. In
this way, they don’t conflict with each other, but each operate to their strengths.
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3.4 Baseline STM - FastNN

FastNN is a 2-layer fully-connected ANN. Like AHA, the target for recall is the
input image itself (rather than LTM encodings) for ease of analysis. It is ‘fast’
in that it also learns given only one external stimulus. We empirically optimised
the learning rate, training iterations, number and size of hidden layers and the
other hyperparameters.

4 Experiments

Omniglot Benchmark - One-shot classification task We tested our models on
the one-shot classification test from [12]. Referring to the train/test framework
(Section 3.1), first the LTM is pre-trained on a ‘background’ set of 30 alphabets.
Then using a disjoint ‘evaluation’ set of 10 alphabets, a single ‘train’ character is
presented. The task is to identify the matching character from 20 distinct ‘test’
characters from the same alphabet by a different writer. This is repeated for 20
characters comprising a single ‘run’. The experiment consists of 20 runs in total.
Accuracy is averaged over the 20 runs. Characters and alphabets were selected
to maximise difficulty through confusion of similar characters [12].

The method used to determine the matching character varies between re-
ported studies. In this work, we use minimum MSE of an internal representation.
For LTM, we used the autoencoder encoding, for LTM+AHA, we report PR and
PC and for LTM+FastNN the hidden layer encoding. None of these networks are
explicitly trained to classify. In addition to accuracy, the quality of end-to-end
retrieval of appropriate memories is assessed with MSE recall loss.

One-shot instance-classification task We extended the experiments with the one-
shot instance-classification task. It is the same as one-shot classification, except
that the ‘train’ character exemplar must be matched with the exact same exem-
plar amongst 20 ‘test’ distractor exemplars of the same character class. Being
the same character class, all the exemplars are very similar making separation
difficult. In each run, the character class and exemplars are selected by randomly
sampling without repeats from the ‘evaluation’ set.

Common Conditions In addition, we explored robustness by introducing im-
age corruption to emulate realistic challenges in visual processing that could
also apply to other sensory modalities. Noise emulates imperfect sensor capture.
For example, in visual recognition, the target object might be dirty or lighting
conditions changed. Occlusion emulates incomplete sensing e.g. due to obstruc-
tion by another object. Robust performance is a feature of animal-like learning
that would confer practical benefits to machines, and is therefore important to
explore [1]. Occlusion is achieved with randomly placed circles, completely con-
tained within the image. Noise is introduced by replacing a proportion of the
pixels with a random intensity value drawn from a uniform distribution.

For both tests, instead of presenting 1 test character at a time, all 20 are
presented simultaneously, made possible by the short term memory of CLS.
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(a) One-shot classification with occlusion (b) One-shot classification with noise

(c) One-shot instance-classification with
occlusion

(d) One-shot instance-classification with
noise

Fig. 2. Accuracy vs occlusion and noise. LTM+STM improves performance over
baseline LTM. AHA STM is superior to the baseline FastNN STM. The effect is more
pronounced for occlusion than noise. Occlusion diameter is expressed as a fraction of
image side length, noise as a fraction of image area. The mean value is bold with
medium shading for 1 standard deviation, light shading demarcates min/max values.

Noise and occlusion is increased from none, to almost complete corruption, in
10 increments. The highest level is capped at 98% corruption, to ensure some
meaningful output. Every test is repeated with 10 random seeds.

In one-shot classification, strong generalisation is required as well as some
pattern separation to distinguish similar character classes. The one-shot instance-
classification task requires strong pattern separation, as well as some generali-
sation for robustness.

5 Results

5.1 Accuracy

One-shot classification results are shown in Figures 2a and 2b. LTM accuracy
starts at 71.6%, without image corruption. Increasing noise affects all features
equally and gradually, whereas occlusion increases the likelihood of suddenly
removing important topological features. At very high occlusion, the character
is mostly covered, leading to chance level performance. All signals follow the
same overall trend as LTM.
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Table 1. Comparison of algorithms for one-shot classification, without image
corruption. LTM+AHA is competitive with state-of-the-art convolutional approaches
whilst demonstrating a wider range of capabilities.

Algorithm Accuracy (%)

BPL [13] 96.7
Human [13] 95.5

RCN [2] 92.7
Simple Conv Net [13] 86.5

Algorithm Accuracy (%)

LTM+AHA 86.4
Prototypical Net [13] 86.3

LTM+FastNN 81.9
VHE [5] 81.3

With no noise or occlusion, PR at 86.4% has an advantage of almost 15%
over LTM and is comparable to other ANN results for this task (Table 5.1). This
advantage is maintained with moderate levels of occlusion. As extreme occlusion
begins to cover most of the character, the accuracy of PR, PC and LTM converge.
However, the advantage is maintained over all noise levels. PC accuracy was no
better than LTM.

With no corruption, FastNN improves on LTM accuracy by 10.3%, 4.4% less
than the AHA improvement. The advantage of AHA over FastNN is maintained
over almost all levels of occlusion, and minor for all levels of noise.

For context, reported accuracy in the case of zero noise or occlusion is con-
trasted with other works in Table 5.1. Existing values are reproduced from [13].

One-shot instance-classification results are shown in Figures 2c and 2d. LTM
accuracy is perfect at low levels of image corruption, remaining almost perfect
in the case of occlusion, until approximately one third of the image is affected.
All signals follow the same trends observed for the one-shot classification task.

For AHA, PR accuracy remains extremely high, close to 100% until a 10%
greater level of occlusion than for LTM i.e. addition of AHA increases tolerance to
occlusion. The advantage over LTM increases with increasing corruption, fading
away for occlusion but continuing to grow for noise.

FastNN also improves on the baseline. It has worse accuracy than AHA for a
given level of occlusion (less substantial than one-shot classification), and almost
equal accuracy for varying levels of noise.

5.2 Recall

Recall-loss is shown in Figure 3. In the one-shot classification experiment, AHA
demonstrates better performance than FastNN under moderate occlusion and
noise. At higher levels of corruption, AHA may retrieve a high quality image of
the wrong character, resulting in a higher loss than lower-quality images retrieved
by FastNN. In the one-shot instance-classification experiment, this character
confusion is less likely to occur and AHA is superior or equal to FastNN under
all meaningful levels of image corruption. FastNN is qualitatively better for one-
shot instance-classification than for one-shot classification, and almost as good
as AHA, but recalls are typically an ‘average’ version of the character, rather
than a specific instances.
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AHA

FastNN

Recall

Train Test Recall

AHA

FastNN

Test RecallTrain TestTrain

(a) One-shot classification with occlusion

Recall

AHA

FastNN

Test RecallTrain TestTrain

(b) One-shot classification with noise

Recall

AHA

FastNN

Test RecallTrain TestTrain

(c) One-shot instance-classification with
occlusion

Recall

AHA

FastNN

Test RecallTrain TestTrain

(d) One-shot instance-classification with
noise

Fig. 3. Recall-loss vs occlusion/noise. AHA yields more specific and crisp recall
images given moderate input corruption. With substantial corruption, AHA sometimes
retrieves an accurate copy of the wrong character resulting in a higher loss. FastNN
provides blurry or nonspecific recall in many conditions. Units and plot characteristics
are the same as for Figure 2.

6 Discussion

The results demonstrate that CLS is an effective approach to one-shot classifi-
cation of both specific instances and categories. At first sight, one-shot instance-
classification is trivially solved by a nearest neighbour comparison, but the re-
sults show that this approach performs poorly given realistic levels of image
corruption. In addition, the CLS-style architecture of AHA has an advantage
over the simpler FastNN. For accuracy, this is most noticeable on one-shot clas-
sification and in the presence of occlusion, and it is significantly superior at
recalling high quality images across the test conditions. To the authors best
knowledge, this is the first application of CLS to a dataset derived from real-
world observations featuring non-synthetic variation.

AHA was comparable to state-of-the-art approaches on the standard Om-
niglot Benchmark - a subset of our extended test. The reported approaches
are optimised for one-shot classification without any image corruption suggest-
ing that they are not suited for one-shot instance-classification. Referring to
Table 5.1, BPL and RCN are significantly ahead of other methods, and sim-
ilar to human performance. They have an advantage as they exploit domain
specific priors as discussed in Section 2.1. The Simple Conv Net (CNN) repre-
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sents a standard approach for deep learning. AHA is equally good despite being
unsupervised (no external labels) and uses only local local credit assignment.
Additionally, AHA demonstrates the broader range of capabilities discussed.

PR performs classification significantly better than PC. It partially fulfils the
role of completion, as it learns to reproduce the target. PC fulfils a vital role for
additional completion and sharpening for crisp recall. There is a small accuracy
bias toward PR due to the fact that PR outputs a superposition of possible
patterns, enhancing the chance of a correct match via MSE. In contrast, PC is
designed to retrieve a single, sharp complete sample and in doing so is unable
to hedge its bets.

The boundary between class and exemplar is continuous, subjective and may
depend on the task. For example, you could define the character itself as a class,
and the corrupted samples as exemplars. Or a Labrador dog: the class could
be the animal type (dog), or the breed (Labrador). AHA demonstrates this
flexibility to the task by accomplishing both one-shot classification and one-
shot instance-classification. As per Section 3.3, AHA learns a conjunction of
primitives, and then generalises over variations in that combination.
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