Skip to main content

Computing Expected Differential Probability of (Truncated) Differentials and Expected Linear Potential of (Multidimensional) Linear Hulls in SPN Block Ciphers

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2020 (INDOCRYPT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12578))

Included in the following conference series:

  • 854 Accesses

Abstract

In this paper we introduce new algorithms that, based only on the independent round keys assumption, allow to practically compute the exact expected differential probability of (truncated) differentials and the expected linear potential of (multidimensional) linear hulls. That is, we can compute the exact sum of the probability or the potential of all characteristics that follow a given activity pattern. We apply our algorithms to various recent SPN ciphers and discuss the results.

The full version of the paper is available on ePrint archive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also known as Markov cipher assumptions.

  2. 2.

    In [LMM91], the authors used the term Markov cipher assumption.

  3. 3.

    \(\mathrm {hw}(\delta _i)\) is the Hamming weight of \(\delta _i\) and it is equal to the number of active S-boxes in the i-th round.

  4. 4.

    For \(x, y \in \mathbb {F}_2^m\), we use \(x \preceq y\) to denote that for all i with \(0\le i <m\), \(x[i] \le y[i]\).

  5. 5.

    Due to the structure of the Midori cipher, it is enough to check for representative S-boxes of Affine equivalence classes together with a bijective \(4\times 4\) matrix in the output of S-box, i.e., \(302 \times 20160 \approx 2^{22.5}\) S-boxes.

References

  1. Ankele, R., Kölbl, S.: Mind the gap - a closer look at the security of block ciphers against differential cryptanalysis. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 163–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_8

    Chapter  Google Scholar 

  2. Albrecht, M.R., Leander, G.: An all-in-one approach to differential cryptanalysis for small block ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_1

    Chapter  MATH  Google Scholar 

  3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

    Chapter  Google Scholar 

  4. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.-R.: Multiple differential cryptanalysis of round-reduced PRINCE. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 591–610. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_30

    Chapter  Google Scholar 

  5. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_21

    Chapter  Google Scholar 

  6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  MATH  Google Scholar 

  7. Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: application to MANTIS-6. IACR Trans. Symmetric Cryptol. 2018(2), 111–132 (2018)

    Article  Google Scholar 

  8. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    Chapter  Google Scholar 

  9. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis. J. Cryptology 32(1), 1–34 (2019)

    Article  MathSciNet  Google Scholar 

  10. Hadipour, H., Sadeghi, S., Niknam, M.M., Song, L., Bagheri, N.: Comprehensive security analysis of CRAFT. IACR Trans. Symmetric Cryptol. 2019(4), 290–317 (2019)

    Google Scholar 

  11. Kaliski, B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_4

    Chapter  Google Scholar 

  12. Knudsen, L.R., Berson, T.A.: Truncated differentials of SAFER. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 15–26. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_38

    Chapter  Google Scholar 

  13. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_16

    Chapter  Google Scholar 

  14. Kölbl, S.: CryptoSMT: an easy to use tool for cryptanalysis of symmetric primitives (2014). https://github.com/kste/cryptosmt

  15. Leurent, G.: Differential forgery attack against LAC. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 217–224. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6_13

    Chapter  Google Scholar 

  16. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_2

    Chapter  Google Scholar 

  17. Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of KLEIN. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 451–470. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_23

    Chapter  Google Scholar 

  18. Leander, G., Poschmann, A.: On the classification of 4 Bit S-boxes. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73074-3_13

    Chapter  MATH  Google Scholar 

  19. Moghaddam, A.E., Ahmadian, Z.: New automatic search method for truncated-differential characteristics: application to Midori, SKINNY and CRAFT. IACR Cryptology ePrint Archive 2019:126 (2019)

    Google Scholar 

  20. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  21. Minier, M., Gilbert, H.: Stochastic cryptanalysis of crypton. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 121–133. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_9

    Chapter  Google Scholar 

  22. Moriai, S., Sugita, M., Aoki, K., Kanda, M.: Security of E2 against truncated differential cryptanalysis. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 106–117. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8_8

    Chapter  Google Scholar 

  23. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9_7

    Chapter  Google Scholar 

  24. National Bureau of Standards: Data Encryption Standard, pp. 46–2. In U.S. Department of Commerce, Federal Information Processing Standards Publication (1977)

    Google Scholar 

  25. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053460

    Chapter  Google Scholar 

  26. Nyberg, K.: Correlation theorems in cryptanalysis. Discret. Appl. Math. 111(1–2), 177–188 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Arnab Roy for his comments and suggestions in preparing the final draft of this paper. This work was partially supported by the DFG (LE 3372/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Rasoolzadeh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 684 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eichlseder, M., Leander, G., Rasoolzadeh, S. (2020). Computing Expected Differential Probability of (Truncated) Differentials and Expected Linear Potential of (Multidimensional) Linear Hulls in SPN Block Ciphers. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds) Progress in Cryptology – INDOCRYPT 2020. INDOCRYPT 2020. Lecture Notes in Computer Science(), vol 12578. Springer, Cham. https://doi.org/10.1007/978-3-030-65277-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65277-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65276-0

  • Online ISBN: 978-3-030-65277-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics