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Abstract. The Learning with Errors (LWE) problem is one of the main
mathematical foundations of post-quantum cryptography. One of the
main groups of algorithms for solving LWE is the Blum-Kalai-Wasserman
(BKW) algorithm. This paper presents new improvements for BKW-style
algorithms for solving LWE instances. We target minimum concrete com-
plexity and we introduce a new reduction step where we partially reduce
the last position in an iteration and finish the reduction in the next iter-
ation, allowing non-integer step sizes. We also introduce a new procedure
in the secret recovery by mapping the problem to binary problems and
applying the Fast Walsh Hadamard Transform. The complexity of the re-
sulting algorithm compares favourably to all other previous approaches,
including lattice sieving. We additionally show the steps of implementing
the approach for large LWE problem instances. The core idea here is to
overcome RAM limitations by using large file-based memory.

Keywords: BKW · LWE · Lattice-Based Cryptography · FWHT · Post-
Quantum Cryptography

1 Introduction

Since a large-scale quantum computer easily breaks both the problem of integer
factoring and the discrete logarithm problem [34], public-key cryptography needs
to be based on other underlying mathematical problems. In post-quantum cryp-
tography - the research area studying such replacements - lattice-based problems
are the most promising candidates. In the NIST post-quantum standardization
competition, 5 out of 7 finalists and 2 out of 8 alternates are lattice-based [1].

The Learning with Errors problem (LWE) introduced by Regev in [33], is the
main problem in lattice-based cryptography. It has a theoretically very interest-
ing average-case to worst-case reduction to standard lattice-based problems. It
has many cryptographic applications, including but not limited to, design of
Fully Homomorphic Encryption Schemes (FHE). An interesting special case of
LWE is the Learning Parity with Noise problem (LPN), introduced in [12], which
has interesting applications in light-weight cryptography.

Considerable cryptanalytic effort has been spent on algorithms for solving
LWE. These can be divided into three categories: lattice-reduction, algebraic



methods and combinatorial methods. The algebraic methods were introduced
by Arora and Ge in [9] and further considered in [3]. For very small noise these
methods perform very well, but otherwise the approach is inefficient. The meth-
ods based on lattice-reduction are currently the most efficient ones in practise.
One way of comparing the different approaches is through the Darmstadt LWE
Challenges [2], where the lattice-based approach called General Sieve Kernel
(G6K) is the currently most successful algorithm in breaking challenges [5]. The
combinatorial algorithms are all based on the Blum-Kalai-Wasserman (BKW)
algorithm and algorithms in this direction will be the focus of this paper.

For surveys on the concrete and asymptotic complexity of solving LWE,
see [7] and [22, 24], respectively. In essence, BKW-style algorithms have a bet-
ter asymptotic performance than lattice-based approaches for parameter choices
with large noise. Unlike lattice-based approaches, BKW-style algorithms pay a
penalty when the number of samples is limited (like in the Darmstadt challenges).

1.1 Related Work

The BKW algorithm was originally developed as the first subexponential algo-
rithm for solving the LPN problem [13]. In [27] the algorithm was improved,
introducing new concepts like LF2 and the use of the fast Walsh-Hadamard
transform (FWHT) for the distinguishing phase. A new distinguisher using sub-
space hypothesis testing was introduced in [19,20].

The BKW algorithm was first applied to the LWE problem in [4]. This idea
was improved in [6], where the idea of Lazy Modulus Switching (LMS) was intro-
duced. The idea was improved in [23,26], where [23] introduced so called coded-
BKW steps. The idea of combining coded-BKW or LMS with techniques from
lattice sieving [11] lead to the next improvement [21]. This combined approach
was slightly improved in [22,30]. The distinguishing part of the BKW algorithm
for solving LWE was improved by using the Fast Fourier Transform (FFT) in [16].
One drawback of BKW is its high memory-usage. To remedy this, time-memory
trade-offs for the BKW algorithm were recently studied in [15,17,18].

1.2 Contributions

In this paper we introduce a new BKW-style algorithm including the following.

– A generalized reduction step that we refer to as smooth-LMS, allowing us
to use non-integer step sizes. These steps allow us to use the same time,
space and sample complexity in each reduction step of the algorithm, which
improves performance compared to previous work.

– A binary-oriented method for the guessing phase, transforming the LWE
problem into an LPN problem. While the previous FFT method guesses a few
positions of the secret vector and finds the correct one, this approach instead
finds the least significant bits of a large amount of positions using the FWHT.
This method allows us to correctly distinguish the secret with a larger noise
level, generally leading to an improved performance compared to the FFT
based method. In addition, the FWHT is much faster in implementation.
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– Concrete complexity calculations for the proposed algorithm showing the
lowest known complexity for some parameter choices selected as in the Darm-
stadt LWE Challenge instances, but with unrestricted number of samples.

– An implementation approach for the algorithm that allows larger instances
to be solved. The implementation is file-based and stores huge tables on disk
and not in RAM only. The file read/write is minimized by implementing the
algorithm in a clever way. Simulation results on solving larger instances are
presented and verifies the previous theoretical arguments.

1.3 Organization

We organize the rest of the paper as follows. We introduce some necessary back-
ground in Section 2. In Section 3 we cover previous work on applying the BKW
algorithm to the LWE problem. Then in Section 4 we introduce our new Smooth-
LMS reduction method. Next, in Section 5 we go over our new binary-oriented
guessing procedure. Sections 6 and 7 cover the complexity analysis and imple-
mentation of our algorithm, respectively. Section 8 describes our experimental
results using the implementation. Finally, the paper is concluded in Section 9.

2 Background

2.1 Notation

Throughout the paper we use the following notations.

– We write log(·) for the base 2 logarithm.
– In the n-dimensional Euclidean space Rn, by the norm of a vector x =

(x1, x2, . . . , xn) we consider its L2-norm, defined as

‖x‖ =
√
x2

1 + · · ·+ x2
n.

The Euclidean distance between vectors x and y in Rn is defined as ‖x− y‖.
– Elements in Zq are represented by the set of integers in [− q−1

2 , q−1
2 ].

– For an [N, k] linear code, N denotes the code length and k denotes the
dimension.

2.2 The LWE and LPN Problems

The LWE problem [33] is defined as follows.

Definition 1 Let n be a positive integer, q a prime, and let X be an error
distribution selected as the discrete Gaussian distribution on Zq with variance
σ2. Fix s to be a secret vector in Znq , chosen from some distribution (usually the
uniform distribution). Denote by Ls,X the probability distribution on Znq × Zq
obtained by choosing a ∈ Znq uniformly at random, choosing an error e ∈ Zq
from X and returning

(a, z) = (a, 〈a, s〉+ e)
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in Znq × Zq. The (search) LWE problem is to find the secret vector s given a
fixed number of samples from Ls,X .

The definition above gives the search LWE problem, as the problem description
asks for the recovery of the secret vector s. Another version is the decision LWE
problem, in which case the problem is to distinguish between samples drawn
from Ls,X and a uniform distribution on Znq × Zq.

Let us also define the LPN problem, which is a binary special case of LWE.

Definition 2 Let k be a positive integer, let x be a secret binary vector of length
k and let X ∼ Berη be a Bernoulli distributed error with parameter η > 0.
Let Lx,X denote the probability distribution on Fk2 × F2 obtained by choosing g
uniformly at random, choosing e ∈ F2 from X and returning

(g, z) = (g, 〈g,x〉+ e)

The (search) LPN problem is to find the secret vector s given a fixed number of
samples from Lx,X .

Just like for LWE, we can also, analogously, define decision LPN.
Previously, analysis of algorithms solving the LWE problem have used two

different approaches. One being calculating the number of operations needed
to solve a certain instance for a particular algorithm, and then comparing the
different complexity results. The other being asymptotic analysis. Solvers for the
LWE problem with suitable parameters are expected to have fully exponential
complexity, bounded by 2cn as n tends to infinity, where the value of c depends on
the algorithms and the parameters of the involved distributions. In this paper, we
focus on the complexity computed as the number of arithmetic operations in Zq,
for solving particular LWE instances (and we do not consider the asymptotics).

2.3 Discrete Gaussian Distributions

We define the discrete Gaussian distribution over Z with mean 0 and variance σ2,
denoted DZ,σ as the probability distribution obtained by assigning a probability
proportional to exp(−x2/(2σ2)) to each x ∈ Z. Then, the discrete Gaussian
distribution X over Zq with variance σ2 (also denoted Xσ) can be defined by
folding DZ,σ and accumulating the value of the probability mass function over
all integers in each residue class modulo q. It makes sense to consider the noise
level as α, where σ = αq. We also define the rounded Gaussian distribution on
Zq. This distribution samples values by sampling values from the continuous
Gaussian distribution with mean 0 and variance σ2, rounding to the closest
integer and then folding the result to the corresponding value in Zq. We denote
it by Ψ̄σ,q.

If two independent X1 and X2 are drawn from Xσ1
and Xσ2

respectively, we
make the heuristic assumption that their sum is drawn from X√

σ2
1+σ2

2

. We make
the corresponding assumption for the rounded Gaussian distribution.
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3 A Review of BKW-style Algorithms

3.1 The LWE Problem Reformulated

Assume that m samples

(a1, z1), (a2, z2), . . . , (am, zm),

are collected from the LWE distribution Ls,X , where ai ∈ Znq , zi ∈ Zq. Let
z = (z1, z2, . . . , zm) and y = (y1, y2, . . . , ym) = sA. We have

z = sA + e,

where A =
[
aT

1 aT
2 · · · aT

m

]
, zi = yi + ei = 〈s,ai〉 + ei and ei

$← X . The search
LWE problem is a decoding problem, where A serves as the generator matrix
for a linear code over Zq and z is a received word. Finding the secret vector s
is equivalent to finding the codeword y = sA for which the Euclidean distance
||y− z|| is minimal. In the sequel, we adopt the notation ai = (ai1, ai2, . . . , ain).

3.2 Transforming the Secret Distribution

A transformation [8,25] can be applied to ensure that the secret vector follows the
same distribution X as the noise. It is done as follows. We write A in systematic
form via Gaussian elimination. Assume that the first n columns are linearly
independent and form the matrix A0. Define D = A0

−1 and write ŝ = sD−1 −
(z1, z2, . . . , zn). Hence, we can derive an equivalent problem described by Â =
(I, âT

n+1, â
T
n+2, · · · , âT

m), where Â = DA. We compute

ẑ = z− (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

Using this transformation, each entry in the secret vector s is now distributed
according to X . The fact that entries in s are small is a very useful property in
several of the known reduction algorithms for solving LWE.

The noise distribution X is usually chosen as the discrete Gaussian distribu-
tion or the rounded Gaussian Distribution from Section 2.3.

3.3 Sample Amplification

In some versions of the LWE problem, such as the Darmstadt Challenges [2], the
number of available samples is limited. To get more samples, sample amplifica-
tion can be used. For example, assume that we haveM samples (a1, b1), (a2, b2),
..., (aM , bM ). Then we can form new samples, using an index set I of size k, as∑

j∈I
±aj ,

∑
j∈I
±bj

 . (1)

Given an initial number of samplesM we can produce up to 2k−1
(
M
k

)
samples.

This comes at a cost of increasing the noise level (standard deviation) to
√
k ·σ.

This also increases the sample dependency.
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3.4 Iterating and Guessing

BKW-style algorithms work by combining samples in many steps in such a way
that we reach a system of equations over Zq of the form z = sA + E, where
E = (E1, E2, . . . , Em) and the entries Ei, i = 1, 2, . . . ,m are sums of not too
many original noise vectors, say Ei =

∑2t

j=1 eij , and where t is the number of
iterations. The process also reduces the norm of column vectors in A to be small.
Let ni, i = 1, 2, . . . , t denote the number of reduced positions in step i and let
Ni =

∑i
j=1 nj . If n = Nt, then every reduced equation is of form

zi = 〈ai, s〉+ Ei, (2)

for i = 1, 2, . . . ,m. The right hand side can be approximated as a sample drawn
from a discrete Gaussian and if the standard deviation is not too large, then the
sequence of samples z1, z2, . . . can be distinguished from a uniform distribution.
We will then need to determine the number of required samples to distinguish
between the uniform distribution on Zq and Xσ. Relying on standard theory
from statistics, using either previous work [28] or Bleichenbacher’s definition of
bias [32], we can find that the required number of samples is roughly

C · e2π
(
σ
√

2π
q

)2

, (3)

where C is a small positive constant. Initially, an optimal but exhaustive dis-
tinguisher was used [10]. While minimizing the sample complexity, it was slow
and limited the number of positions that could be guessed. This basic approach
was improved in [16], using the FFT. This was in turn a generalization of the
corresponding distinguisher for LPN, which used the FWHT [27].

3.5 Plain BKW

The basic BKW algorithm was originally developed for solving LPN in [13]. It
was first applied to LWE in [4]. The reduction part of this approach means that
we reduce a fixed number b of positions in the column vectors of A to zero in
each step. In each iteration, the dimension of A is decreased by b and after t
iterations the dimension has decreased by bt.

3.6 Coded-BKW and LMS

LMS was introduced in [6] and improved in [26]. Coded-BKW was introduced
in [23]. Both methods reduce positions in the columns ofA to a small magnitude,
but not to zero, allowing reduction of more positions per step. In LMS this is
achieved by mapping samples to the same category if the ni considered positions
give the same result when integer divided by a suitable parameter p. In coded-
BKW this is instead achieved by mapping samples to the same category if they
are close to the same codeword in an [ni, ki] linear code, for a suitable value ki.
Samples mapped to the same category give rise to new samples by subtracting
them. The main idea [23, 26] is that positions in later iterations do not need to
be reduced as much as the first ones, giving different ni values in different steps.
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3.7 LF1, LF2, Unnatural Selection

Each step of the reduction part of the BKW algorithm consists of two parts.
First samples are mapped to categories depending on their position values on
the currently relevant ni positions. Next, pairs of samples within the categories
are added/subtracted to reduce the current ni positions to form a new generation
of samples. This can be done in a couple of different ways.

Originally this was done using what is called LF1. Here we pick a represen-
tative from each category and form new samples by adding/subtracting samples
to/from this sample. This approach makes the final samples independent, but
also gradually decreases the sample size. In [27] the approach called LF2 was
introduced. Here we add/subtract every possible pair within each category to
form new samples. This approach requires only 3 samples within each category
to form a new generation of the same size. The final samples are no longer
independent, but experiments have shown that this effect is negligible.

In [6] unnatural selection was introduced.The idea is to produce more samples
than needed from each category, but only keep the best samples, typically the
ones with minimum norm on the current Ni positions in the columns of A.

3.8 Coded-BKW with Sieving

When using coded-BKW or LMS, the previously reduced Ni−1 positions of the
columns of A increase in magnitude with an average factor

√
2 in each reduction

step. This problem was addressed in [21] by using unnatural selection to only
produce samples that kept the magnitude of the previous Ni−1 positions small.
Instead of testing all possible pairs of samples within the categories, this pro-
cedure was sped-up using lattice sieving techniques of [11]. This approach was
slightly improved in [22,30].

4 BKW-style Reduction Using Smooth-LMS

In this section we introduce a new reduction algorithm solving the problem of
having the same complexity and memory usage in each iteration of a BKW-style
reduction. The novel idea is to use simple LMS to reduce a certain number of
positions and then partially reduce one extra position. This allows for balancing
the complexity among the steps and hence to reduce more positions in total.

4.1 A New BKW-style Step

Assume having a large set of samples written as before in the form z = sA +
e mod q. Assume also that the entries of the secret vector s are drawn from some
restricted distribution with small standard deviation (compared to the alphabet
size q). If this is not the case, the transformation from Section 3.2 should be
applied. Moreover, in case the later distinguishing process involves some positions
to be guessed or transformed, we assume that this has been already considered
and all positions in our coming description should be reduced.
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The goal of this BKW-type procedure is to make the norms of the column
vectors of A small by adding and subtracting equations together in a number of
steps. Having expressions of the form zi = sai+Ei mod q, if we can reach a case
where ||ai|| is not too large, then sai+Ei can be considered as a random variable
drawn from a discrete Gaussian distribution Xσ. Furthermore, Xσ mod q can be
distinguished from a uniform distribution over Zq if σ is not too large.

Now let us describe the new reduction procedure. Fix the number of reduction
steps to be t. We will also fix a maximum list size to be 2v, meaning that A
can have at most 2v columns. In each iteration i, we are going to reduce some
positions to be upper limited in magnitude by Ci, for i = 1, ..., t. Namely, these
positions that are fully treated in iteration i will only have values in the set
{−Ci + 1, . . . , 0, 1, . . . , Ci − 1} of size 2Ci − 1. We do this by dividing up the q
possible values into intervals of length Ci. We also adopt the notation βi = q/Ci,
which describes the number of intervals we divide up the positions into. We
assume that βi > 2.

First step. In the first iteration, assume that we have stored A. We first compute
the required compression starting in iteration 1 by computing C1 (we will explain
how later). We then evaluate how many positions n1 that can be fully reduced
by computing n1 = bv/ log β1c. The position n1 + 1 can be partially reduced to
be in an interval of size C ′1 fulfilling β′1 · β

n1
1 · 3/2 ≤ 2v, where β′1 = q/C ′1. Now

we do an LMS step that "transfers between iterations" in the following way.
We run through all the columns of A. For column i, we simply denote it as

x = (x1, x2, . . . , xn) and we compute:

kj =

{
xj div C1, x1 ≥ 0

−xj div C1, x1 < 0
, for j = 1, . . . , n1,

kn1+1 =

{
xn1+1 div C ′1, x1 ≥ 0

−xn1+1 div C ′1, x1 < 0
.

The vector Ki = (k1, k2, . . . , kn1+1) is now an index to a sorted list L, storing
these vectors3. Except for the inverting of values if x1 < 0, samples should have
the same index if and only if all position values are the same when integer divided
by C1 (C ′1 for the last position). So we assign L(Ki) = L(Ki) ∪ {i}. After we
have inserted all columns into the list L, we go to the combining part.

We build a new matrix A in the following way. Run through all indices K
and if |L(K)| ≥ 2 combine every pair of vectors in L(K) by subtracting/adding4

them to form a new column in the new matrix A. Stop when the number of new
columns has reached 2v. For each column in A we have that:
– the absolute value of each position j ∈ {1, . . . , n1} is < C1,
– the absolute value of position n1 + 1 is < C ′1.

3 The point of inverting all position values if x1 < 0 is to make sure that sam-
ples that get reduced when added should be given the same index. For example
(x1, x2, . . . , xn1+1) and (−x1,−x2, . . . ,−xn1+1) are mapped to the same category.

4 Depending on what reduces the sample the most.
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Next steps. We now describe all the next iterations, numbered as l = 2, 3, . . . , t.
Iteration l will involve positions from Nl−1 +1 =

∑l−1
i=1 ni+1 to Nl+1. The very

first position has possibly already been partially reduced and its absolute value
is < C ′l−1, so the interval for possible values is of size 2C ′l−1 − 1. Assume that
the desired interval size in iteration l is Cl. In order to achieve the corresponding
reduction factor βl, we split this interval in β′′l = (2C ′l−1 − 1)/Cl subintervals.
We then compute how many positions nl that can be fully reduced by computing
nl = b(v − log β′′l )/ log βlc. The position Nl + 1 can finally be partially reduced
to be in an interval of size C ′l fulfilling β

′
l · β

nl−1
l β′′l · 3/2 ≤ 2v, where β′l = q/C ′l .

Similar to iteration 1, we run through all the columns of A. For each column
i in the matrix A denoted as x we do the following. For each vector position in
{Nl−1 + 1, . . . , Nl + 1} , we compute (here div means integer division)

kj =

{
xNl−1+j div Cl, xNl−1+1 ≥ 0

−xNl−1+j div Cl, xNl−1+1 < 0
, for j = 1, . . . , nl,

knl =

{
xNl+1 div C ′l , xNl−1+1 ≥ 0

−xNl+1 div C ′l , xNl−1+1 < 0
. (4)

The vectorK = (k1, k2, . . . , knl+1
) is again an index to a sorted list L, keeping

track of columns5. So again we assign L(K) = L(K)∪{i}. After we have inserted
all column indices into the list L, we go to the combining part.

As in the first step, we build a new A as follows. Run through all indices K
and if |L(K)| ≥ 2 combine every pair of vectors by adding/subtracting them to
form a column in the new matrix A. Stop when the number of new columns has
reached 2v.

For the last iteration, since Nt is the last row of A, one applies the same step
as above but without reducing the extra position. After t iterations, one gets
equations on the form (2), where the ai vectors in A have reduced norm.

4.2 Smooth-Plain BKW

The procedure described above also applies to plain BKW steps. For example, if
in the first iteration one sets C1 = 1 and C ′1 > 1, then each column vector x of A
will be reduced such that x1 = . . . = xn1 = 0 and xn1+1 ∈ {−C ′1 +1, . . . , C ′1−1}.
Thus, one can either continue with another smooth-Plain BKW step by setting
also C2 = 1 in the second iteration, or switch to smooth-LMS. In both cases, we
have the advantage of having xn1

already partially reduced. Using these smooth-
Plain steps we can reduce a couple of extra positions in the plain pre-processing
steps of the BKW algorithm.

5 Also here the point of inverting all position values if xNl−1+1 < 0 is to make sure that
samples that get reduced when added should be given the same index. For example
(xNl−1+1, xNl−1+2, . . . , xNl+1) and (−xNl−1+1,−xNl−1+2, . . . ,−xNl+1) are mapped
to the same category.
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4.3 How to Choose the Interval Sizes Ci

To achieve as small norm of the vectors as possible, we would like the variance of
all positions to be equally large, after completing all iterations. Assume that a po-
sition x takes values uniformly in the set {−(C−1)/2, . . . , 0, 1, . . . , (C−1)/2}, for
C > 0. Then, we have that in Var[x] = (C − 1)(C + 1)/12. Assuming C is some-
what large, we approximately get Var[x] = C2/12. When subtracting/adding
two such values, the variance increases to 2Var[x] in each iteration. Therefore, a
reduced position will have an expected growth of

√
2. For this reason, we choose

a relation for the interval sizes of the form

Ci = 2−(t−i)/2Ct, i = 1, . . . , t− 1.

This makes the variance of each position roughly the same, after completing all
iterations. In particular, our vectors ||ai|| in A are expected to have norm at
most

√
nCt/

√
12, and Ct is determined according to the final noise allowed in

the guessing phase. Ignoring the pre-processing step with smooth-Plain BKW
steps, the maximum dimension n that can be reduced is then n = Nt =

∑t
i=1 ni.

Example 1. Let q = 1601 and α = 0.005, so σ = αq ≈ 8. Let us compute how
many positions that can be reduced using 2v = 228 list entries. The idea is that
the variance of the right hand side in (2) should be minimized by making the
variance of the two terms roughly equal. The error part Ei is the sum of 2t initial
errors, so its variance is Var[Ei] = 2tσ2. In order to be able to distinguish the
samples according to (3), we set Var[Ei] < q2/2. This will give us the number of
iterations possible as 2tσ2 ≈ q2/2 or 2t ≈ 16012/(2 · 82) leading to t = 14. Now
we bound the variance of the scalar product part of (2) also to be < q2/2, so
nσ2C2

t /12 ≈ q2/2 leading to C2
t ≈ 12q2/(2nσ2) and C2

t ≈ 12 · 16012/(2n · 82) or
Ct ≈ 80 if n < 38. Then one chooses Ct−1 = bCt/

√
2e = 57 and so on.

4.4 Unnatural Selection

We can improve performance by using the unnatural selection discussed in Sec-
tion 3.7. Let us make some basic observations. Combining nl positions us-
ing interval size C gives as previously described a value in the set {−(C −
1)/2, . . . , 0, 1, . . . (C−1)/2}, and results in Var[x] = (C−1)(C+1)/12. Combin-
ing two vectors from the same category, a position value y = x1+x2, where x1, x2

are as above, results in a value in the interval {−(C − 1), . . . , 0, 1, . . . (C − 1)}
with variance Var[y] = (C − 1)(C + 1)/6. Now observe that for the resulting
reduced positions, smaller values are much more probable than larger ones.

5 A Binary Partial Guessing Approach

In this section we propose a new way of reducing the guessing step to a binary
version. This way, we are able to efficiently use the FWHT to guess many entries
in a small number of operations. In Section 6 we do the theoretical analysis and
show that this indeed leads to a more efficient procedure than all previous ones.
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5.1 From LWE to LPN

First, we need to introduce a slight modification to the original system of equa-
tions before the reduction part. Assume that we have turned the distribution of
s to be the noise distribution, through the standard transformation described in
Section 3.2. The result after this is written as before

z = sA + e. (5)

Now we perform a multiplication by 2 to each equation, resulting in

z′ = sA′ + 2e,

since when multiplied with a known value, we can compute the result modulo q.
Next, we apply the reduction steps and make the values in A′ as small as

possible by performing BKW-like steps. In our case we apply the smooth-LMS
step from the previous section, but any other reduction method like coded-BKW
with sieving would be possible. If A′ =

[
aT

1 aT
2 · · · aT

m

]
the output of this step is

a matrix where the Euclidean norm of each ai is small. The result is written as

z′′ = sA′′ + 2E, (6)

where E = (E1, E2, . . . , Em) and Ei =
∑2t

j=1 eij as before.
Finally, we transform the entire system to the binary case by considering

z′′0 = s0A
′′
0 + e mod 2, (7)

where z′′0 is the vector of least significant bits in z′′, s0 the vector of least signif-
icant bits in s, A′′0 = (A′′ mod 2) and e denotes the binary error introduced.

We can now examine the error ej in position j of e. In (6) we have equations
of the form zj =

∑
i siaij + 2Ej in Zq, which can be written on integer form as

zj =
∑
i

siaij + 2Ej + kj · q. (8)

Now if |
∑
i siaij + 2Ej | < q/2 then kj = 0. In this case (8) can be re-

duced mod 2 without error and ej = 0. In general, the error is computed as
ej = kj mod 2. So one can compute a distribution for ej = kj mod 2 by com-
puting P (kj = x). It is possible to compute such distribution either making a
general approximation or precisely for each specific position j using the known
values aj and zj . Note that the distribution of ej depends on zj . Also note that
if aj is reduced to a small norm and the number of steps t is not too large, then
it is quite likely that |

∑
i siaij + 2Ej | < q/2 leading to P (ej = 0) being large.

For the binary system, we finally need to find the secret value s0. Either
1. there are no errors (or almost no errors), corresponding to P (ej = 0) ≈ 1.

Then one can solve for s0 directly using Gaussian elimination (or possibly
some information set decoding algorithm in the case of a few possible errors).

2. or the noise is larger. The binary system of equations corresponds to the
situation of a fast correlation attack [31], or secret recovery in an LPN prob-
lem [13]. Thus, one may apply an FWHT to recover the binary secret values.

11



5.2 Guessing s0 Using the FWHT

The approach of using the FWHT to find the most likely s0 in the binary system
in (7) comes directly from previous literature on Fast Correlation Attacks [14].

Let k denote an n-bit vector (k0, k1, . . . , kn−1) (also considered as an integer)
and consider a sequence Xk, k = 0, 1, . . . , N − 1, N = 2n. It can for example be
a sequence of occurrence values in the time domain, e.g. Xk = the number of
occurrences of X = k. The Walsh-Hadamard Transform is defined as

X̂w =

N−1∑
k=0

Xk · (−1)w·k,

where w · k denotes the bitwise dot product of the binary representation of the
n-bit indices w and k. There exists an efficient method (FWHT) to compute the
WHT in time O(N logN). Given the matrix A′′0, we define Xk =

∑
j∈J(−1)z

′′
j ,

where J is the set of all columns of the matrix A′′0 that equal k. Then, one
computes maxw |X̂w|, and we have that s0 corresponds to w̄ such that |X̂w̄| =
maxw |X̂w|. In addition, X̂w is simply the (biased) sum of the noise terms.

Soft Received Information The bias of X̂w actually depends on the value of
z′′j . So a slightly better approach is to use “soft received information” by defining
Xk =

∑
j∈J(−1)z

′′
j · εz′′j , where εz′′j is the bias corresponding to z′′j . For each

x ∈ {−(q−1)/2, ..., (q−1)/2}, the bias εx can be efficiently pre-computed so that
its evaluation does not affect the overall complexity of the guessing procedure.

Hybrid Guessing One can use hybrid approach to balance the overall com-
plexity among reduction and guessing phases. Indeed, it is possible to leave some
rows of the matrix A unreduced and apply an exhaustive search over the corre-
sponding positions in combination with the previously described guessing step.

5.3 Retrieving the Original Secret

Once s0 is correctly guessed, it is possible to obtain a new LWE problem instance
with the secret half as big as follows. Write s = 2s′ + s0. Define Â = 2A and
ẑ = z− s0A. Then we have that

ẑ = s′Â + e. (9)

The entries of s′ have a bit-size half as large as the entries of s, therefore (9) is an
easier problem than (5). One can apply the procedure described above to (9) and
guess the new binary secret s1, i.e. the least significant bits of s′. The cost of doing
this will be significantly smaller as shorter secret translates to computationally
easier reduction steps. Thus, computationally speaking, the LWE problem can
be considered solved once we manage to guess the least significant bits of s.
Given the list of binary vectors s0, s1, s2, ..., it is easy to retrieve the original
secret s.
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Algorithm 1 BKW-FWHT with smooth reduction (main framework)
Input: Matrix A with n rows and m columns, received vector z of length m and
algorithm parameters t1, t2, t3, nlimit, σset

Step 0: Use Gaussian elimination to change the distribution of the secret vector;
Step 1: Use t1 smooth-plain BKW steps to remove the bottom npbkw entries;
Step 2: Use t2 smooth-LMS steps to reduce ncod1 more entries;
Step 3: Perform the multiplying-2 operations;
Step 4: Use t3 smooth-LMS steps to reduce the remaining nt ≤ nlimit entries;
Step 5: Transform all the samples to the binary field and recover the partial secret
key by the FWHT. We can exhaustively guess some positions.

6 Analysis of the Algorithm and its Complexity

In this section, we describe in detail the newly-proposed algorithm called BKW-
FWHT with smooth reduction (BKW-FWHT-SR).

6.1 The Algorithm

The main steps of the new BKW-FWHT-SR algorithm are described in Algo-
rithm 1. We start by changing the distribution of the secret vector with the
secret-noise transformation [8], if necessary.

The general framework is similar to the coded-BKW with sieving procedure
proposed in [21]. In our implementation, we instantiated coded-BKW with siev-
ing steps with smooth-LMS steps discussed before for the ease of implementation.

The different part of the new algorithm is that after certain reduction steps,
we perform a multiplication by 2 to each reduced sample as described in Sec-
tion 5. We then continue reducing the remain positions and perform the mod
2 operations to transform the entire system to the binary case. Now we obtain
a list of LPN samples and solve the corresponding LPN instance via known
techniques such as FWHT or partial guessing.

One high level description is that we aim to input an LWE instance to the
LWE-to-LPN transform developed in Section 5, and solve the instance by using
a solver for LPN. To optimize the performance, we first perform some reduction
steps to have a new LWE instance with reduced dimension but larger noise. We
then feed the obtained instance to the LWE-to-LPN transform.

6.2 The Complexity of Each Step

From now on we assume that the secret is already distributed as the noise distri-
bution or that the secret-noise transform is performed. We use the LF2 heuristics
and assume the the sample size is unchanged before and after each reduction
step. We now start with smooth-plain BKW steps and let lred be the number of
positions already reduced.
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Smooth-Plain BKW steps. Given m initial samples, we could on average
have b 2m

3 c categories
6 for one plain BKW step in the LF2 setting. Instead we

could assume for 2b0 categories, and thus the number of samples m is 1.5 · 2b0 .
Let CpBKW be the cost of all smooth-plain BKW steps, whose initial value is set
to be 0. If a step starts with a position never being reduced before, we can reduce
lp positions, where lp =

⌊
b

log2(q)

⌋
. Otherwise, when the first position is partially

reduced in the previous step and we need β′ categories to further reduce this
position, we can in total fully reduce lp positions, where lp = 1 +

⌊
b−log2(β′)

log2(q)

⌋
.

For this smooth-plain BKW step, we compute

Cpbkw += ((n+ 1− lred) ·m+ Cd,pbkw),

where Cd,pbkw = m is the cost of modulus switching for the last partially reduced
position in this step. We then update the number of the reduced positions,
lred += lp.

After iterating for t1 times, we could compute Cpbkw and lred. We will con-
tinue updating lred and denote npbkw the length reduced by the smooth-plain
BKW steps.

Smooth-LMS steps before the multiplication of 2. We assume that the
final noise contribution from each position reduced by LMS is similar, bounded
by a preset value σset. Since the noise variable generated in the i-th (0 ≤ i ≤
t2− 1) Smooth-LMS step will be added by 2t2+t3−i times and also be multiplied

by 2, we compute σ2
set =

2t2+t3−i×4C2
i,LMS1

12 , where Ci,LMS1 is the length of
the interval after the LMS reduction in this step. We use βi,LMS1 categories
for one position, where βi,LMS1 = d q

Ci,LMS1
e. Similar to smooth-plain BKW

steps, if this step starts with an new position, we can reduce lp positions, where
lp = b b

log2(βi,LMS1)c. Otherwise, when the first position is partially reduced in the
previous step and we need β′p,i,LMS1 categories to further reduce this position,

we can in total fully reduce lp positions, where lp = 1 + b b−log2(β′p,i,LMS1)

log2(βi,LMS1) c. Let
CLMS1 be the cost of Smooth-LMS steps before the multiplication of 2, which
is innitialized to 0. For this step, we compute

CLMS1 += (n+ 1− lred) ·m,

and then update the number of the reduced positions, lred += lp.
After iterating t2 times, we compute CLMS1 and lred. We expect lred = n−nt

(nt ≤ nlimit) positions have been fully reduced and will continue updating lred.

Smooth-LMS steps after the multiplication of 2. The formulas are similar
to those for Smooth-LMS steps before the multiplication of 2. The difference is
6 The number of categories is doubled compared with the LF2 setting for LPN. The
difference is that we could add and subtract samples for LWE.
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σf q D(Xσf ,2q||U2q) Ez=t [D(ez=t||Ub)]

0.5q 1601 −2.974149 −2.974995
0.6q 1601 −4.577082 −4.577116
0.7q 1601 −6.442575 −6.442576
0.8q 1601 −8.582783 −8.582783

Table 1. The comparison between D(Xσf ,2q||U2q) and Ez=t [D(ez=t||Ub)]

that the noise term is no longer multiplied by 2, so we have σ2
set =

2t3−iC2
i,LMS2

12 ,
for 0 ≤ i ≤ t3 − 1. Also, we need to track the a vector of length nt for the later
distinguisher. The cost is

CLMS2 = t3 · (nt + 1) ·m.

We also need to count the cost for multiplying samples by 2 and the mod2
operations, and the LMS decoding cost, which are

CmulMod = 2 · (nt + 1) ·m,
Cdec = (n− npbkw + t2 + t3) ·m.

FWHT distinguisher and partial guessing. After the LWE-to-LPN trans-
formation, we have an LPN problem with dimension nt and m instance. We
perform partial guessing on nguess positions, and use FWHT to recover the re-
maining nFWHT = nt − nguess positions. The cost is,

Cdistin = 2nguess · ((nguess + 1) ·m+ nFWHT · 2nFWHT ).

6.3 The Data Complexity

We now discuss the data complexity of the new FWHT distinguisher. In the
integer form, we have the following equation,

zj =

nt−1∑
i=0

siaij + 2Ej + kj · q.

If |
∑
siaij + 2Ej | < q/2 then kj = 0. Then the equation can be reduced mod 2

without error. In general, the error is ej = kj mod 2.
We employ a smart FWHT distinguisher with soft received information, as

described in Section 5. From [29], we know the sample complexity can be ap-
proximated as m ≈ 4 lnnt

Ez=t[D(ez=t||Ub)] .

For different value of zj , the distribution of ej is different. The maximum
bias is achieved when zj = 0. In this sense, we could compute the divergence as

Ez=t [D(ez=t||Ub)] =
∑
t∈Zq

Pr[z = t ]D(ez=t||Ub)

=
∑
t∈Zq

Pr[z = t ] (

1∑
i=0

Pr[ez=t = i] log(2 · Pr[ez=t = i ]))
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where ez is the Bernoulli variable conditioned on the value of z and Ub the
uniform distribution over the binary field.

Following the previous research [4], we approximate the noise
∑
siaij + 2Ej

as discrete Gaussian with standard deviation σf . If σf is large, the probability
Pr[z = t ] is very close to 1/q. Then, the expectation Ez=t,t∈Zq [D(ez=t||Ub)] can
be approximated as

∑
t∈Zq

1∑
i=0

Pr[z = t ] Pr[ez=t = i ] log(2q · Pr[ez=t = i, z = t ]),

i.e., the divergence between a discrete Gaussian with the same standard deviation
and a uniform distribution over 2q, D(Xσf ,2q||U2q). We numerically computed
that the approximation is rather accurate when the noise is sufficiently large (see
Table 1). In conclusion, we use the formula

m ≈ 4 lnnt
D(Xσf ,2q||U2q)

,

to estimate the data complexity of the new distinguisher. It remains to control
the overall variance σ2

f . Since we assume that the noise contribution from each
reduced position by LMS is the same and the multiplication of 2 will double the
standard deviation, we can derive σ2

f = 4 ∗ 2t1+t2+t3σ2 + σ2σ2
set(n− npbkw).

Note: The final noise is a combination of three parts, the noise from the LWE
problem, the LMS steps before the multiplication by 2, and the LMS steps after
the multiplication by 2. The final partial key recovery problem is equivalent to
distinguishing a discrete Gaussian from uniform with the alphabet size doubled.
We see that with the multiplication by 2, the variances of the first and the second
noise parts are increased by a factor of 4, but the last noise part does not expand.
This intuitively explains the gain of the new binary distinguisher.

6.4 In Summary

We have the following theorem to estimate the complexity of the attack.

Theorem 1. The time complexity of the new algorithm is

C = Cpbkw + CLMS1 + CLMS2 + Cdec + Cdistin + CmulMod,

under the condition that

m ≥ 4 lnnt
D(Xσf ,2q||U2q)

,

where σ2
f = 4 ∗ 2t1+t2+t3σ2 + σ2σ2

set(n− npbkw).
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n q α LWE estimator [7]

BKW- Coded- usvp dec dual

FWHT-SR BKW ENU Sieve ENU Sieve ENU Sieve

40 1601 0.005 34.4 42.6 31.4 41.5 34.7 44.6 39.1 47.5
0.010 39.3 43.7 34.0 44.8 36.3 44.9 51.1 57.9
0.015 42.4 52.6 42.5 54.2 43.1 50.6 61.5 64.4
0.020 46.2 52.6 ∞ ∞ 51.9 58.2 73.1 75.9
0.025 48.3 52.7 ∞ ∞ 59.2 66.1 84.7 85.4
0.030 50.0 52.7 ∞ ∞ 67.1 68.9 96.3 92.5

45 2027 0.005 37.7 55.2 31.8 41.9 35.0 44.8 41.5 51.6
0.010 43.5 55.2 39.5 51.2 41.2 48.2 57.0 64.6
0.015 48.3 55.2 50.4 61.3 51.2 58.3 74.3 74.9
0.020 51.2 55.2 ∞ ∞ 61.1 65.0 86.8 86.1
0.025 54.1 55.3 ∞ ∞ 71.0 71.4 100.7 95.0
0.030 56.3 64.1 ∞ ∞ 80.2 78.7 116.2 104.1

50 2503 0.005 41.8 46.4 32.4 42.6 35.5 45.1 46.7 58.0
0.010 48.7 56.0 46.0 57.5 47.6 54.1 66.8 65.4
0.015 52.5 56.8 ∞ ∞ 60.8 63.6 84.9 83.5
0.020 56.4 61.9 ∞ ∞ 72.1 72.1 101.9 96.5
0.025 59.3 66.1 ∞ ∞ 83.5 80.8 120.0 105.7
0.030 63.3 66.3 ∞ ∞ 94.2 89.1 134.0 115.6

70 4903 0.005 58.3 62.3 52.3 54.2 55.2 63.3 76.2 75.9
0.010 67.1 73.7 ∞ ∞ 80.4 77.1 111.3 98.9
0.015 73.3 75.6 ∞ ∞ 102.5 93.2 146.0 118.0

120 14401 0.005 100.1 110.5 133.0 93.2 135.5 111.4 181.9 133.2
0.010 115.1 124.0 ∞ ∞ 195.0 150.4 266.2 165.7
0.015 127.0 136.8 ∞ ∞ 246.4 183.2 334.0 209.8

Table 2. Estimated time complexity comparison (in log2(·)) for solving LWE instances
in the TU Darmstadt LWE challenge [2]. Here unlimited number of samples are as-
sumed. The last columns show the complexity estimation from the LWE estimator [7].
"ENU" represents the enumeration cost model is employed and "Sieve" represents the
sieving cost model is used. Bold-faced numbers are the smallest among the estimations
with these different approaches.

6.5 Numerical Estimation

We numerically estimate the complexity of the new algorithm BKW-FWHT-
SR (shown in Table 2). It improves the known approaches when the noise rate
(represented by α) becomes larger. We should note that compared with the
previous BKW-type algorithms, the implementation is much easier though the
complexity gain might be mild.
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7 A New BKW Algorithm Implementation for Large
LWE Problem Instances

We have a new implementation of the BKW algorithm that is able to handle
very large LWE problem instances. The code is written in C, and much care has
been taken to be able to handle instances with a large number of samples.

A key success factor in the software design was to avoid unnecessary reliance
on RAM, so we have employed file-based storage where necessary and practically
possible. The implementation includes most known BKW reduction step, FFT
and FWHT-based guessing methods, and hybrid guessing approaches.

For our experiments, presented in Section 8, we assembled a machine with
an ASUS PRIME X399-A motherboard, a 4.0GHz Ryzen Threadripper 1950X
processor and 128GiB of 2666MHz DDR4 RAM. While the machine was built
from standard parts with a limited budget, we have primarily attempted to max-
imize the amount of RAM and the size and read/write speeds of the fast SSDs
for overall ability to solve large LWE problem instances. The implementation is
publicly available at https://github.com/FBBL/fbbl.

We describe below how we dealt with some interesting performance issues.

File-based Sample Storage The implementation does not assume that all
samples can be stored in RAM, so instead they are stored on file in a special
way. Samples are stored sorted into their respective categories. For simplicity, we
have opted for a fixed maximum number of samples per category. The categories
are stored sequentially on file, each containing its respective samples (possibly
leaving some space if the categories are not full). A category mapping, unique
for each reduction type, defines what category index a given sample belongs to7.

Optional Sample Amplification We support optional sample amplification.
That is, if a problem instance has a limited number of initial samples (e.g., the
Darmstadt LWE challenge), then it is possible to combine several of these to
produce new samples (more, but with higher noise).

While this is very straightforward in theory, we have noticed considerable
performance effects when this recombination is performed naïvely. For example,
combining triplets of initial samples using a nested loop is problematic in practice
for some instances, since some initial samples become over-represented – Some
samples are used more often than others when implemented this way.

We have solved this by using a Linear Feedback Shift Register to efficiently
and pseudo-randomly distribute the selection of initial samples more evenly.

Employing Meta-Categories For some LWE problem instances, using a very
high number of categories with few samples in each is a good option. This can be
7 In this section a category is defined slightly differently from the rest of the paper. A
category together with its adjacent category are together what we simply refer to as
a category in the rest of the paper.
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problematic to handle in an implementation, but we have used meta-categories
to handle this situation. For example, using plain BKW reduction steps with
modulus q and three positions, we end up with q3 different categories. With q
large, an option is to use only two out of the three position values in a vector
to first map it into one out of q2 different meta-categories. When processing
the (meta-)categories, one then needs an additional pre-processing in form of
a sorting step in order to divide the samples into their respective (non-meta)
categories (based on all three position values), before proceeding as per usual.

We have used this implementation trick to, for example, implement plain
BKW reduction for three positions. One may think of the process as brute-
forcing one out of three positions in the reduction step.

Secret Guessing with FFT and FWHT The same brute-forcing techniques
are also useful for speeding up the guessing part of the solver. We have used this
to improve the FFT and FWHT solvers in the corresponding way.

For the FWHT case, if the number of positions to guess is too large for the
RAM to handle, we leave some of them to brute-force. This case differs from the
above by the fact that binary positions are brute-forced (so more positions can
be handled) and that the corresponding entries in the samples must be reduced.

8 Experimental Results

In this section we report the experimental results obtained in solving some LWE
problems. Our main goal was to confirm our theory and to prove that BKW
algorithms can be used in practice to solve relatively large instances. There-
fore, there is still room to run a more optimized code (for example, we did not
use any parallelization in our experiments) and to make more optimal param-
eter choices (we generally used more samples than required and no brute-force
guessing techniques were used).

We considered two different scenarios. In the first case, we assumed for each
LWE instance to have access to an arbitrary large number of samples. Here
we create the desired amount of samples ourselves8. In the second case, we
considered instances with a limited number of samples. An LWE problem is
“solved” when the binary secret is correctly guessed, for the reasons explained in
Section 5.3.

Unlimited Number of Samples We targeted the parameter choices of the
TU Darmstadt challenges [2]. For each instance, we generated as many initial
samples as needed according to our estimations. In Table 3 we report the details
of the largest solved instances. Moreover, in Example 2 we present our parameter
choices for one of these.

8 we used rounded Gaussian noise for simplicity of implementation.
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n q α number of samples running time

40 1601 0.005 45 million 12 minutes
40 1601 0.01 1.6 billion 12 hours
45 2027 0.005 1.1 billion 13 hours

Table 3. Experimental results on target parameters.

Example 2. Let us consider an LWE instance with n = 40, q = 1601 and σ =
0.005 · q. To successfully guess the secret, we first performed 8 smooth-plain
BKW steps reducing 18 positions to zero. We used the following parameters.

ni = 2, Ci = 1, for i = 1, . . . , 8,

(C ′1, C
′
2, C

′
3, C

′
4, C

′
5, C

′
6, C

′
7, C

′
8) = (165, 30, 6, 1, 165, 30, 6, 1).

Note that C ′4 = C ′8 = 1. In this way, we exploited the smoothness to zero 9
positions every 4 steps. For this reason, we start steps 5 and 9 by skipping one
position. Finally, we did 5 smooth-LMS steps using the following parameters:

(n9, n10, n11, n12, n13) = (3, 4, 4, 5, 6)

(C9, C10, C11, C12, C13) = (17, 24, 34, 46, 66)

(C ′9, C
′
10, C

′
11, C

′
12) = (46, 66, 23, 81).

These parameters are chosen in such a way that the number of categories within
each step is ≈ 13M and Ci ≈

√
2Ci−1. We used ≈ 40M samples in each step so

that each category contained 3 samples in average. This way we are guaranteed
to have enough samples in each step.

Limited Number of Samples As a proof-of-concept, we solved the original
TU Darmstadt LWE challenge instance [2] with parameters n = 40, α = 0.005
and the number of samples limited to m = 1600. We did this by sample ampli-
fying with triples of samples, taking 7 steps of smooth-plain BKW on 17 entries,
5 steps of smooth-LMS on 22 entries and 1 position was left to brute-force. The
overall running time was of 3 hours and 39 minutes.

9 Conclusions and Future Work

We introduced a novel and easy approach to implement the BKW reduction step
which allows balancing the complexity among the iterations, and an FWHT-
based guessing procedure able to correctly guess the secret with relatively large
noise level. Together with a file-based approach of storing samples, the above
define a new BKW algorithm specifically designed to solve practical LWE in-
stances. We leave optimization of the implementation, including parallelization,
for future work.
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