Skip to main content

Fault-Tolerating Edge Computing with Server Redundancy Based on a Variant of Group Degree Centrality

  • Conference paper
  • First Online:
Book cover Service-Oriented Computing (ICSOC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12571))

Included in the following conference series:

Abstract

In the distributed and dynamic edge computing environment, edge servers are subject to runtime failures. Therefore, edge servers in an area must be fault-tolerated to ensure the reliability of services deployed on those edge servers. Server redundancy is an effective fault tolerance technique and has been widely applied in different distributed computing environments in the past decade. However, conventional fault tolerance techniques are not suitable for edge computing which has unique characteristics, i.e., the constrained coverage areas of individual edge servers (coverage constraint) and the partial overlapping between edge servers’ coverage areas (overlapping constraint). In this paper, we make the first attempt to investigate and tackle the novel edge server redundancy (ESR) problem. We prove that the ESR problem is \(\mathcal {NP}\)-hard. Then, we introduce a novel optimal approach for identifying a group of edge servers to be redundant. The objective is to maximize the effectiveness of fault tolerance measured by the harmonic mean of the scope and strength of fault tolerance given a redundancy budget. Furthermore, we propose a heuristic approach for finding sub-optimal fault tolerance strategies efficiently in large-scale ESR scenarios. Extensive experiments are conducted on a widely-used real-world dataset to evaluate the proposed approaches against three representative baseline approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Constraint (14), there are three possible pairs of values for \((x_i,y_i)\), i.e., (1, 0), (0, 1) and (0, 0). If \((x_i,y_i)=(1,0)\), \(\sum \nolimits _{v_j:(v_i,v_j) \in E}x_j \le k-1\), \(\varGamma _i\) can be set to a value greater than or equals to \(k-1\) to satisfy Constraint (14). If \((x_i,y_i)=(0,1)\), \(\sum \nolimits _{v_j:(v_i,v_j) \in E}x_j \le k\), \(\varGamma _i\) can be set to a value greater than or equals to k. If \((x_i,y_i)=(0,0)\), \(\sum \nolimits _{v_j:(v_i,v_j) \in E}x_j = 0\), \(\varGamma _i\) can be set to any value except 0. In this paper, \(\varGamma _i\) is set to k to fulfill the most tightness of IP relaxation.

  2. 2.

    https://github.com/swinedge/eua-dataset.

References

  1. Aral, A., Brandic, I.: Dependency mining for service resilience at the edge. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 228–242 (2018)

    Google Scholar 

  2. Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12(1), 21–34 (2006). https://doi.org/10.1007/s10588-006-7084-x

    Article  MATH  Google Scholar 

  3. Chantre, H.D., Fonseca, N.L.S.D.: Multi-objective optimization for edge device placement and reliable broadcasting in 5G NFV-based small cell networks. IEEE J. Sel. Areas Commun. 36(10), 2304–2317 (2018)

    Article  Google Scholar 

  4. Cui, G., He, Q., Chen, F., Jin, H., Yang, Y.: Trading off between user coverage and network robustness for edge server placement. IEEE Trans. Cloud Comput. (2020). https://doi.org/10.1109/TCC.2020.3008440

    Article  Google Scholar 

  5. Cui, G., He, Q., Xia, X., Chen, F., Jin, H., Yang, Y.: Robustness-oriented k edge server placement. In: IEEE/ACM 20th International Symposium on Cluster, Cloud and Grid (CCGrid), pp. 81–90 (2020)

    Google Scholar 

  6. Dodge, Y.: Harmonic Mean, pp. 239–241. Springer, New York (2008)

    Google Scholar 

  7. Ge, X., Tu, S., Mao, G., Wang, C.X., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72–79 (2016)

    Article  Google Scholar 

  8. Guo, Z., Yang, Y.: Exploring server redundancy in nonblocking multicast data center networks. IEEE Trans. Comput. 64(7), 1912–1926 (2015)

    Article  MathSciNet  Google Scholar 

  9. He, Q., Cui, G., Zhang, X., Chen, F., Deng, S., Jin, H., Li, Y., Yang, Y.: A game-theoretical approach for user allocation in edge computing environment. IEEE Trans. Parallel Distrib. Syst. 31(3), 515–529 (2020)

    Article  Google Scholar 

  10. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)

    Google Scholar 

  11. Jung, G., Rahimzadeh, P., Liu, Z., Ha, S., Joshi, K., Hiltunen, M.: Virtual redundancy for active-standby cloud applications. In: IEEE 37th Conference on Computer Communications (INFOCOM), pp. 1916–1924 (2018)

    Google Scholar 

  12. Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized vector bin packing. In: 16th International Conference on Service-Oriented Computing (ICSOC), pp. 230–245 (2018)

    Google Scholar 

  13. Lai, P., et al.: Edge user allocation with dynamic quality of service. In: 17th International Conference on Service-Oriented Computing (ICSOC), pp. 86–101 (2019)

    Google Scholar 

  14. Li, B., et al.: Read: robustness-oriented edge application deployment in edge computing environment. IEEE Trans. Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.3015316

  15. Li, S., Qiang, C., Wan, S., Lu, Q., Xie, C.: HRSPC: a hybrid redundancy scheme via exploring computational locality to support fast recovery and high reliability in distributed storage systems. J. Netw. Comput. Appl. 66(5), 52–63 (2016)

    Article  Google Scholar 

  16. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  17. Matt, J., Waibel, P., Schulte, S.: Cost- and latency-efficient redundant data storage in the cloud. In: IEEE 10th Conference on Service-oriented Computing and Applications (SOCA), pp. 164–172 (2017)

    Google Scholar 

  18. Muro, S., Ibaraki, T., Miyajima, H., Hasegawa, T.: Evaluation of the file redundancy in distributed database systems. IEEE Trans. Softw. Eng. 11(2), 199–205 (1985)

    Article  Google Scholar 

  19. Owen, S.H., Daskin, M.S.: Strategic facility location: a review. Eur. J. Oper. Res. 111(3), 423–447 (1998)

    Article  Google Scholar 

  20. Salas, J., Perez-Sorrosal, F., Patiño-Martinez, M., Jimenez-Peris, R.: WS-replication: A framework for highly available web services. In: 15th International Conference on World Wide Web (WWW), pp. 357–366 (2006)

    Google Scholar 

  21. Sun, X., Wang, S., Xia, Y., Zheng, W.: Predictive-trend-aware composition of web services with time-varying quality-of-service. IEEE Access 8, 1910–1921 (2020)

    Article  Google Scholar 

  22. Wang, L., Trivedi, K.S.: Architecture-based reliability-sensitive criticality measure for fault-tolerance cloud applications. IEEE Trans. Parallel Distrib. Syst. 30(11), 2408–2421 (2019)

    Article  Google Scholar 

  23. Xia, Xiaoyu., et al.: Graph-based optimal data caching in edge computing. In: Yangui, Sami, Bouassida Rodriguez, Ismael, Drira, Khalil, Tari, Zahir (eds.) ICSOC 2019. LNCS, vol. 11895, pp. 477–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33702-5_37

    Chapter  Google Scholar 

  24. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Online collaborative data caching in edge computing. IEEE Trans. Parallel Distrib. Syst. (2020). https://doi.org/10.1109/TPDS.2020.3016344

    Article  Google Scholar 

  25. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Cost-effective app data distribution in edge computing. IEEE Trans. Parallel Distrib. Syst. 32(1), 31–44 (2021)

    Article  Google Scholar 

  26. Xu, X., et al.: Load-aware edge server placement for mobile edge computing in 5G networks. In: 17th International Conference on Service-Oriented Computing (ICSOC), pp. 494–507 (2019)

    Google Scholar 

  27. Zebbane, B., Chenait, M., Badache, N.: A distributed lightweight redundancy aware topology control protocol for wireless sensor networks. Wireless Netw. 23(6), 1–14 (2016)

    Google Scholar 

  28. Zhang, Y., et al.: Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2891517

    Article  Google Scholar 

  29. Zheng, Z., Zhou, T.C., Lyu, M.R., King, I.: Component ranking for fault-tolerant cloud applications. IEEE Trans. Serv. Comput. 5(4), 540–550 (2012)

    Article  Google Scholar 

  30. Zhou, A., et al.: Cloud service reliability enhancement via virtual machine placement optimization. IEEE Trans. Serv. Comput. 10(6), 902–913 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministry of Education Project of Humanities and Social Sciences (No. 16YJCZH014), Australian Research Council Discovery Projects (DP18010021 and DP200102491) and the Open Fund of Hubei Key Laboratory of Transportation Internet of Things (Wuhan University of Technology) (No. 2018IOT005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, W. et al. (2020). Fault-Tolerating Edge Computing with Server Redundancy Based on a Variant of Group Degree Centrality. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds) Service-Oriented Computing. ICSOC 2020. Lecture Notes in Computer Science(), vol 12571. Springer, Cham. https://doi.org/10.1007/978-3-030-65310-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65310-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65309-5

  • Online ISBN: 978-3-030-65310-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics