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Abstract. With the rapid prevalence of mobile devices and the dra-
matic proliferation of mobile applications (apps), app recommendation
becomes an emergent task that would benefit both app users and stock-
holders. How to effectively organize and make full use of rich side informa-
tion of users and apps is a key challenge to address the sparsity issue for
traditional approaches. To meet this challenge, we proposed a novel end-
to-end Knowledge Graph Convolutional Embedding Propagation Model
(KGEP) for app recommendation. Specifically, we first designed a knowl-
edge graph construction method to model the user and app side infor-
mation, then adopted KG embedding techniques to capture the factual
triplet-focused semantics of the side information related to the first-order
structure of the KG, and finally proposed a relation-weighted convolu-
tional embedding propagation model to capture the recommendation-
focused semantics related to high-order structure of the KG. Extensive
experiments conducted on a real-world dataset validate the effectiveness
of the proposed approach compared to the state-of-the-art recommenda-
tion approaches.

Keywords: Mobile App Recommendation · Knowledge Graph · Knowl-
edge Graph Embedding · Graph Convolutional Network · Embedding
Propagation.

1 Introduction

Recent years, people have witnessed a rapid prevalence of smart mobile devices
and a dramatic proliferation of mobile applications. The large number and high
variety of apps are posing a great challenge for users to choose appropriate ones.
As a consequence, app recommendation has attracted more and more attention
these years. On the one hand, it can help users find their desired or interested
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apps more easily and quickly. On the other hand, it will benefit developers and
stockholders of apps to get more profits in the mobile app ecosystem.

However, sparsity is a typical characteristic of app usage data. For instance,
as of May 2020, there are over 2.9 million apps on Google Play[1], but most of
billions of users only install at most hundreds of apps. To address the sparsity
problem of user-app interactions, researchers usually turn to feature-rich scenar-
ios, where side information of users and apps is used to compensate for the spar-
sity and improve the performance of recommendation. As detailed in section 5,
most of them[2,3,4,5,6,7,8,9,10] only exploited limited types of side information.
In addition, they usually treated different kinds of side information as isolated
features of users and apps, and neglected the relations and semantics of them.
Consequently, how to effectively organize and make full use of side information
of users and apps is a great challenge to make successful app recommendation.

To meet the above challenge, we proposed a KG based app recommendation
approach. A KG is a type of directed heterogeneous graph in which nodes cor-
respond to entities and edges correspond to relations[11]. Among various types
of side information, the KG contains much more fruitful facts and introduces
semantic relatedness among apps, which can help find their latent connections.
Beyond that, the KG consists of relations with various types, which is helpful for
exploring a users interests reasonably. To be specific, we proposed a KG convo-
lutional embedding propagation model (KGEP) for app recommendation. First,
a KG construction method is designed to organize different kinds of side infor-
mation effectively. Then, a translation based KG embedding model is adopted to
capture the general semantics of side information from the perspective of general
KG facts. Finally, a relation-weighted KG convolutional embedding propagation
model is designed to further capture the recommendation-focused semantics from
the perspective of recommendation. We evaluated the proposed model on a real
dataset crawled from Google Play. The experimental results verify the effective-
ness of our method for app recommendation when compared to the state-of-the-
art methods.

The major contributions of this paper are summarized as follows.

1. It is the first work, to the best of our knowledge, that incorporates a KG to
organize and take full advantage of diverse side information for app recom-
mendation.

2. We proposed a novel end-to-end app recommendation model KGEP, which
can capture the semantics of rich side information related to both the first-
order and high-order structures of the constructed KG, by utilizing KG gen-
eral embedding techniques and convolutional propagated embedding tech-
niques respectively.

3. We conducted extensive experiments using a real app dataset. The com-
parative results demonstrate that our approach achieves higher performance
compared to the state-of-the-art recommendation methods.

The remainder of this paper is organized as follows. Sect. 2 formulates the app
recommendation problem. Sect. 3 presents the proposed model in detail. Sect. 4
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discusses the experimental results. Sect. 5 introduces related works. Finally, we
concluded the paper and indicated some future directions in Sect. 6.

2 Notations and Problem Formulation

The app recommendation scenario contains a set of users U = {u1, u2, , u|U|},
a set of apps A = {a1, a2, , a|A|}, and their historical interactions. In addition,
we have rich side information for users and apps (e.g., app attributes and de-
scription texts). Typically, such auxiliary data consists of real-world entities and
relationships among them to profile a user or an app. We organized the side
information in the form of KG.

App Recommendation Knowledge Graph (ARKG), denoted as G, is a di-
rected graph composed of entity-relation-entity triples (h, r, t), where h ∈ E ,
r ∈ R and t ∈ E are the head, relation, and tail of a knowledge factual triple,
and E and R are the set of entities and relations in G, respectively. For example,
the triple (Facebook, OfferedBy, Facebook) states the fact that the company
Facebook offers the app Facebook. According to the side information which we
can crawl and their importance for recommendation, we defined the following
13 types of entities for the ARKG.

Definition 1 (Content-Topic Entity). Considering Readme texts of apps
provided by developers contain rich app profiles and are crucial to the efficacy
of the ARKG to do recommendation, We used probabilistic topic modeling to
incorporate them into the ARKG. A Content-Topic entity is a distribution over
terms, which can be used to explore users preference on specific topics. The
number of Content-Topic entities involved in the ARKG is a hyperparameter
and can be configured by recommender service users.

Due to space limitations, the definitions of the other 12 types of entities (i.e.,
User, App, Category, Provider, Popularity, Age-Restriction, Ads, Fee, Interactive-
Elements, Quality, Updated-Time, Size) involved in the ARKG are not listed any
more. Based on these kinds of entities, 18 relations were defined for the ARKG,
the detailed information of which is listed in Table 1.

The relation INTERACT denotes historical user-app interactions. The next
11 relations denote that an app has some specific profiles. The last 6 relations
denote that one entity is similar to another with the same entity type. Based on
the above definitions, how to extract factual triplets and construct the ARKG
will be presented in Sect. 3.1.

We formulated the KG-based app recommendation problem as follows. Given
the sets of users and apps, and their side information, we aim to construct an
ARKG G. Then taking G as an input, we aimed to predict whether user u has
a potential interest in app a with which she has had no interaction before. Our
task can be formulated to learn a prediction function ŷua = F(u, a|θ,G), where
ŷua denotes the probability that user u will engage with app a, and θ denotes the
model parameters of function F .
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Table 1. Relations involved in the ARKG

Relation Head entity Tail entity Related side information

INTERACT User App User-app interaction data
HAVINGCT App Content-Topic Apps’ Readme texts
HAVINGC App Category Apps’ category data
OFFEREDBY App Provider Apps’ provider data
CONTENTR App Age-Restriction Apps’ content rating data
HAVINGA App Ads No ads or not of an app
HAVINGF App Fee Free or not of an app
HAVINGIE App Interactive-

Elements
Apps’ interactive-elements
data

HAVINGQ App Quality Users review grades of apps
HAVINGP App Popularity Apps’ install numbers
HAVINGUT App Updated-Time Apps’ updated time
HAVINGS App Size Apps’ size data
USIMILAR User User User-app rating matrix
CTSIMILAR Content-Topic Content-Topic Content-Topic entity data
QSIMILAR Quality Quality Quality entity data
PSIMILAR Popularity Popularity Popularity entity data
UTSIMILAR Updated-Time Updated-Time Updated-Time entity data
SSIMILAR Size Size Size entity data

3 Methodology

The framework of our app recommendation model KGEP was presented in Fig. 1,
which consists of four main components: 1) ARKG constructing, which aims to
construct an ARKG for app recommendation; 2) general KG embedding, which
parameterizes each entity or relation as two vectors by preserving the semantic
relatedness among the ARKG; 3) recommendation focused convolutional em-
bedding propagation, which recursively propagates embeddings from a nodes
tail neighbors to update its representation; 4) prediction and learning, which
outputs the predicted matching scores by the final representations of users and
apps, and learns the model parameters. We presented them in detail in the fol-
lowing subsections respectively.

3.1 ARKG Construction

ARKG construction mainly involves 2 sub-tasks, i.e., entity identification and
relation extraction.

Entity Identification. Except Content-Topic entities, the other kinds of en-
tities listed in the above section can be explicitly identified from the side in-
formation of users and apps. So we just described the identification method of
Content-Topic entities here.

We adopted an LDA model to identify Content-Topic entities. Its basic idea
is that documents are represented as random mixtures over latent topics, where
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Fig. 1. Framework of the proposed Model KGEP

each topic is characterized by a distribution over words. The process of Content-
Topic entity identification can be summarized as follows.

1. Text preprocessing and hyperparameter setting. Taking the Readme
text of each app as a document, we can get a corpus, i.e., a collection of |A|
documents. We first preprocessed the corpus, i.e., conducting tokenization,
stop words removing, stemming, lemmatization and typo corrections. NLTK
and Spacy packages of Python were used for these tasks. Then, we set the
number of topics and other hyperparameters.

2. LDA model learning. Given a preprocessed corpus of documents, we used
variational EM algorithm to estimate parameters in LDA model. Then for
each app a, let Z = z1, z2, , zK be the set of latent topics, we can obtain the
parameters θa = θa1, θa2, , θaK of its Dirichlet distribution over Z.

3. Content-Topic entity identifying. For each app a, given its inferred
Dirichlet distribution parameters θa = θa1, θa2, , θaK over Z, it is defined
that app a has Content-Topic zk if and only if !∃θai|θai > θak, (1 ≤ i ≤ K).
Namely, an app has one and only Content-Topic entity.

Relation Extraction. Due to space limitations, we only detailed the triplet
extraction methods for relations CTSIMILAR and USIMILAR, which are more
complex than the methods for other relations.



6 M. Zhang et al.

The relation CTSIMILAR represents the similarity among Content-Topic
entities in the ARKG. Let W = {w1, w2, , wV } be the set of words and Z =
{z1, z2, , zK} be the set of latent topics, we can get the probability distribution
Φk = {φk1, φk2, , φkV } of each topic zk(1 ≤ k ≤ K) overW using variational EM
algorithm. Then, for any two Content-Topic entities zi and zj , we used Hellinger
distance to measure their similarity.

similarity ct(zi, zj) =
1√
2

√√√√ V∑
l=1

(
√
φil −

√
φjl)2 (1)

Given the Content-Topic-Similarity threshold cts(0 < cts < 1), there will be
a relation (zi, CTSIMILAR, zj) if similarity ct(zi, zj) ≥ cts.

The relation USIMILAR represents the similarity among User entities. We
used a user-app rating matrix to extract this kind of relations. For typical app
recommendation scenario, a user can rate an app from 1 star to 5 star, where
we transformed the rating grades from 0.2 to 1.0, and none rating to 0. Then,
for each user ui(1 ≤ i ≤ |U|), we can get a rating vector ri = {ri1, ri2, , ri|A|}.
The similarity between any two users ui and uj are modeled as their Tanimoto
coefficient.

similarity u(ui, uj) =
ri · rj

‖ri‖2 + ‖rj‖2 − ri · rj

=

∑|A|
l=1 rilrjl∑|A|

l=1 r
2
il +

∑|A|
l=1 r

2
jl −

∑|A|
l=1 rilrjl

(2)

Given the User-Similarity threshold us(0 < us < 1), we can extract a triplet
(ui, USIMILAR, uj) if similarity u (ui, uj) ≥ us for ui and uj .

3.2 General KG Embedding

General KG embedding was then performed on the constructed ARKG to embed
its entities and relations into continuous vector spaces, while preserving its inher-
ent structure. For the ARKG mainly consists of N-to-1 and N to N relations, we
employed TransD[12], which is suitable for dealing with such complex relations
and at the same time has relatively high efficiency, to embed the ARKG.

To be more specific, for each triplet (h, r, t) in the ARKG, it learns two vec-
tors for the head entity h, tail entity t and relation r respectively, denoted as h,
hp, t, tp, r and rp, where h,hp, t, tp ∈ Rm and r, rp ∈ Rn. We set the hyper-
parameters m = n = d for the convenience of the learned vectors’ application
in recommendation. The prior vectors h, t and r represent the meaning of the
entities and relation. The other ones (i.e., hp, tp, rp) are called projection vectors
representing the way that how to project the entity embeddings h and t into
the relation vector r’s space. Specifically, they were used to construct mapping
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matrices, which are defined as follows.

Mrh = rph
>
p + Id×d

Mrt = rpt
>
p + Id×d

(3)

where Mrh, Mrh ∈ Rd×d are mapping matrices, and I denotes the identity
matrix of size d× d. With the mapping matrices, the projected vectors of h and
t are defined as follows.

h⊥ = Mrhh, t⊥ = Mrth (4)

To learn embeddings of each entity and relation by optimizing the translation
principle h⊥+ r ≈ t⊥, the plausibility score (aka energy score) of a given triplet
(h, r, t) was formulated as follows.

g(h, r, t) = −‖h⊥ + r− t⊥‖22 (5)

where a higher score of g(h, r, t) suggests that the triplet is more likely to be
true, and vice versa.

The training of TransD uses the following margin-based ranking loss to en-
courage discrimination between golden triplets and incorrect ones.

LKG =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

max
(
0, γ + g(h′, r, t′)− g(h, r, t)

)
(6)

where max(x, y) aims to get the maximum between x and y, γ is the margin,
S = {(h, r, t)} is the set of golden triples contained in the ARKG. Corrupting
each golden triplet (h, r, t) ∈ S by replacing the head entity or the tail entity,
the set of negative triples S′ = {(h′, r, t′)} can be generated. The process of
minimizing the above objective was carried out with stochastic gradient descent
(SGD) in mini-batch mode.

This component embeds the entities and relations on the granularity of
triples. After getting its outputs, we can use them to make app recommendation
directly and roughly by equation (5).

3.3 Convolutional Embedding Propagation

Next, focused on app recommendation, we built upon the architecture of graph
convolution network to further capture both high-order structure and seman-
tic information in the ARKG to make more precise recommendation. Here we
started by describing a single layer, and then discussed how to generalize it to
multiple layers. As illustrated in Fig. 2 (a), one single layer mainly involves 2
steps: 1) for each entity, aggregating information from its neighbors to form its
neighbors’ aggregated vector; 2) integrating with its own current latent vector
to update its embedding for the next layer.
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Fig. 2. Illustration of our convolutional embedding propagation approach. (a) an ex-
ample of how an entity aggregates information from its neighbours. (b) an example of
how the model propagates information between two layers.

Aggregating Information from Neighbours. In the real ARKG, head enti-
ties are causally determined by tail entities (e.g. the apps should be profiled by
their attributes, and users’ preference should be influenced by apps). So infor-
mation is aggregated from tail entities to head entities in our model. In addition,
to characterize both semantic information of the ARKG and users personalized
interests in relations, neighbours are weighted dependent on the connecting re-
lation and specific user while calculating the neighbours’ aggregated vector for
a given entity. Specifically, given a user u and a node v in the ARKG (G), we
use Nv = {(h, r, t)|(h = v) ∧ (h, r, t) ∈ G} to denote the set of triplets where v
is the head entity. Then the neighbours’ aggregated vector of v specific to u is
computed as follows.

vNv
u =

∑
(h,r,t)∈Nv

wr
ut (7)

where t ∈ Rd is the vector of tail entity t, and wr
u is the weight between user u

and relation r, which characterizes the importance of relation r to user u and
be computed as follows.

wr
u =

exp(π(u, r))∑
(h,r,t)∈Nv

exp(π(u, r))
(8)

where u ∈ Rd and r ∈ Rd are the embeddings of user u and relation r. π :
Rd ×Rd → Rd is a weight score function (e.g., we adopted inner product in this
paper).

Generally, vNv
u not only characterizes the local proximity structure of node

v, but also exploits the personalized interests of user u in relations.

Updating Embeddings for the Next Layer. To update the embedding of
each node v as its representation in the next layer, we concatenated its cur-
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rent representation vu with its neighbours’ aggregated vector vNv
u , and fed this

concatenated vector through a fully connected layer with nonlinear activation
function σ to transform it to the new representation of v. It can be formulated
as:

v′u = σ
(
W · (vu‖vNv

u ) + b
)

(9)

where v′u (i.e., the output of this layer) is the new representation of node v
specific to user u, and W and b are transformation weight and bias, respectively.
“‖” denotes the concatenation operation.

Note that not all entities are updated because some of them in the ARKG
have no tail neighbours.

Information Propagating among Layers. Through a single layer, we can
capture 2-order entity connectivity, taking the general KG embedding as the
1-order connectivity. However, exploiting higher-order connectivity is of impor-
tance to perform high-quality recommendation. It is intuitive to propagate in-
formation between different layers to capture higher-order structural proximity
among entities. As illustrated in Figure 2 (b), given the brown entity, its embed-
ding is updated by aggregating information from its neighbours (i.e., the green
nodes), while the embeddings of the green nodes are updated by aggregating
information from their neighbours (i.e., the blue ones).

More formally, we stacked K − 1 propagation layers and used equation (9)
to propagate embeddings along higher-order connectivity. For notational conve-
nience, we denoted the representation of node v specific to user u at depth k− 1

as v
(k)
u . Generally speaking, v

(k)
u is a mixture of initial representations of node

v and its neighbors up to k hops away.

3.4 Model Prediction and Learning

After performing K−1 layers, we obtained the final representation v
(K)
u of node

v specific to user u, which characterizes v’s high-order entity dependencies up
to K hops and captures u’s potential long-distance interests. In addition, the
outputs of the general KG embedding characterize the distance between head
entity h and tail entity t in the space of relation r for a triplet (h, r, t). So for
user u and app a, we concatenated the representations of the two components
into a single vector to do prediction as follows.

u∗ = (u⊥ + rINTERACT )‖u(K), a∗u = a⊥‖a(K)
u (10)

where rINTERACT is the vector of relation “INTERACT”, u⊥ and a⊥ are the
vectors of user u and app a in the rINTERACT space. They are all the outputs of

the general KG embedding component, while u(K) and a
(K)
u are the final outputs

of the convolutional embedding propagating component.
Finally, we computed the inner product of user and app representations, so

as to predict their matching score:

ŷu,a = u∗>a∗u (11)
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To learn the parameters of our app recommendation model, we adopted neg-
ative sampling strategy, and the objective function was defined as binary cross-
entropy loss with L2 norm regularization:

LCEP =
∑
u∈U

∑
v∈Trnu

(
− log ŷu,v +

∑
i∈Negu

v

− log(1− ŷu,i)
)

+ λ‖θ‖22 (12)

where Trnu = {v|yu,v = 1} is the set of user u’s all training instances. For each
training instance (u, v), we randomly sampled x negative apps, denoted as Neguv .
λ is coefficient for the regularization and θ denotes all model parameters. The
model was trained via Adam optimizer.

4 Empirical Study

In this section, we compared our approach with several state-of-the-art recom-
mendation methods using real-world app usage data and studied the impact of
parameters on the performance of our model.

4.1 Dataset Description

We collected our dataset from Google Play. We crawled each app relevant meta-
data that the ARKG constructing needs. To bypass the cold start, we first omited
apps with less than 10 users and then excluded users with less than 10 apps.
After this preprocessing step, our dataset contains 12802 users, 4539 apps, and
198077 rating observations. The user app rating matrix has a sparsity as high
as 0.341%.

4.2 Comparing Methods

To evaluate the performance of the proposed model, we compared it with the
following representative baselines.

1. UserCF: A user-user similarity matrix can be obtained while extracting
USIMILAR relations for the ARKG. Then, we used the classic user-based
collaborative filtering as a baseline.

2. BPR-MF[13]: The Bayesian Personalized Ranking based matrix factoriza-
tion, is a representative algorithm designed for implicit feedback, adopting
a pairwise ranking loss to optimize the latent factor models.

3. FISM[14]: This is representative item-based collaborative filtering Top-N
recommendation model, used to verify the effectiveness of our recommenda-
tion model.

4. NFM[15]: This is a state-of-the-art factorization model, which seamlessly
combines FM and neural network in modelling feature interactions.

5. TransDR: This is a simplified translation-based recommendation version of
our approach, which takes the representation learned by TransD as inputs
of a one hidden layer neural network to make recommendation directly.
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4.3 Experiment Setup

We divided the preprocessed dataset into three subsets: training, validation, and
test. For every user, we randomly selected 70%, 10% and 20% interacted apps
into the training set, the validation set and the test set respectively.

For ARKG construction, we set the number of Content-Topic entities to
50, the Content-Topic-Similarity threshold cts to 0.9, and the User-Similarity
threshold us to 0.98, and then we extracted 406044 triplets for the ARKG.

We implemented our KGEP model in Tensorflow. The hyper-parameters were
optimized on the validation set, which are listed as follows. The embedding size is
16, the number of propagation layers is 1, dropout is 0, epoch is 80, and learning
rate is 0.02. All the experiment results of our model are corresponding to the
above hyper-parameter values, except a specific hyper-parameter may vary while
preserving the values of the other hyper-parameters when we analyzed our model
sensitivity on the given hyper-parameter. For all the baselines, we set respective
optimal parameters either according to corresponding references or based on our
experiment results. We adopted learner Adam for the models: BPR-MF, FISM,
NFM and KGEP, and adopt learner SDG for TransDR.

We adopted three widely used metrics for performance evaluation:Recall@K,
Precision@K and mean average precision (MAP@K), where K indicates rec-
ommending top K ranked apps. For all the metrics, the larger the value, the
better the performance.

4.4 Performance Comparison with Baseline Methods

The performance comparison results are presented in Table 2. We had the follow-
ing observations: (1) KGEP consistently yields the best performance on all the
metrics and K values. In detail, KGEP improves much more over the strongest
baselines on the metric MAP than the other 2 metrics, and when K is smaller;
(2) BPR-MF achieves better performance than the other baselines in most cases;
(3) TransDR sometimes achieves better performance than all the baselines, in-
dicating that just general KG embedding has efficacy to some extent to make
app recommendation.

4.5 Model Analysis and Discussion

To get deep insights on the proposed model KGEP, we investigated its sensi-
tivity on some core hyper-parameters. Fig. 3 illustrates the effect of embedding
size. Due to the computational cost, we can not train TransD model after the
embedding size is larger than 16. So, we used xavier initializer to initialize the
propagation embeddings after the dimensionality is larger than 16, and concate-
nated the 16-dimensional embeddings of TransD to make recommendation. From
Fig. 3, we can see, our model KGEP can achieve the best performance when the
embedding size is set to 16.Fig. 4 shows the influence of layer numbers. It illustrates that our model
achieves the best performance just with one embedding propagation layer on
the basis of general ARKG embeddings. We also conducted the experiments
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Table 2. Performance comparison on the Google Play dataset. The best results are
starred, and the second-best results are listed in bold.

top-K Metrics UserCF BRP-MF FISM NFM TransDR KGEP

Precision (%) 0.155 0.458 0.209 0.301 0.315 1.000*
Recall (%) 0.254 1.159 0.521 0.763 0.567 2.461*10
MAP (%) 0.361 1.309 0.656 0.859 0.871 3.853*

Precision (%) 0.144 0.440 0.199 0.277 0.390 0.600*
Recall (%) 0.341 2.187 0.997 1.352 1.151 3.061*20
MAP (%) 0.398 1.516 0.769 1.001 1.285 3.996*

Precision (%) 0.145 0.426 0.200 0.265 0.430 0.567*
Recall (%) 0.452 3.183 1.491 1.864 1.749 4.256*30
MAP (%) 0.428 1.616 0.821 1.069 1.510 4.177*

Precision (%) 0.145 0.413 0.191 0.258 0.461 0.475*
Recall (%) 0.550 4.034 1.864 2.450 2.385 4.839*40
MAP (%) 0.450 1.667 0.848 1.103 1.599 4.232*
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to analyze the effects of dropout and learning rate. Due to space limitations,
the corresponding figures are not presented any more. The results are that the
performance of KGEP would be the best when the learning rate equals to 0.02
among {0.0001, 0.0005, 0.001, 0.05, 0.02, 0.1, 0.5}, and would be better when
the dropout equals to 0 or 0.2 than other values {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9}.

5 Related Work

Knowledge Graph based Recommendation. Recommender systems are
now indispensable in many Web applications, such as App stores. The matrix
factorization algorithm BPR-MF[13], the item-based collaborative filtering algo-
rithm FISM[14], and the factorization model algorithm NFM[15] are arguably
the most representative among the large number of recommendation algorithms
developed. Recently, KG, as one of the most effective data modelling techniques,
has been spotlighted in recommender systems. In general, existing KG-aware
recommendation can be classified into three categories. The first category is
embedding-based methods, such as CKE[16], DKN[17], which preprocess a KG
with knowledge graph embedding algorithms and incorporates the learned en-
tity embeddings into a recommendation framework. However, these methods are
usually more suitable for in-graph applications such as link prediction than for
recommendation. The second category is path-based methods, such as PER[18],
KPRN[19], which explore the various patterns of connections among items in
KG to provide additional guidance for recommendations. However, they rely
heavily on meta-paths, which is hard to optimize in practice, so that has a large
impact on the final recommendation performance. The third category is embed-
ding propagation methods, such as RippleNet[20], KGAT[21], KGCN[22], which
combine embedding-based and path-based methods in KG-aware recommenda-
tion, so as to address the limitations of the above two categories.

Different from the above KG-aware recommendation models, we leverage the
general embeddings and the propagated embeddings simultaneously to make app
recommendation.

Mobile App Recommendation. Mobile app recommendation has attracted
much attention these days. By focusing on different kinds of side information, re-
searchers proposed the following representative app recommendation approaches.
Focusing on the privilege data of apps, The studies[2,3,4] mainly considered pri-
vacy leak and security risk issues to perform personalized app recommendations.
Focusing on geographical information of users, Zhu et al.[5] proposed a novel
location-based probabilistic factor analysis mechanism to help people get an ap-
propriate mobile app. Focusing on version information of apps, Cao et al.[6]
proposed a novel version-sensitive mobile app recommendation framework by
jointly exploring the version progression and dual-heterogeneous data. Focusing
on app usage patterns of users, Xu et al. [7] proposed a neural network based
approach to leverage the predictive power of app usage context patterns to do
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effective app recommendation. Focusing on category information of apps, Guo
et al. [8] proposed an app recommendation model based on deep factorization
machine, which can make use of categorical and textual information of apps.
Further considering the interactions of categories and other side information
of apps, Liang et al.[9] utilized a tensor-based framework to effectively inte-
grate app category information and multi-view features of users and apps to do
context-aware app recommendation. Focusing on the complex semantics among
different kinds of side information, Xie et al. [10] exploited weighted meta-graph
and heterogeneous information network for mobile app recommendation, mainly
considering user review information. However, it is not an end-to-end method.
Meta-graphs are hard to be designed optimally, which will further influence the
efficacy of recommendation.

Differed from the above state-of-the-art app recommendation methods, we
proposed an end-to-end framework and leveraged KG to recommend apps for
users. It can model complex semantics among diverse side information more
explicitly to make better recommendation.

6 Conclusion and Future Work

This paper proposed a novel KG based mobile app recommendation approach.
We first designed a KG construction method to organize rich side information
of users and apps, then adopted a translation based KG embedding method to
capture the semantics of side information related to first-order structure of the
constructed KG, and proposed a convolutional embedding propagation model to
capture the semantics related to high-order structure of the KG. By incorporat-
ing KG into app recommendation, our approach can effectively model and take
full advantage of rich side information to alleviate the sparsity issue and improve
recommendation performance. The comparative experimental results show that
our approach outperforms the competing recommendation methods in terms of
precision, recall and MAP.

In the future, we will attempt to apply our model to other recommendation
application scenarios, such as general Web service recommendation or Web API
recommendation for Mashups, to further validate it and find and improve its
limitations.
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