Skip to main content

Towards Causal Explanations of Community Detection in Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications IX (COMPLEX NETWORKS 2020 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 943))

Included in the following conference series:

  • 2633 Accesses

Abstract

Community detection is a significant research problem in Network Science since it identifies groups of nodes that may have certain functional importance - termed communities. Our goal is to further study this problem from a different perspective related to the questions of the cause of belongingness to a community. To this end, we apply the framework of causality and responsibility developed by Halpern and Pearl [11]. We provide an algorithm-semi-agnostic framework for computing causes and responsibility of belongingness to a community. To the best of the authors’ knowledge, this is the first work that examines causality in community detection. Furthermore, the proposed framework is easily adaptable to be also used in other network processing operations apart from community detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The endogenous and exogenous sets differ for different nodes. Also, the endogenous set typically comprises the incident edges connecting this node to its neighbors. Finally, allowing self-loops is not an issue, since if they are irrelevant to the setting, we can simply make them exogenous.

  2. 2.

    Transitivity does not hold in general w.r.t. causation [11].

References

  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  2. Carmi, E., Oestreicher-Singer, G., Sundararajan, A.: Is oprah contagious? Identifying demand spillovers in online networks. Identifying Demand Spillovers in Online Networks (August 2012). NET Inst. Working Paper No. 10-18 (2012)

    Google Scholar 

  3. Chen, S., Wang, Z.Z., Tang, L., Tang, Y.N., Gao, Y.Y., Li, H.J., Xiang, J., Zhang, Y.: Global vs local modularity for network community detection. PLoS ONE 13(10), e0205284 (2018)

    Article  Google Scholar 

  4. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model approach. J. Artif. Intell. Res. 22(1), 93–115 (2004)

    Article  MathSciNet  Google Scholar 

  5. De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Mixing local and global information for community detection in large networks. J. Comput. Syst. Sci. 80(1), 72–87 (2014)

    Article  MathSciNet  Google Scholar 

  6. De Meo, P., Ferrara, E., Fiumara, G., Ricciardello, A.: A novel measure of edge centrality in social networks. Knowl. Based Syst. 30, 136–150 (2012)

    Article  Google Scholar 

  7. Derrible, S., Kennedy, C.: Network analysis of world subway systems using updated graph theory. Transp. Res. Rec. 2112(1), 17–25 (2009)

    Article  Google Scholar 

  8. Fortunato, S., Hric, D.: Community detection in networks: A user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  9. Friedkin, N.E.: Horizons of observability and limits of informal control in organizations. Soc. Forces 62(1), 54–77 (1983)

    Article  Google Scholar 

  10. Gao, Y., Liu, Q., Chen, G., Zhou, L., Zheng, B.: Finding causality and responsibility for probabilistic reverse skyline query non-answers. IEEE Trans. Knowl. Data Eng. 28(11), 2974–2987 (2016)

    Article  Google Scholar 

  11. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: Causes. Br. J. Phil. Sci. 56(4), 843–887 (2005)

    Article  Google Scholar 

  12. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part ii: Explanations. Br. J. Phil. Sci. 56(4), 889–911 (2005)

    Article  Google Scholar 

  13. Held, P., Krause, B., Kruse, R.: Dynamic clustering in social networks using Louvain and infomap method. In: ENIC, pp. 61–68 (2016)

    Google Scholar 

  14. Javed, M.A., Younis, M.S., Latif, S., Qadir, J., Baig, A.: Community detection in networks: a multidisciplinary review. J. Netw. Comput. Appl. 108, 87–111 (2018)

    Article  Google Scholar 

  15. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  Google Scholar 

  16. Lian, X., Chen, L.: Causality and responsibility: probabilistic queries revisited in uncertain databases. In: CIKM 2013, New York, NY, USA, pp. 349–358 (2013)

    Google Scholar 

  17. Malliaros, F.D., Giatsidis, C., Papadopoulos, A.N., Vazirgiannis, M.: The core decomposition of networks: theory, algorithms and applications. VLDB J. 29(1), 61–92 (2020)

    Article  Google Scholar 

  18. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The complexity of causality and responsibility for query answers and non-answers. Proc. VLDB Endow. 4(1), 34–45 (2010)

    Article  Google Scholar 

  19. Meliou, A., Roy, S., Suciu, D.: Causality and explanations in databases. Proc. VLDB Endow. 7, 1715–1716 (2014)

    Article  Google Scholar 

  20. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42 (2007)

    Google Scholar 

  21. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  22. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  23. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2) (2018)

    Google Scholar 

  24. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007)

    Article  Google Scholar 

  25. Shen, H.W.: Community Structure of Complex etworks. Springer Science & Business Media (2013)

    Google Scholar 

  26. Tripathi, B., Parthasarathy, S., Sinha, H., Raman, K., Ravindran, B.: Adapting community detection algorithms for disease module identification in heterogeneous biological networks. Front. Genet. 10, 164 (2019)

    Article  Google Scholar 

  27. Wang, Z., Wang, C., Ye, X., Pei, J., Li, B.: Propagation history ranking in social networks: a causality-based approach. Tsinghua Sci. Tech. 25(2), 161–179 (2020)

    Article  Google Scholar 

  28. Wilber, A.W., Doye, J.P., Louis, A.A., Lewis, A.C.: Monodisperse self-assembly in a model with protein-like interactions. J. Chem. Phys. 131(17), 11B602 (2009)

    Google Scholar 

  29. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  30. Zarayeneh, N., Kalyanaraman, A.: A fast and efficient incremental approach toward dynamic community detection. In: Proceedings of the ACM/IEEE International Conference on Advances in Social Networks Analysis and Mining, pp. 9–16 (2019)

    Google Scholar 

Download references

Acknowledgements

Georgia Baltsou is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research - 2nd Cycle” (MIS-5000432), implemented by the State Scholarships Foundation (IKY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Baltsou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baltsou, G., Gounaris, A., Papadopoulos, A.N., Tsichlas, K. (2021). Towards Causal Explanations of Community Detection in Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-65347-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65347-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65346-0

  • Online ISBN: 978-3-030-65347-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics