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Abstract. Centrality measures are crucial in quantifying the influence
of the members of a social network. Although there has been a great
deal of work dealing with this issue, the vast majority of classical cen-
trality measures are agnostic of the community structure characterizing
many social networks. Recent works have developed community-aware
centrality measures that exploit features of the community structure
information encountered in most real-world complex networks. In this
paper, we investigate the interactions between 5 popular classical cen-
trality measures and 5 community-aware centrality measures using 8
real-world online networks. Correlation as well as similarity measures be-
tween both type of centrality measures are computed. Results show that
community-aware centrality measures can be divided into two groups.
The first group, which includes Bridging centrality, Community Hub-
Bridge and Participation Coefficient, provides distinctive node informa-
tion as compared to classical centrality. This behavior is consistent across
the networks. The second group which includes Community-based Medi-
ator and Number of Neighboring Communities is characterized by more
mixed results that vary across networks.
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1 Introduction

With the rapid increase of online social networks (OSNs) such as Facebook and
Twitter, large amount of data is being generated daily. A valuable mining area
of network data is composed when OSNs are modeled into nodes and edges.
Identifying key nodes in such networks is the basis of major applications such as
viral marketing [I], controlling epidemic spreading [2], and determining sources
of misinformation [3]. Designing centrality measures is a main approach to quan-
tify node influence. Numerous centrality measures exploiting various properties
of the network topology have been developed [4]. Information exploited can be
either in the neighborhood of the node or concerning all the topological struc-
ture of the network. The former called local centrality measures are less com-
putationally expensive as compared to the later called global centrality mea-
sures. However, local centrality measures, usually, aren’t as much as accurate
as global centrality measures. Recent works tend to combine both local and
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global measures [5l[6]. Real-world OSNs often exhibit a community structure in
which groups of nodes are closely connected to each other and sparsely connected
to nodes in other communities [7}[8]. Community structure has major implica-
tions on the dynamics of the network [9]. To this end, researchers have taken
classical centrality measures a step further to incorporate community structure
information [I0HI7]. Community-aware centrality measures can be divided into
two groups. The former explicitly rely on the community structure. They incor-
porate information about the type of links in a community (intra-community
links and inter-community links). The latter targets “bridges” that lie between
communities without extracting the community structure information.

As classical centrality measures neglect the community structure, this raises
a key question. Do community-aware centrality measures provide distinctive in-
formation about the members within OSNs when compared to classical central-
ity measures? Previous works have studied the relationship between classical
centrality measures [I8H22] and between classical and hierarchy measures [23].
Nonetheless, to our knowledge, there is no previous work on the relationship be-
tween classical and community-aware centrality measures on OSNs. To fill this
gap, here, 5 classical and 5 community-aware centrality measures are used in a
comparative evaluation involving 8 real-world OSN. The community structure
of the networks is extracted using the Infomap [24] community detection algo-
rithm. Then, Kendall’s Tau correlation and RBO similarity are calculated on all
the possible combinations between the classical and community-aware centrality
measures. Two groups of community-aware centrality measures can be seen. The
first group provides distinctive information when compared against classical cen-
trality measures and is consistent across the networks under study. It includes
Bridging centrality, Community Hub-Bridge, and Participation Coefficient. The
second group shows varying correlation and similarity on networks. It includes
Community-based Mediator and Number of Neighboring Communities.

The paper is organized as follows. Classical and community-aware centrality
measures alongside basic definitions are provided in section 2l The datasets and
tools are provided in section [Bl Experimental results are discussed in section [41
Finally, the conclusion and future works are provided in section

2 Preliminaries and Definitions

In this section preliminaries and definitions used throughout the rest of the paper
are given.

— Consider a undirected and unweighted OSN as G(V, E) where V is the set
of nodes and E C V x V is the set of edges and N = |V]| is the total size
of the network. Nodes represent individuals and edges represent social links
between these individuals. The semantics of the social links depend on the
platform of the OSN.

— Consider A = (a; ;) as the adjacency matrix showing connectivity of the
network G such that a; ; = 1, if node ¢ is connected to node j and a; ; =0,
otherwise.
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— Let the neighborhood of any node ¢ be defined as the set NV, (i) = {j € V : (i, j) € E}
at length p, where p = 1,2,..., D. D is the diameter of G. Accordingly, two
nodes are neighbors of order AP if there’s a minimal path connecting them
at p steps.
— Let C be the set of communities C' = {c1, ¢a, ..., ¢t }. The intra-community
links are obtained from the graph G; where all inter-community links of the
nodes are removed. The inter-community links are obtained from the graph
G4 where all intra-community links of the nodes are removed.

2.1 Classical Centrality Measures

Following are the definitions of the 5 most popular centrality measures used in
the study.

Degree Centrality is simply the total number connections a node has in the
network. It is defined as follows:

N
aa(i) = ai (1)
j=1
where a;; is obtained from A!, 1-step neighborhood (p=1).

Betweenness Centrality captures the number of times a node falls between
the shortest paths linking other node pairs. It is defined as follows:

ap(i) = Z %i(s, 1) (2)

s, t7#1 U(S’ t)

where o(s,t) is the number of shortest paths between nodes s and ¢ and o;(s, t)
is the number of shortest paths between nodes s and ¢ that pass through node 1.

Closeness Centrality is inverse of sum of geodesic distances to every other
node from a given node. It is defined as follows:
. N -1
ac(l) = =7 (3)
Zj:l d(i, j)

where d(i, 7) is the shortest-path distance between node i and j.

Katz Centrality is based on how many nodes a node is connected to and also
to the connectivity of its neighbors . It is defined as follows:

ap(i) =Y sPal, (4)
p=1j=1

where afj is the connectivity of node i with respect to all the other nodes at
AP and sP is the attenuation factor where s € [0,1].
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PageRank Centrality quantifies a node’s importance similarly to Katz cen-
trality with an additional layer based on a random surfer. It is defined as follows:

. 1—d ap(g
Oép(l) = T + d Z Z;{:—() (5)
JENL() Y

where (i) and a,(j) are the PageRank centralities of node i and node j,
respectively, A7 (i) is the set of direct neighbors of node i, k; is the number of
links from node j to node %, and d is the damping parameter where d € [0,1], set
to 0.85 in the experiments.

2.2 Community-aware Centrality Measures

Following are the definitions of the 5 community-aware measures of centrality
used:

Number of Neighboring Communities (NNC) [11] is based on the number
of communities a node can reach in one hop. For a node in community ¢ C C,
it is defined as follows:

Bune(i)= >\ aj (6)

¢ CC\ck jECI

where \/ jee @i =1 when node ¢ is connected to at least one node j in community
Cy.

Community Hub-Bridge (CHB) [11I] assumes a node simultaneously can
act as a hub and a bridge. It combines the intra-community and inter- community
links by weighting the former with the community size and the latter with the
number of neighboring communities. For a node in community ¢, C C, it is
defined as follows:

Berp(i) = hi(cx) + bi(cr) (7)

ntra
ki

where hub influence is given by h;(cx) = |ck| X and bridge influence is

given by bi(ck) = ﬁNNC (Z) X k;_'nter.

Participation Coefficient (PC) [12] is based on the intra-community and
inter-community links distribution. The more the links of a node are distributed
across different communities, the higher its participation coefficient. It is defined

as follows:
Ne /1 N2
Bre(i) =1~ ( ,&;t) ()

c=1

where IV, is the total number of communities, k; . is the number of links node i
has in a given community ¢ (can be inter-community or intra-community links),
and k!°! is the total degree of node i.
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Community-based Mediator (CBM) [13] takes into consideration the intra-
community and inter-community ratio of a node, then it incorporates a random
walker and entropy based on the ratio of the different link types. It is defined as
follows:

k’?"t
Bepm (i) = Hi X —x—— 9)
Zi:l ki
where H; = [— ) pitralog(pimr@)] 4 [— 3 pinterlog(pi™ter)] is the entropy of
node i based on its pt"® and p‘"**" which represent the density of the commu-

nities a node links to (either its community or external communities), k!¢ is the
total degree of node i, and Zﬁl k; is the total degrees in the network.

Bridging Centrality (BC) [10] extracts node bridges by using betweenness
centrality and bridging coefficient. The bridging coefficient quantifies the prox-
imity of a node to high degree nodes. It is defined as follows:

Brc(i) = an(i) x B(i) (10)
—1
where a3 (1) is the classical betweenness centrality of node ¢ and B(i) = ﬁ
jent (@) N

is the bridging coefficient where A7 (i) is the set of direct neighbors of node i.

3 Datasets and Materials

In this section, the 8 real-world online social networks are briefly discussed,
alongside the tools applied. Table [l reports the basic topological characteristics
of the networks. Note that the mixing parameter u is defined as the proportion of
inter-community links to the total links in a given network. It is calculated after
the community structure is uncovered by the community detection algorithm.

3.1 Data

FB Ego this network (ego-facebook) is collected from participants using Face-
book. Nodes represent users on Facebook and edges represent online friend-
ships [25].

FB Princeton this network (socfb-Princeton12) is collected from Facebook
among students at Princeton University. Nodes represent users on Facebook
and edges represent online friendships [25].

FB Caltech this network (socfb-Caltech36) is collected from the Facebook ap-
plication among students at Caltech University. Nodes represent users on Face-
book and edges represent online friendships [25].
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Table 1. Basic topological properties of the real-world networks. N is the total num-
bers of nodes. E is the number of edges. < k > is the average degree. < d > is the
average shortest path. v is the density. ¢ is the transitivity (also called global clustering
coefficient). knn (k) is the assortativity (also called degree correlation coefficient). @ is
the modularity. p is the mixing parameter. * indicates the topological properties of the
largest connected component of the network in case it is disconnected.

Network N EF <k><d> v ¢ knn(k) Q I

Retweets Copenhagen 761 1,029 2.70 5.35 0.003 0.060 -0.099 0.695 0.287
FB Caltech* 762 16,651 43.70 2.23 0.057 0.291 -0.066 0.389 0.410
Hamsterster* 1,788 12,476 13.49 3.45 0.007 0.090 -0.088 0.391 0.298
FB Ego 4,039 88,234 43.69 3.69 0.010 0.519 0.063 0.814 0.077
FB Politician Pages 5,908 41,729 14.12 4.66 0.002 0.301 0.018 0.836 0.111
FB Princeton* 6,575 293,307 89.21 2.67 0.013 0.163 0.090 0.417 0.365
PGP 10,680 24,316 4.55 7.48 0.0004 0.378 0.238 0.813 0.172
DeezerEU 28,281 92,752 6.55 6.44 0.002 0.095 0.104 0.565 0.429

FB Politician Pages this network (fb-pages-politician) is collected from Face-
book pages. Nodes represent politician pages from different countries created on
Facebook and edges represent mutual likes among them [25].

Retweetes Copenhagen this network (rt-twitter-copen) is collected from Twit-
ter. Nodes are users on Twitter tweeting in parallel to the United Nations confer-
ence in Copenhagen about climate change and edges represent retweets among
the users [25].

DeezerEU this network (deezer_europe) is obtained form Deezer, a platform for
music streaming. Nodes are Deezer European users and edges represent online
friendships [26].

Hamsterster this network (petster-friendships-hamster) is obtained from an
online social pet network hamsterster.com. Nodes represent users and edges rep-
resent friendships among them. [27].

PGP this network (arenas-pgp) is obtained from the web of trust. Nodes are
users using the Pretty Good Privacy (PGP) algorithm and edges represent secure
information sharing among them [27].

3.2 Tools

Kendall’s Tau Correlation is used to assess the relationship for all possible
combinations between classical and community-aware centrality measures. As-
sume that R(«) and R(S) are the ranking lists of a classical centrality and a
community-aware centrality, respectively. The correlation value resulted [-1,41]
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reveals the degree of ordinal association between the two given sets of ranks. If
R(ci) > R(aj) and R(5;) > R(B;) or R(ew;) < R(aj) and R(f;) < R(B;), node
pair (7, j) is concordant. If R(a;) > R(a;) and R(8;) < R(8;) or R(c) < R(a;)
and R(S;) > R(B;), node pair (i,7) is discordant. If R(a;) = R(a;) and/or
R(B;) = R(B;), node pair (4, 7) is neither concordant nor discordant. It is de-
fined as follows:

o Ne —Ng
n(R(a), R(f)) = N IS TIRn 1§ Ay (11)

where n. and ng stand for the number of concordant and discordant pairs, re-
spectively, and « and v hold the number of tied pairs in sets R(«) and R(f),
respectively.

Rank-Biased Overlap (RBO) [28] is capable of placing more emphasis on
the top nodes between the two ranked lists R(a) and R(53) of classical and
community-aware centrality measures. Its value ranges between [0,1]. It is defined
as follows:

RBO(R(0). R(8)) = (1 - p)3_ pto-0 POD ORBDL g
d=1

where p dictates “user persistence” and the weight to the top ranks, d is the
depth reached on sets R(«) and R(5), and |R(ag) N R(B4)|/d is the proportion
of the similarity overlap at depth d. Note that p is set to 0.9 in the experiments.

Infomap Community Detection Algorithm [24] is based on compression
of information. The idea is that a random walker on a network is likely to stay
longer inside a given community and shorter outside communities. Accordingly,
using Huffman coding, each community is defined by a unique codeword and
nodes inside communities are defined by other codewords that can be reused in
different communities. The optimization algorithm minimizes the coding resulted
by the path of the random walker, achieving a concise map of the community
structure.

4 Experimental Results

In this section the results of the experiments performed on the real-world net-
works are reported. The first set of experiments involves calculating Kendall’s
Tau correlation coefficient for all possible combinations between classical and
community-aware centrality measures. The second experiment involves calculat-
ing the RBO similarity across all the combinations.
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Fig. 1. Heatmaps of the Kendall’s Tau correlation (7) of real-world networks across
the various combinations between classical (o)) and community-aware (3) centrality
measures. The classical centrality measures are: ag = Degree, o, = Betweenness, a. =
Closeness, ay, = Katz, ap, = PageRank. The community-aware centrality measures are:
Bec = Bridging centrality, Scyp = Community Hub-Bridge, Spc = Participation
Coefficient, Scpnm = Community-based Mediator, Sync = Number of Neighboring
Communities.

4.1 Correlation Analysis

Kendall Tau’s correlation is applied on each network given all of the possible
combinations between the 5 classical and 5 community-aware centrality mea-
sures. The 25 different combinations of the Kendall Tau’s correlation for the 8
OSNs are reported in figure[ll The Kendall’s Tau values range from -0.17 to 0.83.
Low correlation from -0.17 to 0.3 is characterized by the dark purple color of the
heatmaps. Medium correlation from 0.3 to 0.6 is characterized by the fuchsia
color. High correlation above 0.6 is characterized by the light pink color.

Networks’ heatmaps are arranged from low correlation (FB Ego) to medium-
high (DeezerEU) correlation between classical and community-aware central-
ity measures. Heatmaps show that there are different behaviors among the
community-aware centrality measures under study when they are compared to
classical centrality measures. Specifically, Bridging centrality (8pc), Commu-
nity Hub-Bridge (Bcmp) and Participation Coefficient (8p¢) show consistency
in their low correlation with classical centrality measures. On the other hand,
Community-based Mediator (Scpar) and Number of Neighboring Communities
(Bnne) vary across networks. In FB Ego, FB Politician Pages, and PGP, the
correlation values are in the low to medium range, while in Hamsterster, FB
Princeton, FB Caltech, and DeezerEU they are in the medium to high range.
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Fig. 2. Heatmaps of the RBO similarity at p=0.9 of real-world networks across the
various combinations between classical () and community-aware () centrality mea-
sures.The classical centrality measures are: ag = Degree, a, = Betweenness, a. =
Closeness, a, = Katz, ap, = PageRank. The community-aware centrality measures are:
Bec = Bridging centrality, Scpp = Community Hub-Bridge, Spc = Participation
Coefficient, Scpm = Community-based Mediator, Sync = Number of Neighboring
Communities.

Note that in Retweets Copenhagen network, the community-aware centrality
measures show high correlation with the classical centrality measures degree and
betweenness but low to medium correlation with the others. This is with the
exception of Community Hub-Bridge (8¢ p) which shows low correlation with
all classical centrality measures.

This experiment aims to answer the main research question, that is, do
community-aware centrality measures provide distinctive information about the
members within OSNs when compared to classical centrality measures? Results
show that community-aware centrality measures indeed provide different infor-
mation from that of classical centrality measures to the members within OSNs.
Nonetheless, Bridging centrality (8p¢), Community Hub-Bridge (Bcng), and
Participation Coefficient (8pc) show consistency in providing distinctive infor-
mation to the members of 8 networks at hand. They always show low correla-
tion. While Community-based Mediator (Scpa) and Number of Neighboring
Communities (8ynyc) show discrepancy in their behavior from one network to
another.

4.2 Similarity Analysis

As top nodes are more important than bottom nodes in centrality assessment,
RBO is calculated. Moreover, high correlation doesn’t necessarily mean high
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similarity. This is more obvious when ties exist among the rankings of a set. Fig-
ure 2lshows the RBO similarity heatmaps of the 8 OSNs. The RBO values range
from 0 to 0.86. Low similarity from 0 to 0.3 is characterized by the dark purple
color. Medium similarity from 0.3 to 0.6 is characterized by the fuchsia color.
High similarity over 0.6 is characterized by the light pink color. For comparison
purposes, the networks are arranged in the same order as in figure [

Inspecting the heatmaps, Bridging centrality (8p¢) shows almost no similar-
ity with all other classical centrality measures. To a less extent come Community
Hub-Bridge (Bcmp) and Participation Coefficient (8pc) community-aware cen-
trality measures. For these community-aware centralities, the low similarity is
consistent across the networks. Community-based Mediator (8cpas) and Num-
ber of Neighboring Communities (8xn¢) change from one network to another.
For example, taking the RBO similarity of the combination (a4, Byn¢) in Deez-
erEU, it is equal to 0.68 while in FB Princeton it is equal to 0.04.

This experiment shows consistency with the previous experiment. Indeed,
Bridging centrality (8g¢), Community Hub-Bridge (8cmp), and Participation
Coefficient (Spc) community-aware centrality measures show the lowest simi-
larity to classical centrality measures and their behavior is consistent across the
8 OSNs under study. This case is similar to the case under Kendall Tau’s cor-
relation. However, RBO is more extreme than Kendall’s Tau correlation, where
low values of similarity can be seen. This is simply due to the RBO definition
accounting for ranks. When a group of nodes acquires the same rank, as RBO
moves from depth d to d+ 1, the group of tied nodes occurring at d are surpassed
and hence account less to the similarity between the two ranked lists.

Referring back to the main research question, indeed, community-aware and
classical centrality measures do not convey the same information. Nonetheless,
these measures can be divided into two groups. The first group has consistent
low similarity with the classical centrality measures while the second group has
varying similarity across the networks.

5 Conclusion

Communities have major consequences on the dynamics of a network. Humans
tend to form communities within their social presence according to one or many
similarity criteria. In addition to that, humans tend to follow other members
manifesting power, influence, or popularity, resulting in dense community struc-
tures. Centrality measures aim to identify the key members within OSNs, which
is crucial for a lot of strategic applications. However, these measures are agnostic
to the community structure. Newly developed centrality measures account for
the existence of communities.

Most works have been conducted on classical centrality measures on online
social networks. In this work, we shed the light on the relationship between classi-
cal and community-aware centrality measures in OSNs. Using 8 real-world OSNs
from different platforms, their community structure is uncovered using Infomap.
Then, for each network, 5 classical and 5 community-aware centrality measures
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are calculated. After that, correlation and similarity evaluation between all pos-
sible classical and community-aware centrality measures is conducted. Results
show that globally these two types of centrality do not convey the same infor-
mation. Moreover, community-aware centrality measures exhibit two behaviors.
The first set (Bridging centrality, Community Hub-Bridge, and Participation
Coefficient) exhibit low correlation and low similarity for all the networks under
study. The second set (Community-based Mediator and Number of Neighboring
Communities) shows varying correlation and similarity across networks.

Results of this study suggest that community-aware centrality measures are
worth looking into when searching for key members in OSNs, as they provide
different information from classical centrality measures. This work opens future
research directions. Further study will investigate the effect of network topology
on the relationship between classical and community-aware centrality measures
and whether results are consistent using different community detection algo-
rithms.
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