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Abstract. In this paper, we aim to effectively suppress the spread of
epidemic/information via blocking/removing a given fraction of the con-
tacts in a temporal (time evolving) human contact network. We consider
the SI (Susceptible- Infected) spreading process, on a temporal contact
network to illustrate our methodology: an infected node infects a sus-
ceptible node with a probability 5 when a contact happens between the
two nodes. We address the question: which contacts should be blocked in
order to minimize the average prevalence over time. We firstly propose
systematically a set of link properties (centrality metrics) based on the
aggregated network of a temporal network, that captures the number of
contacts between each node pair. Furthermore, we define the probability
that a contact c(3, j,t) is removed as a function of the centrality of the
corresponding link (7, 7) in the aggregated network as well as the time
t of the contact. Each of the centrality metrics proposed can be thus
regarded as a contact removal strategy. Empirical results on six tempo-
ral contact networks show that the epidemic can be better suppressed
if contacts between node pairs that have fewer contacts are more likely
to be removed and if contacts happened earlier are likely removed. A
strategy tends to perform better when the average number contacts re-
moved per node pair has a lower variance. Strategies that lead to a lower
largest eigenvalue of the aggregated network after contact removal do
not mitigate the spreading better. This contradicts the finding in static
networks, that a network with a small largest eigenvalue tends to be ro-
bust against epidemic spreading, illustrating the complexity introduced
by the underlying temporal networks.

Keywords: Temporal Network, SI Spreading, Epidemic Mitigation

1 Introduction

Since the outbreak of the Covid-19, most countries have taken mitigation mea-
sures to stop or at least reduce the spread. Citizens reduce significantly their
transportation and social activities and human contact in general. However, ap-
plying the same mitigation measure (e.g. everyone reducing their physical con-
tact by 10%) to all citizens might not be the most efficient way to stop the
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virus’s spread. The fundational question is which type of social contacts should
be blocked in order to slow down the epidemic spreading.

Human contact networks like face-to-fact contact networks are in general
evolving over time. In such so-called temporal networks, two nodes are con-
nected at a given time step when they have a face-to-face contact. Physical
contact networks become available thanks to the development of sensor and
communications technologies. In contract to static networks, where links remain
constantly active, the link between a node pair is active (or the two nodes have a
contact) only at specific time steps in a temporal network. A temporal network
G = (WV,C) observed within a given time window [0,7] among a set N of N
nodes can be represented by a set of contacts C = {c(i,j,t),t € [0,T],%,5 € N'},
where contact ¢(i, j,t) occurs between node pair (i, j) at time step ¢.

In this work, we explore the question which contacts could be removed in
order to suppress the epidemic spreading effectively. As a simple start, we con-
sider the Susceptible-Infected (SI) epidemic model, which models information
diffusion and epidemic spreading when the spreading is much faster than the re-
covery. Initially, a seed node is randomly selected and infected at ¢ = 0, whereas
all the other nodes are susceptible. An infected node infects a susceptible node
with a probability 8 when a contact happens between the two nodes. The preva-
lence i.e. the percentage of individuals that are infected grows over time. The
prevalence over time could be reduced via the removal of contacts. Such reduc-
tion in prevalence over time is used to quantify the effect of contact removal. In
practice, the temporal contact network at large scale e.g. country level is likely
unavailable. We assume that we could obtain the corresponding aggregated net-
work Gyy, where two nodes i and j are connected by a link {(3, j) if the two nodes
have at least one contact and the link is associated with a weight representing
the number of contacts in between. We aim to design contact removal strategies
based on the aggregated network. We propose systematically a set of link cen-
trality metrics or properties based on the aggregated network. Furthermore, we
define the probability that a contact (i, j,t) is removed as a generic function of
a centrality metric of link [(¢, 7) in the aggregated network and the time ¢ of the
contact. Each centrality metric thus leads to a different mitigation strategy to
select the contacts to block. The average fraction ¢ of contacts to be removed is
considered as a control parameter, indicating the mitigation cost. We evaluate
the performance of all the strategies that we have proposed in 6 real-world tem-
poral networks. We find that the epidemic prevalence can be better suppressed
when contacts between node pairs that have fewer contacts are more likely to
be removed, i.e. using the metric one over the number of contacts between a
node pair. Removing contacts that happen earlier in time also further enhance
the mitigation effect. The number of contacts between a node pair is hetero-
geneous. It seems that the mitigation effect is better if the average number of
contacts removed per node pair varies less. Static network studies have shown
that a weighted network tends to be more robust against epidemic spreading
with respect to its epidemic threshold if its largest eigenvalue is smaller. The
resultant aggregated network after contact removal, however, may have a lower
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prevalence if its largest eigenvalue is larger. This implies that the underlying
temporal network may lead to new phenomena in epidemic spreading that differ
from what we have learned from static networks.

The influence of temporal networks on dynamic processes has been widely
investigated [1,2]. Gemmetto et. al have studied the epidemic mitigation via ex-
cluding a sub-group of nodes in a temporal network [10]. Link blocking strategies
using link centrality metrics to suppress information diffusion has been explored
in [4]. The links to block are selected from the aggregated network. When a link
is blocked, all contacts associated with the links are all removed. In this work,
we investigate more in-depth at contact level, i.e. how to choose the contacts to
block when the total number of contacts to block is given. Moreover, the con-
sideration of the time of a contact in contact removal strategies may inspire the
decision when a mitigation should be implemented.

2 Methods

We propose firstly a set of link centrality metrics/properties based on the ag-
gregated network Gyy. Furthermore, the probability that a contact is removed
is defined step by step as a function of a given centrality metric and the time
of the contact, which also ensures that a fraction ¢ of contacts are removed on
average. We evaluate the effect of the mitigation strategies via the extent that
the prevalence is reduced over time.

2.1 Link centrality metrics

An aggregated network Gy, can be constructed based on the temporal network
G observed over time window [1,7T]. We propose the following link centrality
metrics based on the weighted aggregated network:

— Degree product: the product of the degrees of the two end nodes of a link,
where the nodal degree is defined as the number of neighbors of a node.

— Strength product: the product of the strengths of the two end nodes of a link,
where the nodal strength is the sum of weights of all the links incident to
the node, or equivalently the total number of contacts the node involves in
the temporal network.

— Betweenness: the number of shortest paths in the unweighted aggregated
network that traverse the link between all possibly node pairs.

— Link weight: the weight of a link in the aggregated network. It is the same as
the number of contacts between the two end nodes in the temporal network.

— Weighted eigenvector component product: the product of the principal eigen-
vector components of the two end nodes, where the principal eigenvector is
the eigenvector corresponds to the largest eigenvalue of the weighted aggre-
gated network.

— Unweighted eigenvector component product: the product of the principal
eigenvector components of the two end nodes, where the principal eigenvec-
tor is the eigenvector corresponds to the largest eigenvalue of the unweighted
aggregated network.
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— Random: the metric is set as 1 for all links.

For each metric m;;, we consider # as an extra centrality metric, except for
ij

the random. For any centrality metric, the centrality value of every link in the
aggregated network is positive. The motivation to consider the reciprocal metrics
% is explained in the design of the removal probabilities of contacts (2).

ij

Link centrality metrics can be correlated [5,6]. We find that the Spearman

rank correlation between any two metrics proposed above is weak, i.e. below
0.2. This implies that each metric captures a specific property that can not be
captured by another metric.

2.2 Contact removal probability

For a given link centrality metric, we can compute the centrality for m;; for each
link I(7, j). We propose the probability p;; that a contact ¢(i, j, t) between i and
J is removed as
¢ Zij Wi
pig = My (1)
N N Eij (wijmi;)

where w;; is the weight of link [(, j) in the aggregated network, and the nor-
malization ensures that on average a fraction ¢ of contacts will be removed.
The probability that a contact is removed is assumed to be proportional to the
centrality m;; of the corresponding link (¢, 7).

We found that some centrality metrics are highly heterogeneous. Hence, it is
possible that the removal probability calculated by (1) is larger than 1 for con-
tacts whose associated link (¢, j) has an extremely large centrality m;;. In such
cases, the actual fraction of contacts removed can be lower than the expected ¢,
if all contacts with removal probability larger than 1 are removed. Therefore, we
set the removal probabilities of those contacts to 1 and re-normalize the removal
probability among the rest contacts. This process is repeated until the removal
probabilities of all remaining contacts are between 0 and 1, while the actual
fraction of contacts removed is the same as expected ¢ .

The probability p;; that a contact between 7 and j is removed can be defined
in a more general way

ot e 2 i i Wi (2)
” 7 Zij (w”m%)
The removal probability of a contact between 7 and j is proportional to a poly-
nomial function of m;;. Our choice in (1) corresponds to the case when o = 1.
The random strategy, i.e. every contact has the same probability to be removed,

corresponds to the case when o = 0. The choice of the reciprocal metric ﬁ in
ij

(1) is equivalent to the general definition (2) when metric m;; is considered and
a = —1. Hence, we consider removal probability (1) using the list of centrality
metrics proposed and their reciprocals as well as the random strategy, which
correspond to the general definition of (2) where a = 1, —1,0, respectively.
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Furthermore, we wonder whether removing contacts that happen earlier or
introducing the mitigation intervention earlier in time would better reduce the
prevalence. To take the time factor of the contacts into account, we propose the
probability p;;(t) that a contact c(4, j,t) between ¢ and j at ¢ is removed as

¢Zij Wij
ij (wijmijf(t))

where f(t) implies the preference to block contacts at specific period. The prob-
ability that c(7,j,t) is removed is proportional to m;; - f(t).

As a simple start, we consider f(t) =4 - l,<p/2 + Lisry2, f(t) = li<p/o +4-
li>7/2 and f(t) = 1, where the indicator function 1, is one is the condition y is
true, and otherwise it is 0. These three functions corresponds to the preference
to block contacts happening in [1,7/2], in (T/2,T] and no preference over the
time of the contacts, respectively.

pij(t) = my; f(t) 5 (3)

2.3 Datasets

Datasets Nodes Links Contacts Duration

HighSchoolll 126 1709 28561 3.15

HighSchool12 180 2220 45047 8.44

WorkPlacel3 92 755 9827 11.43

WorkPlacelb 217 4274 78249 11.50

MIT1 74 355 29107 6.99

MIT2 45 200 22714 6.99
Table 1: Basic properties of the temporal networks: the number of nodes, links
and contacts. The duration is the duration of the observation time window [1,T]
measured in days, thus T times the duration per discrete time step.

We consider six real-world temporal physical contact networks, measured in
three scenarios:

— HighSchool11&12[7] capture the physical contacts between students in a high
school in Marseilles, France. The two datasets consider two different groups
of students.

— WorkPlacel13&15[8] are the temporal networks of contacts between individ-
uals measured in an office building in France. Different groups of individuals
are considered in the two datasets respectively.

— MIT1&2[9] contain human contact data among students of the Massachusetts
Institute of Technology. In order to keep the duration of the observation time
window relatively comparable with the other networks, we randomly select
two one-week periods as two temporal networks.

All networks are considered as undirected. Some basic properties of the networks
are shown in Table 1.
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2.4 Simulation

We consider as an example the infection probability 8 = 0.01, the probability
that a susceptible gets infected by an infected node when they have a contact.
This infection probability leads to a prevalence around the order of 10% by the
end of the time window in each temporal network.

For each centrality metric and each temporal network, we select each node in
the network as a possible seed node. For each seed node, we iterate the following
for five times. In each iteration, the fraction ¢ of contacts to be removed are
selected according to the centrality metric thus the probability (1) using the given
link centrality metric; The SI process starting from the given seed is performed
on the temporal network where the selected contacts are removed; the prevalence
p over time is recorded. For each network and centrality metric, we could obtain
the prevalence at any time as the average over all possible seed nodes and the
five iterations for each seed node. The fraction ¢ of contacts to be removed is a
control parameter and ¢ = 10% and ¢ = 30% have been considered.

Simulations are performed in the same way when the time factor f(t) are
taken into account via the removal probability of a contact defined in (3).

3 Results

First of all, we evaluate the performance of all strategies as defined in (1) where
the time of a contact has no influence on its probability of being blocked.

HighSchool1ll WorkPlacel3

—— degree product
1/degree product
0.051 —— strength product
—— 1/strength product
—— betweeness
—— 1/betweeness
random
—— link weight
1/link weight
—— weighted eigen
—— 1/weighted eigen
0.03 unweighted eigen
—— 1/unweighted eigen

0.12 1 —— degree product
1/degree product
—— strength product
—— 1/strength product
—— betweeness
—— 1/betweeness
random
0.08{ — link weight
1/link weight
—— weighted eigen
a —— 1l/weighted eigen
0.06 unweighted eigen
—— 1junweighted eigen

0.‘0 0‘.2 0.‘4 0‘.6 0‘8 1.‘0 0‘.0 0‘2 D.‘4 0‘.6 0‘8 l.‘O
T T
Fig. 1: The prevalence p over time, when ¢ = 10% of the contacts are removed
using each centrality metric according to (1) in two temporal networks.

Figure 1 illustrates how the prevalence p grows over time when each contact
blocking strategy is performed in two networks and 10% contacts are removed.
The performance of the strategies in each network can be also compared via the
average prevalence E[p] over the whole time window, as shown in Table 2 and
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Metrics HighSchoolll WorkPlacel3 MIT1 HighSchool12 WorkPlacel5 MIT2
degree product 0.0444 0.0264 0.1128 0.0438 0.1008 0.1903
1/degree product 0.0457 0.0264 0.1050 0.0455 0.1051 0.1765
strength product 0.0450 0.0269 0.1154 0.0445 0.1082 0.1998
1/strength product 0.0465 0.0270 0.0968 0.0416 0.0969 0.1605
betweeness 0.0442 0.0261 0.0990 0.0392 0.1042 0.1961
1/betweeness 0.0465 0.0264 0.1169 0.0447 0.1035 0.1929
random 0.0459 0.0250 0.1106 0.0430 0.1010 0.1909
link weight 0.0488 0.0263 0.1227 0.0483 0.1131 0.1946
1/link weight 0.0396 0.0263 0.0922 0.0355 0.0836 0.1689
weighted eigen 0.0470 0.0277 0.1180 0.0453 0.1039 0.2071
1/weighted eigen 0.0499 0.0280 0.0976 0.0441 0.1029 0.1661
unweighted eigen 0.0417 0.0267 0.1126 0.0435 0.0988 0.1981
1/unweighted eigen 0.0478 0.0283 0.1080 0.0430 0.1099 0.1861

Table 2: The prevalence E|[p] averaged over time when ¢ = 10% of the contacts
are removed from each temporal network using removal probability (1) based on
each centrality metric. The best performance in each network is marked in bold.

3, where ¢ = 10% and ¢ = 30% percent of contacts are removed respectively.
The 1/link weight performs the best in all networks except for MIT2 and/or
WorkPlacel3. These observations imply that it is more effective to suppress the
epidemic by removing contacts between node pairs that have few contacts.

For any node pair (7,j), the average number of contacts removed between
i and j is p;;w;;. For strategy 1/link weight, the average number of contacts
removed is the same for all node pairs or for all links in the aggregated net-
work!. We wonder whether a more similar number of contacts removed per node
pair leads to a better mitigation effect. Hence, we derive further the variance
Var[p;jw;;] for each strategy in each network. Figure 2(a) shows the scatter plot
of the average prevalence E[p| versus \/Var[p;jw;;|. In each network, a strategy
tends to perform better i.e. leads to a low E[p] if the Var[p;jw;;] is small.

In the studies of the Susceptible-Infected-Susceptible SIS epidemic spread-
ing model on a static weighted network, the largest eigenvalue of the weighted
network has been shown to suggest the robustness of the network against epi-
demic [11-14]. The infection rate between two individuals is assumed in the
SIS model to be proportional to the infection rate of the epidemic multiply by
the link weight, i.e. the contact frequency. In this case, the epidemic threshold
Te ™~ W, where matrix W with its element w;; captures the weights of all
links in the aggregated network. When the effective infection rate, i.e. infection
rate normalized by the recovery rate of the epidemic, is above the threshold,
a none-zero fraction of the population gets infected in the meta-stable state,

1For strategy 1 /link weight, the actual average number of contacts removed per
node pair in the simulation may differ slightly among the links, because when the
removal probability p;; derived from (1) is larger than one, we set p;; = 1, and re-
normalize the removal probabilities of the rest links so that a fraction ¢ of contacts are
removed as expected.
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Metrics HighSchoolll WorkPlacel3 MIT1 HighSchooll2 WorkPlacel5 MIT2
degree product 0.0266 0.0212 0.0929 0.0273 0.0521 0.1732
1/degree product 0.0375 0.0219 0.0847 0.0322 0.0712 0.1447
strength product 0.0363 0.0231 0.1032 0.0321 0.0656 0.1773
1/strength product 0.0313 0.0225 0.0673 0.0302 0.0645 0.1087
betweeness 0.0313 0.0227 0.0796 0.0284 0.0574 0.1495
1/betweeness 0.0353 0.0231 0.1020 0.0318 0.0653 0.1630
random 0.0320 0.0216 0.0881 0.0298 0.0634 0.1717
link weight 0.0431 0.0240 0.1008 0.0398 0.0874 0.1785
1/link weight 0.0210 0.0202 0.0572 0.0191 0.0391 0.1170
weighted eigen 0.0343 0.0242 0.1016 0.0337 0.0673 0.1782
1/weighted eigen 0.0395 0.0227 0.0668 0.0340 0.0709 0.1030
unweighted eigen 0.0264 0.0218 0.0950 0.0290 0.0557 0.1645
1/unweighted eigen 0.0383 0.0215 0.0826 0.0325 0.0708 0.1390

Table 3: The prevalence E|[p| averaged over time when ¢ = 30% of the contacts
are removed from each temporal network using removal probability (1) based on
each centrality metric.

whereas below the threshold, the epidemic dies out in the meta-stable state. A
static weighted network with a small largest eigenvalue tends to be more robust
against epidemic. We explore further the largest eigenvalue A\; (W*) of the resul-
tant aggregated network after contact removal whose weighted adjacency matrix
is W*. Would a strategy that leads to a smaller A;(W™*) be more effective in sup-
press the prevalence according to the findings of SIS model on static networks?
The scatter plot in Figure 2(b) of the average prevalence E[p] versus Ay (W*)
shows the contrary: the prevalence tends to be low when the resultant network
has a large largest eigenvalue. This inconsistency can be possibly introduced by
the following. Removing many contacts from few links whose end nodes have a
high strength may better reduce the largest eigenvalue. This is less effective in
mitigation an SI spreading process where each link can transmit the epidemic
maximally once dependent also on the time ordering of contacts. It can be, how-
ever, effective to mitigate an SIS epidemic where such links could transmit the
epidemic frequently.

Finally, we take the time of a contact into account when selecting the contacts
to remove via the contact removal probability p;;(t) defined in (3). When f(t) =
li<r/2+4- 1457/, contacts happening late i.e. t > T'/2 in time are more likely to
be removed. When f(t) =4 - 1,<7/2 + 14572, contacts happening early i.e. t <
T'/2 are 4 times more likely to be removed compared to contacts happening late
t > T/2. Comparing Table 3 , 4 and 5, where the contact removal is independent
of the time of a contact, favors the removal of late and early contacts respectively,
we find that the suppressing effect is better when early contacts are more likely
to removed. Furthermore, the metric 1/link weight tends to perform the best
independent of the choice of f(t). Hence, the mitigation effect tends to be better
if contacts between node pairs that have few contacts and earlier contacts are
more likely to be removed. Node pairs with few contacts are usually referred as
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Fig.2: (a) Scatter plot of the average prevalence E[p] versus the standard de-
viation \/Var[p;;w;;] of the average number of contacts removed from a node
pair. (b) Scatter plot of the average prevalence E[p] versus the largest eigen-
value A (IWW*) of the resultant aggregated network after the contact removal. A
fraction ¢ = 30% of contacts are removed.

weak social ties. Removing the contacts along weak social ties seems an effective
and likely socially feasible mitigation strategy.

4 Conclusion and Discussion

In this work, we have introduced the methodology of suppressing the epidemic
spreading via removing a given fraction of contacts in a temporal network. The
choice of the contacts to remove is designed in a generic and probabilistic way.
The probability that a contact ¢(4, j,t) is removed is a function of the centrality
or property of the corresponding link {(7, j) in the aggregated network as well as
the time ¢ of the contact. A large number of relatively independent link centrality
metrics have been considered. We find that removing the contacts between the
node pairs that have few contacts and removing contacts in an earlier phase tend
to suppress the prevalence more. This implies that the removal of contacts along
weak social ties in an early phase tends reduce the prevalence more effectively.
On the other hand, removing the large number of contacts of few node pairs is
likely too costly to be effective.

To illustrate the methodology, we have confined ourselves to the SI spreading
model, limited number of real-world networks and limited choices of the parame-
ters. Our methods may inspire further studies beyond the limited scenarios that
we have considered. Our mitigation method is based on the aggregated network
over the whole time window [1,T], when the mitigation is supposed to be carried
out. It is interesting to explore whether we can estimate this aggregated network
based on the observation of the aggregated network in the past. The performance
of the mitigation strategies may depend on the properties of the underlying tem-
poral networks. A fundamental question is which temporal network properties
favor which mitigation strategies. This requires the expertise in the modeling of
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Metrics HighSchoolll WorkPlacel3 MIT1 HighSchool12 WorkPlacel5 MIT2
degree product 0.0341 0.0241 0.1027 0.0349 0.0717 0.1878
1/degree product 0.0418 0.0235 0.0981 0.0359 0.0807 0.1543
strength product 0.0390 0.0236 0.1093 0.0352 0.0717 0.1920
1/strength product 0.0358 0.0234 0.0734 0.0320 0.0741 0.1315
betweeness 0.0342 0.0236 0.0899 0.0321 0.0715 0.1663
1/betweeness 0.0406 0.0242 0.1094 0.0385 0.0828 0.1809
random 0.0385 0.0260 0.1033 0.0353 0.0751 0.1815
link weight 0.0443 0.0252 0.1156 0.0417 0.0932 0.1992
1/link weight 0.0245 0.0217 0.0669 0.0212 0.0453 0.1362
weighted eigen 0.0366 0.0236 0.1144 0.0342 0.0714 0.1863
1/weighted eigen 0.0436 0.0250 0.0690 0.0345 0.0745 0.1196
unweighted eigen 0.0327 0.0234 0.1085 0.0360 0.0681 0.1804
1/unweighted eigen 0.0444 0.0255 0.0936 0.0366 0.0843 0.1519

Table 4: The prevalence E|[p] averaged over time when ¢ = 30% of the contacts
are removed from each temporal network using contact removal probability (3)
and f(t) = ly<p/2 +4 - 14572 based on each centrality metric. Contacts hap-
pening late i.e. t > T'/2 in time are more likely to be removed.

temporal networks and temporal network randomization. The effect of mitiga-
tion strategies depends as well on the relative spreading probability /rate. When
an epidemic spreads extremely fast, e.g. all nodes have already been infected
before T'/2, the aggregated network information is likely not ideal to determine
the contact removal probabilities, though this scenario is less realistic.
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