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Abstract. In contrast to many other domains, recommender systems in health 
services may benefit particularly from the incorporation of health domain 
knowledge, as it helps to provide meaningful and personalised recommendations 
catering to the individual’s health needs. With recent advances in representation 
learning enabling the hierarchical embedding of health knowledge into the hy-
perbolic Poincaré space, this work proposes a content-based recommender sys-
tem for patient-doctor matchmaking in primary care based on patients’ health 
profiles, enriched by pre-trained Poincaré embeddings of the ICD-9 codes 
through transfer learning. The proposed model outperforms its conventional 
counterpart in terms of recommendation accuracy and has several important busi-
ness implications for improving the patient-doctor relationship. 
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1 Introduction 

With the emergence of healthcare analytics and growing needs to leverage the prevalent 
electronic health records from healthcare providers, machine learning (ML) solutions, 
such as recommender systems (RS), have experienced growing relevance in the 
healthcare sector[1]. In fact, patients increasingly seek bespoke and digital medical so-
lutions, similar to what they are used to from e-commerce and other domains. However, 
as patients’ relationship to their doctors can be very personal and health conditions are  
sensitive topic, healthcare recommender systems (HRS) are subject to a different set of 
rules and evaluation criteria than other commercial applications of RS. For instance, 
product or movie RS do not operate under the same scrutiny regarding the reliability 
and trustworthiness of their predictions, since the ramifications of specific treatment or 
doctor recommendations are severer in nature. 

In general, RS often capitalise on the target user’s interaction data without the need 
of any additional information about the user itself or the recommended entity. While 
such methods can be highly performant, they usually do not offer a straightforward 
explanation as to why a specific product or movie is being recommended. Still, as long 
as users receive interesting recommendations, one can assume that this is not a 
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particular issue for the latter. Patients, on the other hand, may be highly interested in 
solutions that not only fit their personal medical profile insofar, as they are built on 
medically meaningful information about the patient, but also provide explanations of 
the recommendation itself. That is to say, patients will arguably prefer recommenda-
tions optimised towards their individual medical needs, instead of recommendations 
based on the similarity to other patients that may show very similar behavioural patterns 
but have an entirely different medical background. Analogously, healthcare providers 
can treat this property as a value proposition to their clients, offering medically person-
alised recommendations and thereby meeting current market trends.  

As such, this paper aims to investigate the possibility of adding such a medical per-
sonalisation dimension to the HRS by incorporating complex, domain-specific 
knowledge into the underlying model. More specifically, we propose a content-based 
RS for patient-doctor matchmaking built on real data from a leading European private 
healthcare provider. Patients’ historical health records, as indicated by the ICD-9 codes1 
serve as the main source of domain knowledge. However, the use of ICD-9 code for 
encoding patients’ health conditions faces a series of practical implementation prob-
lems. Chief among those is the structure of the data itself, as in nature ICD codes are 
encoded as hierarchical, tree-like structures that are hard to be embedded into the con-
tinuous space necessary for most ML models. Nevertheless, recent works [2,3] propos-
ing hyperbolic embeddings for learning hierarchical representations appear to provide 
a bypass for this issue.  

Consequently, we investigate how to incorporate complex domain knowledge, such 
as the ICD-9 hierarchy into a HRS using hyperbolic embeddings and examine whether 
such domain knowledge can add value to the HRS in terms of improving recommen-
dation accuracy. For that purpose, we pursue the following approach: contextualising 
the topic, section 2 begins with a bibliographical examination of related works on HRS 
and lays out the benefits of embedding hierarchical data into the hyperbolic space. No-
tably, it will be shown why hyperbolic embeddings are inherently better equipped than 
their Euclidean counterparts to embed hierarchical, tree-like data into the continuous 
space. Moving forward, section 3 sheds light on the data at hand. Section 4 discusses 
the methods employed introducing the notion of hyperbolic distance as a similarity 
measure for RS and formulating two content-based models using said hyperbolic dis-
tance. For evaluation purposes, a conventional model is formulated to serve as a bench-
mark. Section 5 analyses the results of this investigation. Finally, section 6 discusses 
the conclusions we draw from this work, as well as suggestions for future research. 

 
1  International Classification of Diseases (ICD) is a comprehensive standard of diseases or med-

ical conditions maintained by the WHO and widely used among healthcare organizations 
worldwide. It is revised periodically and now in its 10th version (known as ICD-10). However, 
the ICD-code used this study is still in the 9th version (ICD-9). 
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2 Background and related work 

2.1 Recommender systems in healthcare 

In general, RS are a subclass of information filtering systems with the goal to provide 
meaningful suggestions to users for certain items or entities, by attempting to predict 
the affinity or preference of a given user for said items [4].  RS can be broadly divided 
into three major categories: collaborative filtering (CF) approaches, content-based (CB) 
recommenders, and hybrid models, which are a combination of the former two. CF 
approaches rely solely upon past interactions recorded between users and items, 
whereas CB approaches use additional information about users and/or items [5]. More 
precisely, CF capitalises on behavioural data, i.e. users’ co-occurrence patterns, in order 
to detect similar users and/or items and make predictions based on these similarities, 
while CB recommenders explore user or item metadata to derive user preferences and 
model the observed user-item interactions. Although CB recommenders do not suffer 
from the cold-start problem, i.e. the question of what to do with new users that have no 
prior interactions usable for predictions [6], CF approaches tend to outperform the for-
mer, as usually even a few ratings are more valuable than metadata about users or items 
[7]. Ultimately, a method to balance both CF and CB’s respective limitations is to use 
hybrid recommenders, which are a combination of the former and the latter.  

While RS have been widely used in e-commerce, e.g. for movie or product recom-
mendations, within the healthcare domain RS are only recently emerging, due to ele-
vated requirements regarding reliability and trustworthiness, as well as increased data 
privacy regulations [8,9]. The last years, however, have shown an increase in studies 
and research papers on HRS. Among those works, medical user profiling and medical 
personalisation have been particularly trending topics [10]. Hence, noteworthy exam-
ples of HRS applications include recommenders for relevant medical home care prod-
ucts [11], lifestyle adaption recommendations for hypertension treatment and preven-
tion [12], identification of key opinion leaders [13], as well as clinical decision support 
systems using inherent methods of RS to capitalise on the large volume of clinical data 
[14]. Ultimately, [15] address the topic of patient-doctor matchmaking proposing RS 
for suggesting primary care doctors to patients based on their prior consultation history 
and metadata. 

2.2 Hyperbolic embeddings 

As has been hypothesized in the introduction, HRS might profit more than other areas 
from incorporating domain knowledge into the model. Within the healthcare context, 
such knowledge may include, for instance, a catalogue and categorisation of health 
conditions, such as the ICD-9 hierarchy. Abstracting a hierarchy into mathematical 
terms, it is essentially a complex tree that is defined as a connected graph in which for 
any pair of two vertices u ≠ v there is exactly one path connecting them [16]. An 
inherent characteristic of hierarchies or trees, however, is that they are discrete struc-
tures and thus embedding them in a way that can be used in machine learning models 
can be challenging, as the latter often rely on continuous representations [17]. Hence, 



4 

the underlying question is, how to efficiently and accurately model an increasingly 
complex hierarchy - and accordingly an increasingly complex tree - into a continuous 
space, such that the information of the hierarchy can be used for machine learning? 

Recent proposals by [2] and [3] suggesting hyperbolic embeddings to address this 
issue, have found much notice in the machine learning community. The rationale is that 
embeddings of hierarchical, tree-like data into the hyperbolic space perform better at 
the task of capturing and preserving the distances and complex relationships within a 
given hierarchy, than embeddings in the Euclidean space would. As a matter of fact, 
these works show that hyperbolic embeddings, even in very low dimensions, consist-
ently outperform their higher-dimensional, Euclidean counterparts when learning hier-
archical representations. 

The reasons for said superiority lie within the properties of hyperbolic geometry it-
self. Hyperbolic space is a space with a constant negative curvature that expands expo-
nentially rendering it inherently well-suited for the task of embedding a tree into the 
continuous space [2]. Meanwhile, the preferred geometrical models for representation 
learning tasks, such as the one at hand, are the Poincaré models as they offer to conform 
mapping between hyperbolic and Euclidean space, since angles are preserved – a con-
venient property when translating between spaces and models [17]. 

Recalling that the goal when embedding tree-like graphs into a continuous space is 
to preserve original graph distances, one needs to consider the hyperbolic distance: 

 𝑑!(𝑥, 𝑦) = acosh	 .1 + 2 ||#$%||!

('$||#||!)('$||%||!)
2 (1) 

In hyperbolic space, the shortest paths between two points, called geodesics, are curved 
(similarly to the space itself). Due to this curvature, the distance from the origin to a 
given point 𝑑!(𝑂, 𝑥) grows towards infinity as x approaches the edge of the disc, as 
can be observed in figure 1. Now, considering the embedding of a graph (or tree) into 
a continuous space, suppose x and y are children of a parent z, which is placed at the 
origin O. Then, the distance between x and y is: 

 𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑂) + 𝑑(𝑂, 𝑦) (2) 

Normalizing this equation, provides the distance ratio of the original graph, i.e. 
)(#,%)

)(#,+),)(+,%)
= 1. This equation will be relevant in the following, since when comparing 

its behaviour in hyperbolic and Euclidean space, quite different effects can be observed. 
As is visualised in figure 1, when moving towards the edge of the unit disk, i.e. 𝑥 → 1, 
in Euclidean space )"(#,%)

)"(#,+),)"(+,%)
 remains a constant, whereas in hyperbolic space 

)#(#,%)
)#(#,+),)#(+,%)

 approximates 1, which is exactly the original graph distance ratio! 
Therefore, it can be seen that Poincaré embeddings are inherently better suited for this 
kind of representation learning task, due to their better capacity to preserve original 
graph distances with arbitrarily low distortion [17]. 
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Fig. 1. The Poincaré disk model (left) and distance ratios of hyperbolic and Euclidean distance 
in comparison with original input graph distance ratio (right) [17]. 

While further analysis of the detailed mathematics of Poincaré embeddings, as laid 
out in [2], [3] and [17], are beyond the scope of this paper, we instead consider an actual 
use-case of Poincaré embeddings relevant to this work. For instance, [17] perform rep-
resentation learning tasks for a variety of datasets, most of which related to NLP. In 
light of the given topic, however, their work on embeddings of the UMLS diagnostic 
hierarchy from ICD-9 vocabularies is of particular interest as they provide the very 
domain-specific knowledge needed for the proposed model. 

3 Data 

The dataset used in this work was provided by a leading European private heath 
network operating 18 hospitals or clinic centres across the country. Typically, data can 
be divided into three categories: 1) patients’ demographic information, such as gender, 
age and home locations, and this information is further enriched with health records in 
the form of the ICD-9 code for inpatients, i.e. patients who stay at the hospital while 
under treatment; and 2) doctors’ demographic and professional information, such as 
gender, age and the hospital they are working at and 3) the interactions between patients 
and doctors according to their consultation history. 

Instead of learning the representation of ICD-9 code from our data, we resort to a 
transfer learning approach by relying on pre-trained Poincaré embeddings provided by 
[17]. In particular, they used the diagnostic hierarchy of ICD-9 vocabulary in the Uni-
fied Medical Language System Metathesaurus (UMLS) to retrieve Poincaré embed-
dings of medical concepts within the ICD-9 hierarchy. This method results in unique 
hyperbolic embeddings of medical concepts (identified by the CUI, i.e. Concept Unique 
Identifier) available in different levels of dimensionality (10, 20, 50 or 100d). We 
choose the 100d embeddings for our model, as [2] indicates that while Poincaré em-
beddings already perform well in low dimensions, their performance seems to further 
increase with dimensionality. Notably, the transfer learning approach allows us to adapt 
the meaningful medical knowledge from a different health context. 

Ultimately, since the pre-trained hyperbolic embeddings are only available in UMLS 
and not directly available for ICD-9 codes of our dataset, a mapping between UMLS 
and ICD-9 is needed. As a matter of fact, this process requires a multi-stage mapping, 
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because the direct mapping from CUI codes in UMLS to the ICD-9 codes of the core 
dataset is not available. Instead, the SNOMED CT2 were selected as an intermediary, 
as it serve as healthcare terminology standard and transferable both to UMLS’ CUIs 
and ICD-9 codes.  

Figure 2 provides an overview of the data flow. While the SNOMED CT were used 
to link the CUI with ICD-9 in order to establish a unique Poincaré embedding of each 
available ICD-9 code, the core dataset itself needed to be filtered for patients that have 
an ICD-9 record, as well. Consequently, this process reduced the original size of the 
dataset substantially, such that a dataset of 33k patients and 223 doctors with more than 
166k interactions between them remain. 

  

Fig. 2. Data diagram describing the describing the data sources, as well as the necessary mapping 
steps between terminologies and datasets. 

4 Methods 

4.1 Hyperbolic distance as a similarity measure for recommender 
systems 

Since conventional similarity measures for recommender systems, such as cosine sim-
ilarity or Pearson correlation are only inherently suited for Euclidean space [19], we 
introduce the notion of hyperbolic distance as a more suitable similarity measure for 
the data at hand. Given that each of the derived ICD-9 diseases is represented by an 
embedding in the hyperbolic space, the objective is to determine how similar these dis-
eases – and ultimately the patients admitted with or doctors having treated these dis-
eases – are with one another. 

 
2  SNOMED CT refers to Systematized NOmenclature of MEDicine Clinical Terms that is used 

to encode healthcare terminology for electronic health records. All UMLS data including 
SNOMED CT and CUIs have been retrieved from the US National Library of Medicine 
(NLM). 
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The basic principle of hyperbolic distance as a similarity measure is simple: Once a 
unique embedding per either patient or doctor is derived, a patient-patient or doctor-
doctor similarity score can be determined utilizing the hyperbolic distance function 
from equation (1). The resulting matrix of distances is subsequently scaled from 0 to 1 
and subtracted from 1 in order for 0 to be the minimum similarity and 1 the maximum. 
Applying this heuristic yields a similarity score that is not only consistent with hyper-
bolic space (i.e., preserving the hierarchal information and complexities of the input 
graph), but also as easily interpretable as conventional similarity measures. This simi-
larity measure shall be referred to as hyperbolic similarity for the remainder of this 
paper and its implementation into the model at hand will be examined in the following 
section. 

4.2 Implementation of a recommender system using hyperbolic 
distance 

Since the ICD-9 embeddings represent metadata about patients or doctors, a RS using 
such embeddings can be classified as CB. While there is further data available for both 
patients and doctors (e.g. demographic or location data), the proposed model will con-
sider only the ICD-9 information. In fact, we benchmark it against a conventional CB 
model using that very metadata for performance evaluation purposes. 

As discussed in section 3, the ICD-9 information per patient from the core dataset 
has been enriched with the Poincaré embeddings provided by [17]. Since many patients 
have been admitted with more than one disease throughout their individual medical 
history, naturally, the majority of patients have multiple ICD-9 entries. Therefore, in 
order to determine a unique embedding per patient and per doctor, multiple entries need 
to be averaged. Due to the specific properties of the hyperbolic space, however, the 
usual Euclidean mean is not applicable and thus a generalisation is needed. In hyper-
bolic geometry, the averaging of feature vectors is done by using the Einstein midpoint 
[20]. The Einstein midpoint takes its simplest form in Klein coordinates and is defined 
as follows: 

 𝐻𝑦𝑝𝐴𝑣𝑒(𝑥', … , 𝑥-) =
∑ /$#$
%
$&'
∑ /$%
$&'

, 𝑤ℎ𝑒𝑟𝑒				𝛾0 =
'

1'$23|#$|3
!		
	𝑎𝑛𝑑	𝑐 = 1 (3) 

The Klein model is consistent with the Poincaré ball model, but since the same point 
has different representations in the two models, they need to be first, translated from 
the Poincaré to the Klein model, then averaged and ultimately mapped back into the 
Poincaré model in order to complete the operation. Thus, if 𝑥𝔻 and 𝑥𝕂 correspond to 
the same point in the Poincaré and the Klein model, respectively, then the following 
formulas serve for translating between them: 

 𝑥𝔻 =
#𝕂

',1'$23|#𝕂|3
!
	𝑎𝑛𝑑	𝑥𝕂 =

7#𝔻
',23|#𝔻|3

! (4) 

With an appropriate methodology for hyperbolic feature vector averaging in place, a 
content-based model for patient-doctor matchmaking can be formulated. In formal 
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terms, for N patients and K doctors, the patient-doctor interaction matrix Y ∈ ℝ8	×	: is 
denoted as: 

 𝑦0; = E1, 𝑖𝑓	𝑝𝑎𝑡𝑖𝑒𝑛𝑡	𝑖	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑑𝑜𝑐𝑡𝑜𝑟	𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (5) 

Adapting [15], the patient-doctor interactions are furthermore weighted with a trust 
measure. Thereby, the trust between a patient and a doctor is modelled by considering 
bot the recency and frequency of their consultation history, i.e., doctors that have been 
visited repeatedly and recently will be weighted higher for a given patient.  

Regarding feature creation, the ICD-9 embeddings need to be considered. If V ∈ ℝ 
is the set of all Poincaré embeddings, with each embedding being essentially a 
1	 × 	100 dimensional row vector, then for each patient i the set of embedding vectors 
is denoted as V0 ⊂ V corresponding to all ICDs that the patient has been diagnosed with. 
Similarly, for each doctor j the set of embedding vectors is specified by V; ⊂ V corre-
sponding to the ICDs of all patients that visited doctor j. Hence, the feature vectors of 
patient i and doctor j are given by the hyperbolic average of their embeddings: 

 𝑓0 = 𝐻𝑦𝑝𝐴𝑣𝑒(𝑉0)	𝑎𝑛𝑑	𝑓; = 𝐻𝑦𝑝𝐴𝑣𝑒Q𝑉;R (6) 

With the feature matrices for patients and doctors established, the similarity across pa-
tients and doctors can be calculated. For purposes of simplicity, this process will be 
described only for doctor-doctor similarity, while it is acknowledged that the method is 
analogously applicable for patients. The similarity between doctor j and k is described 
by the above-defined hyperbolic similarity of their feature embeddings: 

 𝑠;,< = 𝑠!(𝑓; , 𝑓<) (7) 

Ultimately, the predicted affinity 𝑝0,; of a user i towards a doctor j can be computed 
using the following operation: 

 𝑝0,; =
∑ %$,+∗>,,+
-
+&'
∑ >,,+-
+&'

 (8) 

Recalling that K is equal to the total amount of doctors and 𝑦0,< is the trust-weighted 
interaction value between patient i and doctor k, it becomes evident that the predicted 
affinity of patient i is essentially given by the similarity-weighted sum of doctors the 
patient visited previously, divided by the sum of the weights. While RS in e-commerce 
usually aim to suggest primarily new, unseen items, our model does not exclude doctors 
the patient already interacted with for recommendation. This is of relevance insofar, as 
the goal of this model is to suggest the patient with the best suiting doctor for their next 
primary care visit, for which previously seen doctors are arguably highly relevant can-
didates and should by no means be excluded. 
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5 Results 

While a substantial part of this paper has been dedicated to the theoretical benefits of 
Poincaré embeddings and their application to the given problem of patient-doctor 
matchmaking, it is ultimately necessary to evaluate their performance in comparison to 
conventional methods, in order to judge their actual value. For that purpose, we com-
pare the following models3: 

1. Conventional CB: a patient-patient-similarity based benchmark model using cosine 
similarity of demographic data and one-hot encoded ICD-9 data as patient features 
to identify patients with similar metadata, 

2. Patient ICD-9 similarity: a patient-patient-similarity based RS using patients’ av-
eraged, hyperbolic feature vectors to identify patients with similar diseases and, 

3. Doctor ICD-9 similarity: a doctor-doctor-similarity based RS using doctors’ aver-
aged, hyperbolic feature vectors to identify doctors that have similar expertise to the 
ones the patient visited in the past. 

Since each of the proposed RS is presented as a sorted list – with either 3, 5 or 10 
recommended doctors – it is sensible to rely on hit rate (HR) and precision (p) as eval-
uation criteria as the evaluation objective is to see, if the patient actually visited one of 
the recommended doctors or not. That being said, HR@n refers to the number of total 
hits, divided by the number of patients depending on the number of recommended doc-
tors 𝑛 ∈ {3, 5, 10}. Analogously, p@n indicates the amount of correctly predicted doc-
tors depending on n. Intuitively, HR will increase with a growing number of recom-
mendations, whereas p will decrease. As a matter of fact, the very reason to combine 
these two evaluation criteria is that although it is desirable to maximise the number of 
hits, patients should not be confused with too many options that do not meet their needs, 
as this might even have counterproductive effects. 

Figure 3 illustrates the performance of the three suggested models regarding HR and 
p. While the patient ICD-similarity model is apparently not able to add substantial value 
scoring even slightly below the benchmark model, the doctor ICD-similarity model 
does, indeed, outperform the benchmark model. In fact, this allows for two major con-
clusions in light of the theoretical considerations in the sections above: First, hyperbolic 
averaging appears to be a viable method for feature averaging of Poincaré embeddings 
considering the substantial number of different patients and diseases doctors treat. This 
is insofar noteworthy, as one might reasonably assume that the more disease embed-
dings are being averaged, the less meaningful they become. Yet, the resulting averaged 
embeddings are evidently still capable of setting apart doctors fairly well. And second, 
the Poincaré embeddings – despite not having been trained on this dataset – can add 
value to this HRS. As such, these two findings show that Poincaré entity embeddings 
of hierarchical data are a powerful framework to help incorporate complex domain 
knowledge into a ML application in the healthcare sector.  

 
3 We emphasise that all proposed models are entirely CB, hence neglecting the similarity of in-

teractions between patients or doctors. As this research is preliminary, we acknowledge that 
adding interaction data in a hybrid approach may boost performance substantially. 
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With this in mind, the business implications for the healthcare sector remain to be 
considered. As has been hypothesised in the introduction, the potential business value 
of successfully incorporating complex domain knowledge into machine learning appli-
cations in the healthcare sector may be substantial. Recalling that the goal of a match-
making algorithm between patients and doctors is insofar different from typical e-com-
merce RS, as it aims to recommend patients with the doctor best suited for their specific, 
medical condition, instead of the “next best doctor”, different evaluation criteria may 
apply from a business value perspective. For instance, one might argue that technical 
performance evaluation metrics such as hit rate and precision are, in fact, negligible in 
favour of a more qualitative evaluation. RS, in general, often suffer from popularity 
bias, in that they tend to suggest mostly popular doctors [21]. That being said, patients 
should not be matched with doctors because they are popular or because other patients 
with similar demographics visited them (even if this yields in high HR and p scores), 
but because they best fit their medical needs. Hence, we suggest for further research 
that recommenders akin to this work should be optimised not only with respect to hit 
rate and precision, since this may not fully account for popularity bias, but also towards 
the domain-specific quality of the recommendation.  

In light of these considerations, healthcare providers can treat this factor as a value 
proposition for their clients. With the increasing demand for personalised healthcare 
solutions, RS built on patients’ individual health records are arguably in-line with cur-
rent market trends. Picturing a potential customer journey, the RS would suggest a pa-
tient that has been admitted with, for example, hypertension with doctors that have 
treated many cases of hypertension or similar diseases. In addition, making recommen-
dations based on individual health profiles adds an explanatory perspective to the sug-
gestions that many RS lack. Since health is a sensitive topic, in general and trust into 
AI solutions is a major concern in the healthcare domain, in specific, this may be a 
substantial driver for the success and adaptation of the recommendation engine in prac-
tice. 

 

Fig. 3. Hit rate and precision per proposed model. 
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6 Conclusion 

Overall, we demonstrate that incorporating complex domain knowledge using Poincaré 
embeddings of the ICD-9 hierarchy that reflect the patients’ pre-existing health condi-
tions into an HRS yields an actual performance improvement in comparison to conven-
tional approaches . In particular, this paper examined the benefits of the hyperbolic 
space for representation learning tasks in theory and, furthermore, applied to real-world 
setting. In doing so, we show that Poincaré embeddings can contribute meaningful 
value in domains beyond their original scope of NLP. Moreover, we find that the in-
corporation of domain knowledge is of particular value in the healthcare domain, as it 
allows for medically personalised recommendations. 

While the results of this preliminary investigation in this field are promising in prin-
ciple, a set of limitations remains to be resolved in the future work. Firstly, since the 
proposed models are purely CB in nature, they neglect valuable information that can be 
retrieved from patient-doctor interaction data. Further research on a hybrid RS leverag-
ing both interaction data and ICD-9 embeddings is a viable approach. Secondly, data 
consistency remains a persistent issue with a substantial portion of available data lost 
due to insufficient mapping between terminologies. As has been stressed before, trans-
ferability between terminologies is paramount to the further growth of AI in healthcare 
and healthcare analytics. Hence, the healthcare industry should continue to foster col-
laboration among different standardization initiatives such as SNOMED CT, UMLS, 
ICD, etc. Similar to the need of improved data consistency in the healthcare sector in 
general, healthcare service providers, in specific, need to drive digitization in their in-
dustry to improve the data quality as well. For instance, instead of collecting ICD in-
formation only for inpatients, all patients should be assigned with a diagnostic code in 
order to increase the scalability of ML solutions.  
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