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Abstract. Two prerequisites for robotic multiagent systems are mobil-
ity and communication. Fast multipole networks (FMNs) enable both
ends within a unified framework. FMNs can be organized very efficiently
in a distributed way from local information and are ideally suited for
motion planning using artificial potentials. We compare FMNs to con-
ventional communication topologies, and find that FMNs offer competi-
tive communication performance (including higher network efficiency per
edge at marginal energy cost) in addition to advantages for mobility.

1 Introduction

A multirobot system [23] is a group of autonomous, networked robots. In order
to achieve a complex goal such as swarming [6], the system requires distributed
coordination of both mobility and communication, among other objectives. This
is nontrivial, and “[e]fficient networking of many-robot systems is considered one
of the grand challenges of robotics” [30]. The respective enabling technologies
for mobility and communication are path planning and mobile ad hoc networks
(MANETs) [27]. While networks are inevitably analyzed from the perspective
of graph theory [2], path planning may be considered in either graph-theoretical
[29] or continuous settings. Meanwhile, because geometrical considerations such
as distance and motion strongly influence the structure of MANETs, it is natural
to try to address mobility and communication for multirobot systems together,
e.g., as in [37]. Much effort has focused on connectivity maintenance in situations
where, e.g. multirobot systems maintain periodic connectivity [15] or commu-
nicate by physically meeting [19] while pursuing a motion objective, or main-
tain continuous connectivity relative to a fixed set of access points [11,17,18].
Additionally, co-optimization of communication and motion or coverage for an
individual robot have been considered in [41,30]. More recently, tree-based ap-
proaches for connectivity maintenance have been considered in [24,28,39].

In this paper, we assume connectivity is possible (by using more energy
if necessary) without any optimization, and we introduce a class of network
backbones that can be trivially formed using an efficient local motion planning
technique. These fast multipole networks (FMNs) to support both mobility and
communication within a unified framework. The basic idea is to follow common
practice in modeling robots, goals, and obstacles as (superpositions of) charged
particles satisfying the Laplace equation ∇2φ = 0 [7,21,34] and exploit the fast
multipole method (FMM), an efficient algorithm for simulating particle dynamics

ar
X

iv
:1

90
4.

04
86

9v
3 

 [
cs

.M
A

] 
 2

7 
A

ug
 2

02
0



2 S. Huntsman

[3,4,12], to simultaneously determine a sparse network topology that supports
efficient communication. The animating principle that the far-field behavior of
point charges [16] should determine a communication topology is geometrically
natural. More surprisingly, we shall demonstrate that it leads to network topolo-
gies that perform well in their own right, with higher network efficiency per edge
(at marginal energy cost) than standard topologies that ignore mobility.

After briefly reviewing the artificial potential approach to path planning in §2
and the FMM in §3, we introduce FMNs in §4, and compare them to conventional
MANET topologies in §5 before making concluding remarks in §6.

2 Artificial potentials

The use of artificial potentials in motion and path planning has a long history,
most frequently identified as beginning with [20]. The basic idea is to design a
potential φ such that the equation of motion mẍ = −∇φ results in a desired
trajectory x. Towards this end, goals and obstacles are respectively modeled by
attractive and repulsive terms contributing to the total potential φ. Depending
on circumstances, we may choose to model the robots as “sources” with poten-
tials of their own (e.g., to avoid collisions), or as passive “targets” that simply
move along the gradient of an ambient potential.

In general, we might consider essentially arbitrary forms for each term to
produce very detailed behavior. Alternatively, we might rely on a single simple
form for all the terms. Our approach is in the latter vein. The relative strengths
and spatial distribution of these terms are chosen to establish priorities, spa-
tially extended features, etc. In order to represent sufficiently complex spatial
relationships along these lines, it is helpful to have an algorithmic framework
that scales better in total computational effort, parallelism, and locality than
evaluating O(N2) interactions, since the number N of terms in the potential can
be much larger than the number of robots involved.

Besides these computational concerns, a problem with using artificial po-
tentials that was identified at an early stage is the possible presence of local
minima in the potential field that can trap agents [22]. To remedy this by con-
struction, the notion of a navigation function that has a single minimum at the
goal was developed, along with algorithms for constructing such functions [36].
A particularly simple way to avoid local minima while using a single form for all
the potential terms is with a superposition of harmonic potentials [7,21,34], i.e.,
solutions to the Laplace equation ∇2φ = 0, with a dominant term at the goal.

This is most readily achieved through a discrete (if perhaps quasi-continuous)
superposition of point charges, i.e. potentials of the form −qV (|x−x0|) (the sign
is for physical reasons), where the fundamental solution V (|x|) to the Laplace
equation is defined by ∇2V (|x|) = δ(x), and as usual δ indicates the Dirac delta
distribution [38]. For Rd, it turns out that V ′(r) = 1/Ad(r), where Ad(r) is the
Minkowski content (i.e., generalized perimeter, surface area, etc.) of the sphere
of radius r in Rd. Choosing the most convenient constants of integration, for
d = 2 we have V (r) = 1

2π log r, and for d = 3 we have V (r) = −1/4πr.
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3 The fast multipole method

Naive simulation of N interacting point charges (e.g., the goals and obstacles
modeled in Figure 1) requires computing the interactions of each pair of charges,
and hence O(N2) operations per time step, which is prohibitive for large-scale
N -body simulations. The FMM [3,4,12] enables the simulation cost to be reduced
to O(N) with an extremely high degree of locality and parallelism [13]. 1

The key ideas underlying the FMM are

i) a specification of accuracy (for truncating expansions in a controlled way);
ii) decomposing space hierarchically to get well-separated charge clusters; 2

iii) representing well-separated clusters of point charges with multipole expan-
sions that maintain a desired approximation error ε with as few (dlog2(1/ε)e)
terms as possible, leaving nearby particles to interact directly.

In particular, the FMM recursively builds a quad-tree (Figure 1; in three di-
mensions, an octo-tree is used instead) whose leaves are associated with boxes
and truncated multipole expansions. This tree approximates a (typically much)
finer tree whose leaves are associated with individual point charges that are well-
separated and their monopoles. Importantly, the FMM tree topology essentially
ignores the values of charges, depending only on the desired level of accuracy ε
3 and the locations of the charges.

The computationally expedient part of the FMM is to manipulate the origins
and coefficients of controlled series approximations to far-field potentials for
clusters of point charges that are well-separated. More general incarnations of
the FMM (see, e.g., [26,42,43]) amount to a very efficient scheme for computing

sums of the form
∑N
j=1K(xi, ξj)ψ(ξj) for a given kernel K: i.e., the FMM and

its generalizations are essentially specialized matrix multiplication algorithms.
From this perspective, item iii) in the list above separates into [3]

– a far-field expansion of the kernel K(x, ξ) that decouples the influence of the
evaluation/target point x and the source point ξ;

– (optionally) a conversion of far-field expansions into local ones.

The FMM’s remarkable scaling performance has enabled petascale simula-
tions of turbulence [45], molecular dynamics [32], and cosmological dynamics
[35], and will also enable future exascale simulations across hundreds of thou-
sands of nodes [44]. This performance makes the FMM a natural choice for large
scale path planning using artificial potentials.

1 For the calculations in this paper, we used the very user-friendly library FMM-
LIB2D, available at https://cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html.

2 Two clusters of points {xj} and {yk} are well-separated iff there exist x0, y0 such
that {xj} ⊂ B◦x0

(r) and {yk} ⊂ B◦y0(r) with |x0 − y0| > 3r: here ◦ denotes interior.
Two squares with side length r are well-separated iff they are at distance ≥ r.

3 Though in principle the desired level of accuracy can be affected by charge values,
this situation is sufficiently pathological that we can safely disregard it in practice.

https://cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html
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Fig. 1. (L) A toy scenario in [−1, 1]2. Goals are modeled by negative charges and shown
in blue; obstacles are modeled by positive charges and shown in red. Opacity indicates
relative magnitude. 103 robots are modeled by test points (versus, e.g., test charges
of small positive sign) and their locations and velocities indicated by black gradient
vectors of the artificial potential. The target locations are distributed as 4

5
U(top half)+

1
5
U(bottom half), where here U indicates a uniform distribution. (R) The quad-tree

associated to the scenario on the right. Varying the desired precision in the FMM has
very little effect on this tree; as a practical matter it can be assumed unique.

Equally important for the considerations of this paper, however, are the hi-
erarchical and spatial locality properties that the FMM exploits in order to
communicate internally. The FMM’s patterning of a logical intra-algorithm com-
munication network after the spatial distribution of particles suggests that it can
be used not only for large-scale multirobot path planning in complex geometries,
but also to help organize the communications between robots in a distributed
way. Furthermore, although the FMM’s hierarchical properties might seem to
imply centralization, the computational load is small enough that these func-
tions can be easily duplicated among robots with low overhead, i.e., the FMM
tree does not impose centralization.

4 Fast multipole networks

We construct the fast multipole network FMN(ξ) corresponding to a configu-
ration of points ξj ∈ R2 as follows: vertices correspond to the charge locations
and we introduce edges that

– connect all vertices in the same FMM leaf box;

– connect nearest vertices in adjacent leaf boxes;

– connect otherwise isolated vertices to their nearest neighbors.
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These edges are respectively colored blue, cyan, and red in Figure 2. 4

By construction, FMN(ξ) is connected, and the information required to
generate it is automatically produced by the FMM. We note that while FMN(ξ)
is constructed using the quad- or octo-tree of the FMM, it is very far from
a tree. Rather, the FMM tree and its corresponding coarse-graining of space
determines which nodes are permitted to communicate directly. 5 Within a clique
of permitted communications corresponding to a leaf of the FMM tree, we may
further restrict communications to avoid quadratic bandwidth overhead and/or
energy, though we do not consider such tactics further here.

Nodes colored by betweenness centrality

0

max

Fig. 2. The FMN corresponding to the scenario in Figure 1. Nodes are colored by
betweenness centrality according to the colorbar on the right. The spatial decomposi-
tion from Figure 1 is shown in gray for reference. Edges within a FMM box are blue,
while edges connecting nearest nodes in adjacent boxes are cyan and edges connecting
otherwise isolated nodes to their nearest neigbors are red.

4 The key difference between FMNs and the networks considered in [48] is that the
latter are formed by inserting and permanently linking nearby charges, then dy-
namically evolving to obtain small-world features, whereas FMNs are (re)formed by
linking nearby charges in a way that partially anticipates the next timestep of dy-
namical evolution. However, both types of networks exhibit aspects of small-world
behavior (see §5 and [25]).

5 Limiting permission for direct communication in FMNs can be enforced by, e.g.,
cognitive radios [46] whose spectrum allocation cooperates with the FMM tree.
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5 Evaluation

We now introduce several families of graphs for evaluation purposes.
Let ξj ∈ R2 for 1 ≤ j ≤ N , and let r > 0. The random geometric graph or disk

graph (RGG; Figure 3) RGG(ξ; r) has vertices ξj and edges E(RGG(ξ; r)) :=
{(ξj , ξk) : d(ξj , ξk) ≤ r} [14,33]. By construction, a RGG is both the most
effective network topology from the point of view of information exchange, and
the least effective network topology from the point of view of infrastructure costs.

A more conservative topology is based on subgraphs of the Delaunay graph.
The Delaunay graph D(ξ) has vertices ξj and edges defined from a triangulation
of the vertices such that no vertex is interior to a circle circumscribed about a
triangle [5,9,10]. 6

Nodes colored by betweenness centrality; radius = 0.135

0

max
Nodes colored by betweenness centrality; radius = 0.135

0

max

Fig. 3. (L) RGG(ξ; r) for ξ corresponding to the scenario in Figure 1 and r = 0.135,
slightly above the threshold for connectivity. (R) RD(ξ; r).

The Gabriel graph G(ξ) [29,31] is the unique (for the general position case)
subgraph of the Delaunay graph such that each edge corresponds to the diameter
of a disk that does not contain any other vertices; it is frequently considered as
a potential candidate for “virtual backbones” in MANETs. It is worth noting
however that G(ξ) and D(ξ) are more computationally expensive to construct
than FMN(ξ), and parallelism does not change this.

Because the Delaunay and Gabriel graphs do not have an intrinsic range
parameter that will give a granular mechanism for evaluating their performance,
we shall focus our attention on the (minimal) restricted Delaunay graph (Figure
3) RD(ξ; r) := D(ξ)∩RGG(ξ; r) [1] and the restricted Gabriel graph (Figure 4)
RG(ξ; r) := G(ξ) ∩ RGG(ξ; r). Similarly, we shall consider the restricted FMN
(Figure 4) obtained along the lines RFMN(ξ; r) := FMN(ξ) ∩RGG(ξ; r).

6 For ξj in general position, the Delaunay graph is unique.
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Nodes colored by betweenness centrality; radius = 0.135

0

max
Nodes colored by betweenness centrality; radius = 0.135

0

max

Fig. 4. (L) RG(ξ; r) for ξ corresponding to the scenario in Figure 1 and r = 0.135,
slightly above the threshold for connectivity. (R) RFMN(ξ; r).

The basic evaluation metric we use is the efficiency of a graphG = (V (G), E(G)),
defined as the average inverse distance between distinct vertices, i.e.

eff(G) :=

(
|V (G)|

2

)−1 ∑
j,k∈V (G)
j 6=k

1

djk
, (1)

where the distance djk between vertices j and k is computed in the obvious way
from a given distance on edges (by default, we may always choose the hop metric
assigning 1 to each edge). While the efficiency characterizes how well a network
supports information flow [25], it neglects costs (e.g., bandwidth, energy, etc.)
associated to edges as infrastructure. For this reason we will also consider the
efficiency per edge, i.e. eff(G)/|E(G)|. Although other normalizations may be
more appropriate in certain situations, this particular one strikes a good balance
between convenience/generality and detail, especially for the hop metric.

Figure 5 shows the metrics above for 100 simulations of 103 uniformly dis-
tributed test points in [−1, 1]2 subject to the ambient potential from Figure 1.
It is apparent from the figure that FMNs and their range-restricted versions
are worthy candidates for network backbones in their own right even before
accounting for their mobility-specific advantages. Furthermore, although there
exist efficient local and parallel algorithms for constructing Delaunay graphs
[5,9,10], their computation and communication complexity and scaling behavior
are still inferior to the FMM.

Figure 6 shows metrics relating to degree distributions and efficiency per
unit energy, i.e., eff(G)/energy•(G), where (ignoring an irrelevant constant of
proportionality) the unidirectional energy for a metric graph G is

energyuni(G) :=
∑

(j,k)∈E(G)

d2jk (2)
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Fig. 5. Network metrics for RGG(ξ; r) (in black), RD(ξ; r) (in red), RG(ξ; r) (in ma-
genta), and RFMN(ξ; r) (in blue) for 100 simulations of N = 103 uniformly distributed
test charges in [−1, 1]2. Although RGG(ξ; r) is most efficient, this network performance
comes at a high cost in edges, and RFMN(ξ; r) performs well (and for hop efficiency
per edge, the best) for all measures of efficiency. Note that RFMN(ξ; r) = FMN(ξ) for
sufficiently large r within the range shown. We also have that, e.g. RD(ξ; r′) = D(ξ),
and though the corresponding r′ is outside the range shown, the residual effects are
minimal.
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and the omnidirectional energy is

energyomni(G) :=
∑

j∈V (G)

 max
k∈V (G)

(j,k)∈E(G)

djk


2

. (3)

These quantities model the total energy budgets required to transmit uni- and
omnidirectional signals, respectively. Figure 6 highlights that FMNs continue
to perform marginally better than Delaunay graphs and marginally worse than
Gabriel graphs for energy-normalized measures of network efficiency.

6 Remarks

By virtue of calculating potentials and forces, the FMM/FMN approach enables
dynamic and predictable network topology reconfiguration with minimal cost
and effort. In other words, as robots use the FMM to efficiently compute their
motion according to a navigation function supplied by a superposition of point
charges, the FMN is easily updated and efficiently represented.

Incorporating resilient routing reconfiguration [40,8] on (F + 1)-connected
local subgraphs of the FMN can be done with reasonable computational effort
(e.g., the key linear program is quickly and easily solved in MATLAB for real-
istic networks of ≈ 50 nodes). This enables virtually instantaneous failover and
rerouting in the presence of ≤ F link failures. Combining this local approach
with a separate (perhaps similar) routing protocol to handle wide-area network
traffic and obstacle potentials that prevent deterioration of basic connectivity
can ensure network integrity and basic quality of service (QoS). These features
can render our framework competitive with the approach of [37], which cen-
ters on the higher-level functions of network integrity and QoS, and which uses
a convex program instead of an algorithmically simpler linear program. Along
similar lines, [47] shows how to construct artificial potentials that discourage loss
of connectivity. Although these fields are not harmonic, it is plausible that this
idea can be adapted to the present context.

It is worth pointing out that there are FMM variants for non-harmonic poten-
tials, e.g. power laws, (generalized) multiquadrics [3,43], or more general kernels
[26], and many of these have actually been applied in the context of interpolation
and/or physical simulation. However, using non-harmonic potentials eliminates
the automatic guarantee that there are no metastable local minima. We note
in particular that the kernel-independent FMM variant of [42] exploits the ex-
istence and uniqueness of solutions to elliptic boundary value problems [38] to
represent clustered sources in far field based on their behavior on a suitable
boundary. This perspective suggests an extension of FMNs to sources modeled
by fundamental solutions of elliptic partial differential equations.
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Fig. 6. Clockwise from top left, and for the same simulations as Figure 5: the degree
distributions of RGG(ξ; r), RD(ξ; r), RG(ξ; r), and RFMN(ξ; r) for r equal to the
connectivity threshold; the total energy (in arbitrary units) required for the networks;
the hop efficiency per unit energy, and the Euclidean efficiency per unit energy.
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