Skip to main content

Germination Detection of Seedlings in Soil: A System, Dataset and Challenge

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

In phenotyping experiments plants are often germinated in high numbers, and in a manual transplantation step selected and moved to single pots. Selection is based on visually derived germination date, visual size, or health inspection. Such values are often inaccurate, as evaluating thousands of tiny seedlings is tiring. We address these issues by quantifying germination detection with an automated, imaging-based device, and by a visual support system for inspection and transplantation. While this is a great help and reduces the need for visual inspection, accuracy of seedling detection is not yet sufficient to allow skipping the inspection step. We therefore present a new dataset and challenge containing 19.5k images taken by our germination detection system and manually verified labels. We describe in detail the involved automated system and handling setup. As baseline we report the performances of the currently applied color-segmentation based algorithm and of five transfer-learned deep neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For definitions of accuracy, precision and recall, please see Section B in the supplemental material.

References

  1. Bell, J., Dee, H.: Aberystwyth Leaf Evaluation Dataset (2016). https://doi.org/10.5281/zenodo.168158

  2. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  3. Bruns, B., Scharr, H., Schmidt, F.: Entwicklung einer Multi-Plattform-Benutzerschicht zur tätigkeitsbegleitenden Verwaltung von Phänotypisierungsexperimenten und Pflanzenbestandsdaten. In Komplexität versus Bedienbarkeit Mensch-Maschine-Schnittstellen, Referate der 35. GIL-Jahrestagung, 23–24 February 2015, Geisenheim, Germany, pp. 1–4 (2015)

    Google Scholar 

  4. Chollet, F., et al.: Keras (2015). https://keras.io

  5. Cruz, J.A., Yin, X., Liu, X., Imran, S.M., Morris, D.D., Kramer, D.M., Chen, J.: Multi-modality imagery database for plant phenotyping. Mach. Vis. Appl. 27(5), 735–749 (2015). https://doi.org/10.1007/s00138-015-0734-6

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  7. Fiorani, F., Schurr, U.: Future scenarios for plant phenotyping. Ann. Rev. Plant Biol. 64, 267–291 (2013)

    Article  Google Scholar 

  8. Granier, C., et al.: PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytologist 169(3), 623–635 (2006)

    Article  Google Scholar 

  9. Guo, W., et al.: Global WHEAT dataset (2020). http://www.global-wheat.com/

  10. Houle, D., Govindaraju, D.R., Omholt, S.: Phenomics: the next challenge. Nat. Rev. Genet. 11(12), 855–866 (2010)

    Article  Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  12. Jahnke, S., et al.: Phenoseeder-a robot system for automated handling and phenotyping of individual seeds. Plant Physiol. 172(3), 1358–1370 (2016)

    Article  Google Scholar 

  13. Jansen, M., et al.: Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Func. Pant Biol. Spec. Issue: Plant Phenomics 36(10/11), 902–914 (2009)

    Google Scholar 

  14. MacLeod, N., Benfield, M., Culverhouse, P.: Time to automate identification. Nature 467(7312), 154–155 (2010)

    Google Scholar 

  15. Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Plant phenotyping datasets (2015). http://www.plant-phenotyping.org/datasets

  16. Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. 81, 80–89 (2016)

    Article  Google Scholar 

  17. Minervini, M., Scharr, H., Tsaftaris, S.A.: Image analysis: the new bottleneck in plant phenotyping. IEEE Sig. Process. Mag. 32(4), 126–131 (2015)

    Article  Google Scholar 

  18. Nagel, K.A., et al.: GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Func. Plant Biol. 39, 891–904 (2012)

    Article  Google Scholar 

  19. Poland, J.A., Nelson, R.J.: In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopathology 101(2), 290–298 (2010)

    Article  Google Scholar 

  20. Rousseau, D., Dee, H., Pridmore, T.: Imaging methods for phenotyping of plant traits. In: Kumar, J., Pratap, A., Kumar, S. (eds.) Phenomics in Crop Plants: Trends, Options and Limitations, pp. 61–74. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2226-2_5

    Chapter  Google Scholar 

  21. Scharr, H., Bruns, B., Fischbach, A., Roussel, J., Scholtes, L., vom Stein, J.: Juelich dataset for germination detection of soil-grown plants (2020). https://doi.org/10.25622/FZJ/2020/1

  22. Schmidt, F., Bruns, B., Bode, T., Scharr, H., Cremers, A.B.: A distributed information system for managing phenotyping mass data. In: Massendatenmanagement in der Agrar- und Ernährungswirtschaft, Erhebung - Verarbeitung - Nutzung, Referate der 33. GIL-Jahrestagung, 20–21 February 2013, Potsdam, Germany, pp. 303–306 (2013)

    Google Scholar 

  23. Shen, X., Zhang, J., Yan, C., Zhou, H.: An automatic diagnosis method of facial acne vulgaris based on convolutional neural network. Sci. Rep. 8(1), 5839 (2018)

    Article  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

    Google Scholar 

  26. Tardieu, F., Schurr, U.: White paper on plant phenotyping. In: EPSO Workshop on Plant Phenotyping, Jülich, November 2009. http://www.plantphenomics.com/phenotyping2009

  27. Walter, A., et al.: Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytologist 174(2), 447–455 (2007)

    Article  Google Scholar 

  28. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3320–3328. Curran Associates Inc. (2014)

    Google Scholar 

Download references

Acknowledgements

Part of this work has been supported by the network for phenotyping science: CROP.SENSe.net, funded by German BMBF (0315531C). The authors thank Silvia Braun, Thorsten Brehm, and Birgit Bleise for testing the system in their practical work and giving feedback for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Scharr .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 374 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scharr, H., Bruns, B., Fischbach, A., Roussel, J., Scholtes, L., Stein, J.v. (2020). Germination Detection of Seedlings in Soil: A System, Dataset and Challenge. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65414-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65413-9

  • Online ISBN: 978-3-030-65414-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics