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Abstract. Object detection and instance segmentation are major tasks
in Computer Vision and have substantially progressed after the intro-
duction of Deep Convolutional Neural Network (DCNN). Analyzing the
performance of DCNNSs is an open research issue, addressed with atten-
tion techniques that inspect the response of inner network layers to input
stimuli. A complementary approach relies on the black-box diagnosis of
errors, which exploits ad hoc metadata on the input data set and factors
the performance into indicators sensible or impacted by specific facets
of the input (e.g., object size, presence of occlusions, image acquisition
conditions, etc). In this paper we present an open source error diagno-
sis framework for object detection and instance segmentation that helps
model developers to add meta-annotations to their data sets, to compute
performance metrics split by meta-annotation values, and to visualize di-
agnosis reports. The framework accepts the popular PASCAL VOC and
MS COCO input formats, is agnostic to the training platform, and can
be extended with application- and domain-specific meta-annotations and
metrics with almost no coding.

Keywords: Object detection, instance segmentation, metrics, evalua-
tion

1 Introduction

Object detection is a key problem in Computer Vision, defined as the task of
locating objects of a given class in images [12]. The output of object detection is
the specification of the image region where the object appears, normally encoded
as the coordinates of a rectangular bounding box. A finer-grain object detection
task is instance segmentation, in which the output is an annotation of the image
that associates each pixel to the object instance it belongs to [8]. Object detec-
tion and image segmentation have innumerable applications, including medical
image analysis, surveillance, environment monitoring, autonomous driving, and
more [I]. Performances of object detection and instance segmentation methods
have rapidly increased, thank to Deep Learning methods and tools. Progress is
not only ascribed to improved model architecture and training methods but also
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to the availability of data sets and open challenges. Data sets widely accepted as
standard for benchmarking performance include MS COCO [10], Openlmages
[9], and PASCAL VOC [3]. Most benchmarks rely on standardized metrics to
enable the comparison of competing methods. The most widely used ones stem
from the indicators used for classification: precision, recall, accuracy and their
derivatives. True positives are determined by Intersection over Union (IoU), a
metric that quantifies the “goodness” of a detection [I3]. The availability of rec-
ognized performance evaluation standards has played a key role in the progress of
the field, enabling researches to compare their results on a fair ground. However,
the metrics used for assessing the end-to-end performance of a method and for
comparing methods with a black-box approach may not be the most adequate
ones for understanding the inner behavior of an architecture and for optimizing
it for a certain data set or task. The analysis of a DCNN can be pursued in two
different and complementary ways. On one side, model interpretation techniques
aim at “opening the box” to assess the relationship between the input, the inner
layers and the output. A notable example is the use of attention models that
capture the essential region of the input that have most impact on the inference
[18]. On the other hand, it is possible to investigate the performance of a model
by enriching the annotations of the images with metadata (or meta-annotations,
i.e., annotations of the annotations) that do not contribute to model training
but can be exploited for understanding performance. Such performance-driven
meta-annotations enable the computation of task- and data set-specific metrics
that may help the diagnosis. As an example of meta-annotations used to fine
tune standard metrics, the MS COCO data set differentiates the AP metrics
based on the size of the detected object (small, medium or large), permitting
researchers to focus their improvement on the sub-classes of objects where they
expect the most gain. The work in [7] is a pioneering effort to systematically
integrate meta-annotations in the evaluation of detectors. The authors design a
tool suite that allows developers, provided a data set with certain object char-
acteristics, exploit such metadata to evaluate the influence on detection of such
dimensions as occlusion, object size, aspect ratio, visibility of parts, viewpoint,
localization error, confusion with other objects and with background.

In this paper, we follow the line of [7] and implement a novel tool suite for
supporting the diagnosis of errors in object detection and instance segmentation
components. The contribution of our work can be summarized as follows:

— We realize an integrated framework for error diagnosis in object detection
and instance segmentation components. The framework applies to image
data sets in the popular MS PASCAL VOC and COCO formats. It accepts
ground truth annotations in the form of bounding boxes and segmentation
masks. Its meta-annotation user interface (Fig. [L) supports the enrichment
of ground truth annotations with custom meta-annotations representing fea-
tures of interest. It computes and visualizes custom metrics that highlight the
influence and impact of object characteristics on detection or segmentation
performance (Fig. [3] to Fig. [6).
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— We give the framework a plug&play architecture, whereby model develop-
ers can easily add their own meta-annotations and custom metrics with no
coding besides the actual implementation of the metrics function.

— We showcase the use of the proposed tool suite in the diagnosis of segmenta-
tion performances in the RacePlane dataset [I6]. The data set contains sev-
eral meta-annotations such as sunlight intensity, time of the day, or weather
conditions.

— We release the code of the framework publiclyﬂ The tool suite is developed
in Python, integrates directly with the MS COCO data set format and with
the PASCAL VOC format via parsing, and is agnostic to the model training
platforms.

2 Related Work

Object detection is the task of recognizing an object of a given class and localize
it in the image. A detector distinguishes the object from the background and
outputs its position as a bounding box [12]. Instance segmentation has the same
goal as object detection, but outputs a pixel-level segmentation mask of each
object instance instead of a bounding box per object [§]. Early methods started
by computing areas of the image most likely to contain an object (Regions of
Interest, ROIs), extracted descriptors for each ROI using features such as SIFT
[11I] or HOG [2] and then fed such descriptors to a classifier to predict a class
label for each ROI. The use of region proposals based on fixed-size sliding win-
dows and of hand-crafted descriptors were the most relevant limitations of such
first-generation approaches [6]. The breakthrough of CNNs in the image classifi-
cation task boosted a novel generation of object detectors, in which both features
extraction and region proposals identification were formulated as learning tasks
[5]. A further progress occurred with the elimination of the distinct steps for ROI
extraction and classification, given the unified prediction of bounding boxes and
class probabilities directly from images [I5]. The improvement in architectures
and models has been fostered by the availability of benchmarking data sets and
challenges, thanks to the common practice of publishing standardized methods
to measure performance. The popular Pascal VOC 2012 [3] data set for object
detection features 20 categories, 11.5004 annotated images and 10.000+ im-
ages without annotations. MS COCO [10] contains 80 categories with 123.000+
annotated images and 40.670 images without annotations. Object detection per-
formance is measured with standard metrics such as mean Average Precision
(mAP), which relies on the Intersection Over Union (IoU) measure to determine
True and False Positives, based on the overlap between a detected and a ground
truth object. For example, PASCAL VOC 2012 employs a IoU threshold of 0.5
and MS COCO uses both 0.5 and 0.75 values. Other commonly used metrics
are True Positive Rate (TPR) and False Positives Per Image (FPPI). A survey
of the metrics commonly employed for object detection and a discussion of the
problems associated with their implementation is performed in [I3], which also

! https://github.com/rnt-pmi/odin
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provides a standard implementation easily adapted to the different image anno-
tation formats found in commonly used object detection data sets. The above
mentioned indicators afford a quantitative assessment of the overall performance
but do not provide insight on how object characteristics affect performance. A
first step in the direction of supporting deeper insight by means of finer grain
metrics is found in MS COCO, in which mAP is differentiated based on object
size into MmAPgmair, MAPmedium and mAPy;,. A more general approach is pre-
sented in [7], which specifically focuses on the design of metrics supported by a
software framework for object detection error diagnosis. The authors designed an
open-source framework for evaluating objects proposals in greater detail, thanks
to metadata that expose characteristics that may affect performance, such as
occlusion, object size, aspect ratio, visibility of parts, viewpoint, localization
error, confusion with other objects and with background. The framework is im-
plemented in MatLab and is equipped with a meta-annotated data set to put
the diagnosis approach to work.

In this paper, we proceed along the line of [7]. We extend the set of im-
plemented metrics and visualizations to add support for instance segmentation,
modernize the code adapting it the most popular data formats, and give the
framework hooks for the easy integration of novel meta-annotations and met-
rics.

3 An Object Detection and Instance Segmentation Error
Diagnosis Framework

The ODIN framework supports the development of object detection and instance
segmentation models by enabling designers to add application-specific meta-
annotations to the input, evaluate standard metrics on inputs grouped by meta-
annotation values, assess custom metrics that exploit meta-annotations, and
visualize the results.

3.1 Input and Meta-Annotations

The ODIN framework accepts as input an image data set (PASCAL VOC and
MS COCO format) and a list of objects predictions. Objects predictions can
be expressed as bounding boxes for object detection tasks or as pixel masks for
instance segmentation tasks. Besides the standard annotations consisting of the
object class and location, developers can provide meta-annotations that denote
task- or domain-specific characteristics of the whole image or of a ROI. Meta-
annotations can convey additional information about:

— ROI size (extra-small, small, medium, large, extra-large) or aspect ratio
(extra-tall, tall, medium, wide, extra-wide). If not provided, values can be
calculated by the framework based on the areas and shapes of the annota-
tions.

— Object visibility conditions: for example, occlusion level (none, low, medium,
high), truncation (no, yes), viewpoint (bottom, front, top, side, rear).
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— Object parts, which may denote specific parts of the object in view.
— Image context: e.g., image technical parameters or acquisition conditions
such as weather or lighting.

The addition of meta-annotation is supported by a Jupyter Notebook that
given a set of images and a set of valid meta-annotation values allows the de-
veloper to iterate on the images and select the appropriate value, which is saved
in the format used for evaluation. Figure [I| shows the interface of the meta-
annotation editor.

Fla  Edit  View Inset  Call  Kemel Widgets  Help Trusted Python 3 5

B+ 5 @& B 4+ ¥ HAnm H

is_segmentati True

dataset_gt_param="/Users/nahimetorres/Documents/Git/raceplane/instances_test_aircraft.json’
images_path = "/Users/nahimetorres/Documents/Git/raceplane/inages’

my_dataset = DatasetCoco(dataset_gt_param, path _to detections, images path, is_segmentation)

annotator_me = Annotator (my_dataset)
properties = {"Is difficult”: ["Yes", "No"], "Aicraft color”: ["White", "Yellow", "Other"]}

annotator_mc.start_annotation(properties)

Previous Next Save
Annotation id: 5119 - Category: Aircraft Is difficult: @ Yes

O No

Aircraft color: @ White
O Yellow
© Otner

Fig. 1. The user interface of the meta-annotation editor

The following example shows the code needed to create a meta-annotation
session for two custom properties (Is difficult and Airplane color).

from emd_with_classes.classes import Dataset, Annotator

1
2
3 path_to_detections = "../detections"
4 dataset_gt_path="../coco.json'
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5 images_path = "../images'
6
7 1is_segmentation = True
8
9

my_dataset = Dataset(dataset_gt_path,
10 path_to_detections, images_path, is_segmentation)
11 annotator_mc = Annotator(my_dataset)
12 properties = {"Is difficult": ["Yes", "No"],
"Aicraft color": ["White", "Yellow", "Other"]}
13 annotator_mc.start_annotation()

The code imports the necessary modules (line 1), declares the physical paths
to inputs and outputs (lines 3-5), specifies the type of task (detection or seg-
mentation, line 7), instantiates the data set and task object (line 9), creates an
instance of the annotator (line 11), declares the names and admitted values of
the novel meta-annotations, and finally starts the annotation interface whereby
the user can actually tag the images (line 13).

3.2 Metrics

ODIN supports both standard metrics for object detection and instance segmen-
tation assessment, their restriction to specific values of properties expressed by
the meta-annotations, and metrics focused on the analysis of false positives. The
values of all metrics are reported using diagrams of multiple types, which can
be visualized and saved. Developers can run all metrics, or a subset thereof, for
a single class or for a set of classes.

Intersection over Union IoU is the intersection between the ground truth
By, and the predicted object location By, divided by the union of the two (Eq.
. IoU is a base measure from which all the other metrics are computed. A
threshold on the IoU value of a predicted location is used to consider it as a
True Positive (TP) or False Positive (FP).

. Bar N By,

IoU =
lgGT’LJlgpr

(1)

Precision, Recall, PR curve and Average Precision The precision and
recall metrics have the usual definition (Eq. . The PR curve plots the precision
vs recall for all the values of the IoU threshold and can be computed for all the
classes, per class, or on a subset of the classes [14].

TP TP
PT@C'I:SiOn = m, R@CCL” = m (2)
Average Precision (AP) summarizes the PR curve as a single value, i.e.,
the precision averaged for all recall values from 0 to 1, equivalent to the Area

Under the PR Curve. A common approximation (Interpolated AP) used in the
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PASCAL VOC data set [4] is computed as the sum of the maximum precision
values for recall greater than the current sampling value, weighted by the recall

delta (Eq. [3| and [4).

1

Z(T'n—H - Tn) pinterpol(r) (3)
r=0
with
pinterpol(r) = _ p;ax p(’F) (4)
T 2>
where p(7) is precision at recall 7.

An alternative definition of AP, normalized AP, is defined to cope with class
unbalance [7]. Normalized AP uses a definition of precision in which the car-
dinality of the class is replaced by the average cardinality of all the classes in
the data set. Normalized AP is the default metrics used in ODIN for multi-class
diagnosis.

AP per property For a given set of classes (from 1 to all) the AP can be
computed only for object proposals having a certain property value.

Property sensitivity and impact For each property value, the worst and best
performing image subsets can be computed, with the maximum and minimum
AP achieved. The difference between the maximum and minimum AP highlights
the sensitivity of AP w.r.t. the property, while the maximum w.r.t. the overall
AP provides insight on the impact of the property onto the AP.

False positive impact The per-class analysis of wrong object detection is
supported, including:

— Confusion with background or with unlabeled objects (IoU lower than 0.1)

— Poor localization (L) for predictions with the correct class with an IoU lower
than the threshold (default is 0.5); the indicator also counts duplicated pre-
dictions for the same ground truth object.

— Confusion with similar objects (S), when a similarly annotation is provided.

Confusion with other objects (O).

For each identified issue the percentage of predictions that fall into that
category is reported and also the absolute AP improvement by removing all
false positives of each type.

3.3 Data set Visualizator

A visualization interface, realized as a Jupyter Notebook, enables the inspection
of the data set and of the results of a diagnosis session. The visualization can be
executed at multiple levels:
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All the images.

All the images of a certain class.

All the images with a certain meta-annotation value.

All the images of a given class with a meta-annotation value.

3.4 Extending the framework

ODIN has been designed with a “plug&play” architecture, which facilitates the
addition of metrics. Adding a new metrics requires extending the provided An-
alyzer class and implementing the wrapper method that calls the computation
of the metrics.

class MyCustomAnalyzer (Analyzer) :
def _evaluation_metric(self, gt, proposals, match):
# Returns the desired metric value and the std_devivation
# To be used by the different plots

# Parameters:

# gt: contains the a list of the GT objects

#  proposals: contains a list of proposals

# Dboth contain: {image, category, segemetation/bbox}
# match: association between gt objects and proposals

# Returns:
# metric_value: the calculated value in the set
# std_deviation: of the metric (None: does not apply)

#TODO: call metrics computation code...
metric_value = #...

std_deviation = # ...

return metric_value, std_deviation

The following example shows the code needed to create an instance of the
novel metrics class and execute the analysis.

from emd_with_classes.classes import Dataset
import MyCustomAnnotator

path_to_detections = "../detections"
dataset_gt_path="../coco.json'
images_path = "../images'

res_path = "../results"
is_segmentation = True

© 00N O Ol WN =

-
o

my_dataset = Dataset(dataset_gt_path, path_to_detections,
images_path, is_segmentation)

12 my_analyzer =
13 MyCustomAnalyzer (my_dataset, results_path=res_path)
14 my_analyzer.analyze_property( "Is difficult")
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The code imports the necessary modules (lines 1-2), declares the physical
paths to inputs and outputs of the detector (lines 4-7), specifies the type of task
(line 8), creates an instance of the data set (line 10), creates an instance of the
analyzer (line 12) and finally starts the analysis for some of the meta-annotations
previously added to the data set (line 14).

In practice, the addition of new meta-annotations and metrics to ODIN re-
quires only a simple wrapper around the implementation of the metrics.

4 Use Case

In this section we illustrate the functionality of ODIN by applying it to an in-
stance segmentation benchmark: the RarePlanes [16] data set of satellite images
for aircraft detection. RarePlanes comprises real and synthetic images associ-
ated with object detection and instance segmentation annotations provided in
MS COCO format. It contains 50,000 images and ~ 630,000 (14,707 real and
629,551 synthetic) annotations. It also features multiple meta-annotations: air-
craft length, wing span, wing shape, wing position, Federal Aviation Administra-
tion (FAA) wing span class, propulsion, number of engines, number of vertical
stabilizers, canards, aircraft type and weather acquisition conditions (Fig. .
We performed the output analysis of the task of aircraft instance segmentation
for small, medium and large civil transportation vehicles. To this end, we repli-
cated the instance segmentation experiments of [16] using Detectron2 [I7] with
the configuration files associated with the data seﬂ The predictions obtained
by the Detectron2. COCOEvaluator component were processed by ODIN.

Fig. 2. Example of RarePlanes images with different weather conditions: Clear (the
first two), Cloud or Haze (the middle ones), Snow (the last two)

Figure 2] shows a few examples of images acquired in different weather condi-
tions, a meta-annotation that affects the visibility of the planes. Figure 3| reports
the AP in different weather conditions for the different classes of civil airplanes.
The diagram highlights that the conditions with more difficulties are snow for
the small objects and cloud for mid size ones. Since in the approach of [16] data
can be augmented by generating images synthetically, this finding can be taken
into account when creating new examples.

2 Models and files published at:
https://github.com/aireveries/RarePlanes/tree/master /models
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Fig. 3. AP variation under different weather conditions

Figure [d]shows how the model responds to the aspect ratio of the masks. The
different shapes and sizes affect each category in a specific way. For example,
the small civil aircraft class has better performances when objects are extra-
wide, while the other two categories exhibit a different pattern. From a visual
inspection of the examples of each class with extra wide aspect ratio (Fig. [4)
we observed that while an elongated geometry is prevalent for the small civil
airplanes, for medium and large ones it seems correlated to the mask orientation
combined with truncation. Based on such observation, one can design measures
to improve the detection of this type of images, by applying suitable data aug-
mentation techniques.

Figure [5] (left) shows the relative impact of different objects characteristics.
Propulsion, wing type and number of engines display much larger influence on
the overall performance. The inspection of the propulsion property shows that
it has a high imbalance across the aircraft classes (Fig. [5| right). Fig. [5| also
shows that the impact of truncation is lower than that of the aspect ratio, which
suggest to prioritize data augmentation by giving precedence to image rotation
over the creation of artificial truncation.

Figure [6] reports the false positive distribution across classes and the distri-
bution of the different error types explained in Section [3.2] for each class. In all
cases, localization is responsible of a minority of errors, with the minimum inci-
dence for large airplanes. This is an indicator of the good localization capabilities
of the model and thus shifts the focus of improvement to the classification step.
The small civil aircraft objects are the ones with more confusion with back-
ground or unlabeled objects, while the large civil aircraft ones present less errors



ODIN diagnosis framework 11

Small Civil Aicraft Medium Civil Aicraft Large Civil Aicraft

0.8

06

0.4

0.2

0.0

XT'T M WXW XT' T M WXwW XT'T M W XwW

Fig. 4. AP variation under different different aspect ratios for each category and ex-
amples of small medium and large airplanes with extra wide aspect ratio
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Fig. 5. Relative impact of different properties and distribution of the propulsion values
(propeller, jet, unpowered) across all images and per class (small, mid, large)

of such types. To some extent, the real dimensions of the objects impact on how
likely it is to confuse them with other unlabeled objects.

5 Conclusions

In this paper we have described a framework for the investigation of errors in
object detection and instance segmentation applications. The framework im-
plements the most common metrics for such tasks and enables the association
of meta-annotations to the input, so that the analysis of the performance can
be focused on arbitrary subsets of the input characterized by critical values of
the meta-annotations. We have illustrated the output of the framework on the
RarePlanes satellite image data set, which features both generic and domain-
specific meta-annotations. The framework is implemented in Python and released
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as open source. Its plug&play architecture permits the addition of novel meta-
annotations and custom metrics with minimal coding effort. Our future work
will concentrate on adding support to classification tasks and on extending the
library of metrics implementations with further classes for specific applications,
e.g., human pose detection. In addition, we will add support for the automatic
extraction of specific types of meta-annotations, such as the geographical coor-
dinates, date and time of image acquisition, and the orientation of the instance
segmentation mask. We also plan to integrate the analysis of attention, by com-
puting the position and extent of the CAM w.r.t. to the object bounding box or
segmentation mask to support the optimization of weakly supervised models.
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