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Towards a Static Analysis of Multi-Language Programs

Abstract. Modern software development rarely takes place within a sin-
gle programming language. Often, programmers appeal to cross-language
interoperability. Examples are exploitation of novel features of one lan-
guage within another, and cross-language code reuse. Previous works de-
veloped a theory of so-called multi-languages, which arise by combining
existing languages, defining a precise notion of (algebraic) multi-language
semantics. As regards static analysis, the heterogeneity of the multi-
language context opens up new and unexplored scenarios. In this paper,
we provide a general theory for the combination of abstract interpreta-
tions of existing languages, regardless of their inherent nature, in order
to gain an abstract semantics of multi-language programs. As a part of
this general theory, we show that formal properties of interest of multi-
language abstractions (e.g., soundness and completeness) boil down to
the features of the interoperability mechanism that binds the underlying
languages together. We extend many of the standard concepts of abstract
interpretation to the framework of multi-languages.

Keywords: multi-languages · abstract interpretation · interoperability
· algebraic semantics.

1 Introduction

There is currently a myriad of programming languages, many of which have ex-
tensive library support. With programs becoming larger and increasingly com-
plex, interoperability mechanisms streamline program development by enabling
the interplay between pieces of code written in different languages. Examples are
embedded interpreters [37], consisting of a runtime engine implemented in the
host language (such as Jython [26] that lets Java interoperate with Python), or
the foreign function interface system that allows one language to call routines
written in another (e.g., the Java Native Interface [29] enables Java code to call
C++ functions). On one hand these mechanisms are essential tools, but on the
other hand they hamper our understanding of the resulting programs.

Themulti-language framework of [7] provides a theoretical model to formalise
cross-language interoperability from an abstract standpoint. Multi-languages
arise from the combination of already existing languages [9,36,1,16,23,35,31].
Intuitively, terms of multi-languages are obtained by performing cross-language
substitutions (e.g., the multi-language designed in [31] allows programmers to
replace ML expressions with Scheme expressions and vice versa) and the seman-
tics is determined by new constructs able to regulate the flow of values between
the underlying languages, the so-called boundary functions [31].
? Supported by organization x.
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The Problem. Despite the wide range of frameworks for interoperability, there is
a lack of techniques for combining static analyses of different languages. Static
analysis consists of a range of well-established and widely used techniques for au-
tomatically extracting dynamic (i.e., runtime) behaviours statically (i.e., without
executing the code). When it comes to multi-languages, two new challenges need
to be tackled. Firstly, single-language analysers are not conceived for inspecting
external code, and secondly the combination of analyses is not straightforward,
since the interoperability mechanism that blends the underlying languages adds
a new semantic layer. For instance, consider the following Java code snippet
analysed with SonarQube Scanner [8]:1

String hello = null;

String helloWorld = hello.concat(" World!"); // NullPointerException: hello is null

The analyser raises a warning of a null pointer exception at the second line.
Instead, if we run the analyser on the next semantically equivalent but multi-
language code the runtime exception goes unnoticed.

String hello = (String) js.eval("null"); // Evaluate "null" in JS and convert it back

String helloWorld = hello.concat(" World!"); // NullPointerException: hello is null

The method eval evaluates the JavaScript code null via the Nashorn engine (a
JavaScript interpreter developed by Oracle and included in Java 8) and returns
the equivalent Java value null. This trivial example underlines how easy it is to
deceive an analysis when writing multi-language programs.

Of course, nothing prevents us from redesigning the abstract semantics of
the multi-language from scratch and to implement the corresponding analyser.
However, besides the obvious time-consuming task, we will end up without any
theoretical properties of the abstraction (e.g., soundness or completeness). In
fact, what we would like to achieve is a framework that takes advantage, as far
as possible, of the already existing abstractions of the underlying languages and
at the same time provides theoretical results.

A General Solution. Abstract interpretation [12] has allowed a disparate collec-
tion of (practical) methods and algorithms proposed along the years for static
analysis to evolve into a mature discipline, founded on a robust theoretical frame-
work. This provides a good environment for designing static analysis methods
within a language, semantics, and approximation independent way [13]. It has
broad scope and wide applicability. Our aim is to retain such broad scope, but
to work with multi-language programs: Instead of fixing two programming lan-
guages and combining their respective analyses, we model abstract interpetation
itself, within the algebraic framework of multi-language semantics [7]. Such an
approach allows us to lay down the first steps of a general technique for design-
ing static analyses of multi-language programs, in a way that (1) is independent
of both underlying languages and analyses and (2) preserves the design and
properties of the single-language abstract semantics.
1 A commercial static code analyser for Java (version 3.2.0.1227 for Linux 64 bit).
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Contributions and Paper Structure. Our main contribution is a general tech-
nique for abstracting multi-language semantics given the interoperation of the
underlying languages and of their abstract semantics. We exploit abstract inter-
pretation theory [12] for retaining independency from the underlying analyses,
and the algebraic framework of multi-languages [7] for generality of the blended
languages. In Sect. 2, we provide background definitions for multi-languages.
In Sect. 3, we give a general, algebraic, and fixpoint construction of the col-
lecting semantics, namely the reference semantics for defining and proving the
correctness of approximated properties. In Sect. 4, we instantiate the abstract
interpretation-based semantics approximation in the algebraic framework, in or-
der to fill the gap betweeen the algebraic approach to program semantics and
static analysis. Finally, in Sect. 5, we combine all these concepts, obtaining an
algebraic framework for modeling abstract interpretation of multi-language pro-
grams. The proofs are given in Appx. A. We assume familiarity with abstract
interpretation theory.

2 The Multi-Language Framework

We summarise the framework of multi-languages [7] based on the theory of order-
sorted algebras [20]. Intuitively, multi-languages result from the combination of
two order-sorted specifications defining syntax and semantics of the underlying
languages. Order-sorted algebras provide a simple and yet powerful framework
for modelling formal systems as algebraic structure, and have been widely used
for specifying and prototyping programming languages (see [19] for survey).

Sorted Sets and Functions. Let S be a set of sorts. An S-sorted set is a
family of sets A , (As | s ∈ S ). Given two S-sorted sets A and B, an S-sorted
function h : A→ B is a family (hs : As → Bs | s ∈ S ) of set-theoretic functions.
If f : A→ B and g : B → C are two S-sorted functions, clearly their composition
g ◦ f , ( (g ◦ f)s , gs ◦ fs | s ∈ S ) is an S-sorted function from A to C. We
extend set-theoretic operators and predicates componentwise. For instance, if A
and B are two S-sorted sets, A ⊆ B if As ⊆ Bs for each s ∈ S, and we define the
cartesian product A×B by taking each component (A×B)s , As×Bs. If A is
an S-sorted set and w , s1 . . . sn ∈ S∗, we denote by Aw the cartesian product
As1×· · ·×Asn (when w , ε, then Aw , {•} is the one-point domain). Likewise,
if f is an S-sorted function and ai ∈ Asi for i , 1, . . . , n, then the function
fw : Aw → Bw is defined by fw(a1, . . . , an) , (fs1(a1), . . . , fsn(an)). Moreover,
if S is partially ordered by ≤, then S∗ inherits the pointwise order. Finally, we
introduce the product operator × used in Sect. 3. Let A be a family of sets
indexed by I. The product operator × :

∏
i∈I ℘(Ai) → ℘

(∏
i∈I Ai

)
defines the

mapping (X1, . . . , Xn) 7→ X1 × · · · ×Xn.

2.1 Order-Sorted Algebras

A signature defines the symbols of the language (that is, the syntax), and an
algebra provides them with a meaning.
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−
(Const) (k : s)

k : s

(∀1 ≤ i ≤ n) ti : si
(Fun) (f : s1, . . . , sn → s)

f(t1, . . . , tn) : s

t : s
(Sub) (s ≤ r)

t : r

Fig. 1. Well-formed terms generated by an order-sorted signature Sg.

Definition 1 (Order-Sorted Signature). An order-sorted signature Sg is
specified by

– a poset 〈S,≤〉 of sorts;
– a set of function symbols f : s1, . . . , sn → s each with arity n ≥ 1 and

(w, s) ∈ S∗ × S the rank of f where w , s1 . . . sn;
– a set of constants k : s, each of a unique rank s (just a single sort); and
– a monotonicity requirement that whenever f : w1 → s and f : w2 → r

with w1 ≤ w2, then s ≤ r.

By an operator we mean either a function symbol or a constant.

Well-formed (ground) terms generated by a signature Sg are defined by the
inference rules depicted in Fig. 1. A judgement of the form t : s means that t is
a well-formed term of sort s built out of Sg. Note that a term t may have more
than one sort, and we call t polymorphic; see [20] for details on polymorphism
in order-sorted algebras and [7] for the role of polymorphism in multi-languages.

Definition 2 (Order-Sorted Algebra). Given an order-sorted signature Sg,
an Sg-algebra C is specified by

– a carrier set JsKC for each sort s and a set JwKC , Js1KC ×· · ·× JsnKC for
each w , s1 . . . sn ∈ S∗;

– a function Jf : w → sKC : JwKC → JsKC for each f : w → s and an element
JkKC ∈ JsKC for each constant k : s

such that if s ≤ r then JsKC ⊆ JrKC , and if the function symbol f appears with
more than one rank f : w1 → s and f : w2 → r in Sg with w1 ≤ w2, then
Jf : w1 → sKC (x) = Jf : w2 → rKC (x) for each x ∈ Jw1KC .

We often refer to the carrier set of an Sg-algebra C , meaning the S-sorted
family of carrier sets C , (Cs , JsKC | s ∈ S ), where S is the set of sorts in Sg.

Example 1. If Sg is the signature of an imperative language, then the loop and
skip operators are likely to be sorted as loop : exp, com → com and skip : com.
Their denotational semantics may be defined by an algebra D , where JskipKD ,
ρ 7→ ρ and JloopKD(e, c) , lfpFe,c (assume ρ to be an environment and F the
usual continuous operator [41]); see Appx. C for further examples of different
styles of algebraic semantics of an imperative language.

The term algebra TSg has carrier sets each consisting of terms of a given sort:
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Definition 3 (Order-Sorted Term Algebra). The term Sg-algebra TSg

is defined by taking JsKTSg
, { t | t : s in Sg } and by syntactically interpreting

each operator, i.e., JkKTSg
, k for each k : s and Jf : w → sKTSg

(t1, . . . , tn) ,
f(t1, . . . , tn) for each f : w → s, where w , s1 . . . sn and ti ∈ JsiKTSg

.

Homomorpisms between algebras are sorted functions between carrier sets
that preserve the meaning of the operators:

Definition 4 (Order-Sorted Homomorpism). An order-sorted Sg-homo-
morphism h : C → D between two Sg-algebras C and D is an S-sorted function
h : C → D between their carrier sets satisfying the following:

– hs(JkKC ) = JkKD for each k : s and hs ◦ Jf : w → sKC = Jf : w → sKD ◦ hw
for each f : w → s (recall the sorted function notation); and

– if s ≤ r, then hs(x) = hr(x) for each x ∈ JsKC .

When the source of a homomorphism h : TSg → C is the term algebra, it
provides terms of Sg with a meaning in the carrier set C of C . The conditions
for h in the previous definition amount to require the semantics to be composi-
tional. The class of Sg-algebras and Sg-homomorphisms form a category denoted
by Alg(Sg). If the signature Sg is regular,2 there is a unique homomorphism
h : TSg → C for each Sg-algebra C . This fact is summed up by the following

Theorem 1 ([20]). If Sg is regular, the term algebra TSg is initial in Alg(Sg),
that is, for every algebra C there is a unique homomorphism h : TSg → C .

We refer to any such h : TSg → C as a semantic function. In the follow-
ing, we write JtKC , hls(t)(t) where ls(t) is the least sort of t, which exists by
regularity [20, Prop. 2.10].

2.2 Multi-Languages and Their Algebras

We next provide an analogue of the previous section for multi-languages. Amulti-
language signature, defining a multi-language, is specified by two order-sorted
signatures together with an interoperability relation on sorts:

Definition 5 (Multi-Language Signature). A multi-language signature
SG , (Sg1,Sg2,n) is specified by

– a pair of order-sorted signatures Sg1 and Sg2 with posets of sorts 〈S1,≤1〉
and 〈S2,≤2〉, respectively; and

– an interoperability (binary) relation n over S1 ∪ S2 such that s n s′

implies s ∈ Si and s′ ∈ Sj with i, j ∈ {1, 2} and i 6= j.

We suppose that S1 and S2 are two disjoint sets (this hypothesis is non-restrictive:
We can always construct a disjoint union).

2 We do not discuss regularity here (see [20] for the formal definition).
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−
(CONST) (k : s in Sgi)

ki : s

(∀1 ≤ j ≤ n) tj : sj
(FUN) (f : s1, . . . , sn → s in Sgi)

fi(t1, . . . , tn) : s

t : s
(SUB) (s ≤i r in Sgi)t : r

t : s
(CONV) (sn s′ in SG)

↪→s,s′(t) : s′

Fig. 2. Multi-language terms generated by SG , (Sg1, Sg2,n).

We shall see that an interoperability constraint sn s′ enables the use of Sgi-
terms of sort s in place of Sgj-terms of sort s′ (as in [31], “ML code can be used in
place of Scheme code”). The multi-language terms are inductively defined by
the rules in Fig. 2. Note that single-language operators, k or f , of Sgi are tagged
as ki and fi in multi-language terms, precisely for avoiding the introduction
of unintended polymorphism (Sg1 and Sg2 may share operators with the same
name). And also note the role of conversion operators ↪→s,s′ that move terms
t of sort s to terms ↪→s,s′(t) of sort s′, for each sns′. Henceforth, when we write
an order-sorted signature Sgi, we understand its poset of sorts to be denoted by
〈Si,≤i〉, and for each s n s′ we tacitly assume that s in Sgi and s′ in Sgj with
i, j ∈ {1, 2} and i 6= j.

A multi-language SG-algebra is a pair of order-sorted algebras together with
a family of boundary functions.

Definition 6 (Multi-Language Algebra). Let SG , (Sg1,Sg2,n) be a multi-
language signature. An SG-algebra C is given by

– a pair of order-sorted algebras C1 and C2 on Sg1 and Sg2, respectively; and
– a boundary function Jsn s′KC : JsKCi

→ Js′KCj
for each constraint sn s′.

Boundary functions are understood as the semantics of conversion operators,
that is they specify how the underlying languages interoperate.

The multi-language term algebra is defined in a similar way to the order-
sorted one in order to carry multi-language terms.

Definition 7 (Multi-Language Term Algebra). Let TSG denote the multi-
language term SG-algebra. The underlying Sgi-algebras (TSG)i are defined by tak-
ing JsK(TSG)i , { t | t : s in SG } for each sort s in Sgi and by defining JkK(TSG)i ,
ki for each k : s in Sgi and Jf : w → sK(TSG)i(t1, . . . , tn) , fi(t1, . . . , tn) for each
f : s1, . . . , sn → s in Sgi, where tj ∈ JsjK(TSG)i . Boundary functions of TSG are
defined as Jsn s′KTSG

(t) , ↪→s,s′(t), for each sn s′ and t ∈ JsK(TSG)i .

Definition 8 (Multi-Language Homomorphism). Let SG , (Sg1,Sg2,n)
be a multi-language signature, and let C and D be two SG-algebras. An SG-
homomorphism h : C → D is given by a pair of order-sorted homomorphisms
h1 : C1 → D1 and h2 : C2 → D2 such that they commute with boundary functions,
namely, if sn s′, then (hj)s′ ◦ Jsn s′KC = Jsn s′KD ◦ (hi)s.
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Given a multi-language algebra C , we can define an S-sorted set C by setting
Csi , JsKCi

; and given any homomorphism h : C → D , there is an S-sorted
homomorphism h : C → D given by hsi , (hi)s : Csi → Dsi . Note that we will
usually write h for h, thus identifying the two concepts, and regard h : C → D
and h : C → D as inter-changeable throughout the paper.

SG-algebras and SG-homomorphisms form a category denoted by Alg(SG).
[7] provides the multi-language version of Thm. 1, so that for every multi-
language algebra C , there is a unique SG-homomorphism h : TSG → C providing
multi-language terms with a meaning, and we use the same notation JtKC for
denoting its semantics.

3 Algebraic Perspective on Collecting Semantics

We now give a general construction of collecting semantics. First we set up
notation. We let Sg be a regular order-sorted signature and C an Sg-algebra.
Thm. 1 guarantees the existence of a homomorphism J−KC : TSg → C providing
Sg-terms P, called programs, with a meaning JPKC .

Remark 1. Signatures are of course completely general. Sg might specify an en-
riched lambda-calculus with J−KC its denotational semantics, as in [21, Sect. 3.2],
or Sg might specify the syntax of an imperative language with J−KC its small-
step operational semantics (as in Appx. C.1).

A property of a set is any subset. By semantic properties of programs, we
mean properties of the (components of) the carrier set C of an algebra C . In
this section, we provide a systematic construction of an algebra C ∗ able to com-
pute the strongest property of programs, that is JPKC∗ = {JPKC } for each
program P (Prop. 1). The induced semantic function J−KC∗ is usually called the
(standard) collecting semantics [14]. Henceforth, we distinguish the seman-
tics J−KC from the collecting semantics J−KC∗ by referring to the former as the
standard semantics, and we shall link them algebraically in the category of
algebras Alg(Sg) via Prop. 2. We conclude this section by providing a general
fixpoint calculation of J−KC∗ whenever J−KC is a fixpoint semantics (Thm. 3).

Definition 9 (Collecting Semantics). Let C be an Sg-algebra. The collect-
ing semantics C ∗ over C is defined as follows:

– the carrier sets are JsKC∗ , ℘JsKC for each sort s; and
– the semantics of the operators is JkKC∗ , {JkKC } for each constant k : s,

and Jf : w → sKC∗ , ℘Jf : w → sKC ◦ × (see Sect. 2 for the definition of ×)
for each function symbol f : w → s, where for any function θ : A → B the
function ℘(θ) : ℘(A)→ ℘(B) computes the image of θ.

The homomorphism J−KC∗ : TSg → C ∗ induced by C ∗ maps programs to
their most precise semantic property, justifying the name of collecting semantics:
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Proposition 1. J−KC∗ : TSg → C ∗ computes the strongest program property for
each program P generated from Sg, that is JPKC∗ = {JPKC }.

Remark 2. Other forms of collecting semantics found in literature are abstrac-
tions of the collecting semantics provided here. For instance, [2] defines a col-
lecting semantics for functional programs interpreted on D⊥ → D⊥ by taking
f : D⊥ → D⊥ to ℘(f) on the lifted domain ℘(D⊥)→cjm ℘(D⊥) of complete-join
morphisms (cjm). Such a collecting semantics computes all the possible results
of a functional program with respect to a set of input values, and it can be
obtained as an abstraction of the standard collecting semantics:

α
(
S ∈ ℘(D⊥ → D⊥)

)
, X ∈ ℘(D⊥) 7→ { f(x) ∈ D⊥ | x ∈ X ∧ f ∈ S }

γ
(
F ∈ ℘(D⊥)→cjm ℘(D⊥)

)
, {x ∈ D⊥ 7→ f(x) ∈ D⊥ | f(x) ∈ F ({x}) }3

The (forward) reachability semantics is widely used for invariance analyses
or, in general, for discovering state properties of programs [39,6,27]. For each
program P, it collects the set of states that are reachable by running P from a
set of initial states. It can be shown that it is an abstraction of the standard
collecting semantics over, for instance, a trace semantics (such a construction is
formalised in Appx. C.3).

Standard and collecting semantics are related by the property established
in Prop. 1. Moreover, the singleton function {−} : C → ℘(C) that maps stan-
dard semantics JPKC of programs to their strongest property {JPKC } is an Sg-
homomorphism {−} : C → C ∗. From the abstract interpretation perspective,
it means that {−} acts as a complete abstraction, hence with no loss of preci-
sion [17].

Proposition 2. The singleton function {−} : C → ℘(C) defined by c 7→ {c} is
an Sg-homomorphism {−} : C → C ∗, and therefore {−} ◦ J−KC = J−KC∗ .

Remark 3. Readers familiar with category theory may notice that {−} is the
unit of the powerset monad on Alg(Sg). However, we do not pursue this here.

3.1 Fixpoint Calculation of Collecting Semantics

Preliminary Notions. We call J−KC a fixpoint semantics if JPKC , lfp4
⊥ F for

some semantic transformer F : C → C (depending on Sg) on a semantic domain
〈C,4,⊥,g〉. More precisely, we follow [11] and we assume the following:

– The semantic domain 〈C,4,⊥,g〉 is a poset 〈C,4〉 with a smallest element
⊥ and a partially defined least upper bound (lub) operator g.

– The semantic transformer F : C → C is a monotone function such that
its transfinite iterates F 0 , ⊥, F δ+1 , F (F δ) for successor ordinals δ + 1,
and Fλ , gδ<λF δ for limit ordinals λ are well-defined.

3 One can check that α(S) is a cjm and (α, γ) form a Galois connection.
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Under these assumptions, the fixpoint semantics is exactly JPKC , lfp4
⊥ F = F ε,

where ε is the least ordinal such that F (F ε) = F ε.

The goal of this section is to provide a fixpoint calculation of the collecting
semantics. We assume the standard semantics JPKC , lfp4

⊥ F to be a fixpoint
semantics over a generic semantic domain 〈C,4,⊥,g〉, and we define a new
computational order 4∗ on ℘(C) that makes the collecting semantics JPKC∗ the
least fixpoint of F ∗ , ℘(F ) (Thm. 3).

Remark 4. The problem of finding the right partial order 4∗ on ℘(C) for achiev-
ing such a fixpoint definition of the collecting semantics has been recently ad-
dressed in [14, Sect. 7.2], by considering a preorder on ℘(C) that is partial only
along the iterates.4 Here, we show that it can be extended to a fully-fledged
partial order 4∗ over the whole set ℘(C).

Definition 10 (Collecting Semantics Domain). Let 〈C,4,⊥,g〉 be a (non-
trivial) semantic domain. The collecting semantics domain 〈℘(C),4∗,⊥∗,g∗〉
with respect to 〈C,4,⊥,g〉 is defined as follows:

– Let X,Y ∈ ℘(C). Then,

X 4∗ Y iff


X = {x} and Y = {y} and x 4 y for some x, y ∈ C (1)
X = Y (2)
X = {x} and Y 6= {y} for some x ∈ C and for all y ∈ C (3)

Example 2. Let C , N and 4 , ≤. Then, 〈℘(N),≤∗〉 is

{0}

{1}

{2}

∅ N{0, 1} {0, 2} {1, 2}· · · · · ·

injection of the
original domain

flat ordering on
non-atomic elements

The smallest element of 〈℘(C),4∗〉 is ⊥∗ = {⊥} and the following lemma
characterises the lub operator g∗ on chains of atoms (i.e., singletons):

Lemma 1. Let D ⊆ ℘(C) be a non-empty set of atoms of the form {x} for some
x ∈ C. Then, g∗D exists if and only if g∪D exists, and when either one exists
g∗D = {g ∪ D}.

Let us recall that F ∗ , ℘(F ) , X ∈ ℘(C) 7→ {F (x) ∈ C | x ∈ X }. F ∗ is
trivially monotone, and we shall now prove that its transfinite iterates exist:
4 A similar approach has been previously taken in [30] and in the thesis of Pasqua [34].
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Proposition 3. For each ordinal δ, (F ∗)δ = {F δ}.

Proof. By transfinite induction:

– Let δ , 0. Then, (F ∗)0 = ⊥∗ = {⊥} = {F 0}.
– Let δ+ 1 be a successor ordinal. Then, (F ∗)δ+1 = F ∗((F ∗)δ)

IH
= F ∗({F δ}) =

{F (F δ)} = {F δ+1}.
– Let λ be a limit ordinal. Then, (F ∗)λ = g∗δ<λ(F ∗)δ

IH
= g∗δ<λ{F δ}. Since

( {F δ} | δ < λ ) is a set of atoms, by Lemma 1 we conclude

(F ∗)λ =
j∗

δ<λ
{F δ} =

{j⋃
δ<λ
{F δ}

}
=
{j

δ<λ
F δ
}

= {Fλ}

By Prop. 3, F ∗ is a proper semantic transformer over the previously defined
collecting semantics domain. The fixpoint definition of the collecting semantics
now follows from the application of the Kleenian fixpoint transfer theorem in its
most general formulation (that we now recall).

Theorem 2 (Kleenian Fixpoint Transfer Theorem [11]). Let (D,≤,⊥,∨)
and (D\,≤\,⊥\,∨\) be two semantic domains and F : D → D and F \ : D\ → D\

two semantic transformer over them. Let α : D → D\ be a function such that (i)
α(⊥) = ⊥\, (ii) F \◦α = α◦F , and (iii) α preserves the lub of the iterates, that is
α(∨δ<λF δ) = ∨\δ<λα(F δ) for each limit ordinal λ. Then, α(lfp≤⊥ F ) = lfp≤

\

⊥\ F
\.

The singleton function {−} : C → ℘(C) introduced in Prop. 2 satisfies the
hypotheses for α in Thm. 2 for domains 〈C,4,⊥,g〉 and 〈℘(C),4∗,⊥∗,g∗〉 and
transformers F and F ∗, respectively. Therefore, given the above,

Theorem 3 (Fixpoint Collecting Semantics). The function {−} : C →
℘(C) satisfies the hypotheses (i), (ii), and (iii) of Thm. 2, hence

JPKC∗
Prop. 1

= {JPKC }
Hypo.
= {lfp4

⊥ F}
Thm. 2

= lfp4∗

⊥∗ F
∗

4 Basic Notions of Algebraic Abstract Semantics

We proceed to characterise abstract interpretations of the standard collecting
semantics in the algebraic setting. There are several frameworks in which to de-
sign sound approximations of program semantics [13]. Here, we study both the
ideal case in which a Galois connection (gc) ties the concrete and the abstract
domain, and the more general scenario characterised by the absence of a best
approximation function. Although it is not the most general abstract interpreta-
tion framework to work with, it meets the usual setting in which static analyses
are designed [38].

We still denote by C the Sg-algebra inducing the standard semantics of the
language. We recall that C is the carrier set of C and ℘(C) the carrier set of the
collecting semantics C ∗. An Sg-algebra A is said to be abstract with respect to
C if (1) its carrier set A is a poset 〈A,v〉 and (2) it is equipped with a monotone
concretisation function γ : 〈A,v〉 → 〈℘(C),⊆〉 that maps abstract elements
to concrete properties. We refer to the carrier set A as an abstract domain
and we call the induced semantic function J−KA the abstract semantics.
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Definition 11 (Soundness). Let A be an abstract Sg-algebra (with carrier
set A) and γ : A→ ℘(C) a monotone concretisation function. The algebra A is
sound if its operators soundly approximate the concrete ones, i.e.,

– Jf : w → sKC∗ ◦ γ ⊆ γ ◦ Jf : w → sKA for each f : w → s; and
– JkKC∗ ⊆ γJkKA for each constant k : s.

A straightforward consequence of this definition is that sound algebras induce
sound abstract semantic functions (but see the proof in Appx. A for subtleties
related to polymorphism):

Proposition 4. If A is sound, then JPKC∗ ⊆ γJPKA for each program P.

If 〈℘(C),⊆〉 −−−→←−−−α
γ
〈A,v〉 is a gc between the concrete and the abstract do-

main, we can define the most precise (abstract) Sg-algebra A � out of the best
correct approximation provided by (α, γ).

Definition 12 (Most Precise Algebra). Let 〈℘(C),⊆〉 −−−→←−−−α
γ
〈A,v〉 be a gc

between the concrete and the abstract domain. The most precise algebra A �

approximating C with respect to (α, γ) is defined as follows:

– carrier sets are JsKA � , As (recall the notation for sorted sets); and
– the semantics of the operators is JkKA � , αJkKC∗ for each constant k : s,
Jf : w → sKA � , α ◦ Jf : w → sKC∗ ◦ γ for each function symbol f : w → s.

The abstract semantics J−KA � induced by A � enjoys the soundness property
(the reader may want to check that A � is a proper Sg-algebra), and it is the
most precise among all the sound algebras, in the following sense:

Proposition 5. A � soundly approximates the concrete semantics. Moreover,
A � is the most precise abstraction with respect to (α, γ), that is, for any other
sound algebra A , γ ◦Jf : w → sKA � ⊆ γ ◦Jf : w → sKA and γJkKA � ⊆ γJkKA for
each operator in Sg. Therefore, by Prop. 4, γJPKA � ⊆ γJPKA for each program P.

In general, abstraction and concretisation functions α and γ are not homo-
morphisms between A and C ∗. However, if they are homomorphisms, then A
is backward and forward complete, respectively (Props. 6 and 7).

Definition 13 ((Backward) Completeness). Let A be an Sg-algebra and
〈℘(C),⊆〉 −−−→←−−−α

γ
〈A,v〉 a gc. The left adjoint α encodes concrete properties in

the abstract domain. The algebra A is complete with respect to

– a function symbol f : w → s if α ◦ Jf : w → sKC∗ = Jf : w → sKA ◦ α; and
– a constant k : s if αJkKC∗ = JkKA .

Proposition 6. Let α : C ∗ → A be an Sg-homomorphism. Then, A is com-
plete with respect to each operator in Sg, and therefore αJPKC∗ = JPKA for each
program P.



12 Anonymous Authors

Note that, in general, the existence of a best abstract approximation is
not guaranteed (e.g., for convex polyhedra [15] or the final state automata
domain [3]). In such cases, a dual notion of completeness (forward complete-
ness [18]) with respect to the concretisation function is investigated.

Definition 14 (Forward Completeness). Let A be an Sg-algebra and γ : A→
℘(C) a monotone concretisation function. The algebra A is forward complete
with respect to

– a function symbol f : w → s if Jf : w → sKC∗ ◦ γ = γ ◦ Jf : w → sKA ; and
– a constant k : s if JkKC∗ = γJkKA .

Proposition 7. Let γ : A → C ∗ be an Sg-homomorphism. Then, A is forward
complete with respect to each operator in Sg, and therefore JPKC∗ = γJPKA for
each program P.

5 The Multi-Language Abstraction

Our aim in this section is to define abstractions of the multi-language seman-
tics by relying on the abstractions of the single-languages. The whole section
is accompanied by a running example inspired by a common scenario in the
interoperability field: The language binding, an Application Program Interface
(API) that allows one language to call library functions implemented in another
language. Major examples include openGL library, which is interoperable with
Java through the Java OpenGL (JOGL) wrapper library or from Python via
PyOpenGL, and GNU Octave language that have interoperability with Ruby
and Python (e.g., see octave-ruby and oct2py libraries). Our running example
mimics such an interoperability mechanism.

In Sect. 5.1 we set up our example. We present the core of an imperative
language Imp, and by recalling the multi-language construction of Def. 5, we
apply the construction so that Imp interoperates with a very simple mathematical
language Num (in the spirit of Octave). In Sect. 5.2 we define the combination of
abstract interpretations of different languages, a key contribution of our work.
By example we apply our theory to two different sign abstract semantics (one
for each language), and we show how to derive the sign semantics for the multi-
language NImp obtained by blending Imp and Num.

5.1 The Multi-Language Construction: A Running Example

Throughout this section, we let Sg1 and Sg2 be two order-sorted signatures
defining the syntax of two languages, and let i , 1, 2. We denote by Ci the
order-sorted Sgi-algebra inducing the semantics J−KCi of the language.

Running Example 1. Let Imp be (the syntax of) the imperative programming
language in Fig. 3. Variables x ∈ X and values i ∈ Z⊥ (where Z⊥ , Z ∪ {⊥})
occur in the language as terminal symbols, and for each production defining
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(i) 〈exp1〉 ::= i integers (i ∈ Z⊥)
(x) 〈exp1〉 ::= x variables (x ∈ X)
(bop�) 〈exp1〉 ::= 〈exp1〉� 〈exp1〉 binary operations

(skip) 〈com1〉 ::= skip do-nothing
(assignx) 〈com1〉 ::= x = 〈exp1〉 assignment
(cond) 〈com1〉 ::= if 〈exp1〉 then 〈com1〉 else 〈com1〉 conditional
(loop) 〈com1〉 ::= while 〈exp1〉 do 〈com1〉 loop statement
(seq) 〈com1〉 ::= 〈com1〉; 〈com1〉 composition

Fig. 3. Syntax of the imperative language Imp.

(q) 〈exp2〉 ::= q rationals (q ∈ Q⊥)
(x) 〈exp2〉 ::= x variables (x ∈ X)
(fn) 〈exp2〉 ::= fn( 〈exp2〉1, . . . , 〈exp2〉n ) n-ary operations
(?) 〈exp2〉 ::= 〈exp2〉 ? 〈exp2〉 : 〈exp2〉 ternary operator

(letx) 〈com2〉 ::= x = 〈com2〉 assignment
(block) 〈com2〉 ::= { 〈com2〉1; . . . ; 〈com2〉n } statements block

Fig. 4. Syntax of the mathematical language Num.

the syntax of Imp (on the right), we introduce a corresponding algebraic op-
erator (on the left), or a family of operators when they are parametric on a
subscript. The rank of each algebraic operator can be inferred by the non-
terminals appearing in the production rules; for instance, the operator cond
is sorted as cond : exp1, com1, com1 → com1, where com1 and exp1 denote the
sort of commands and expressions of Imp. We assume a denotational semantics
J−KD1

provided by an Imp-algebra D1 (see, for instance, [41] or Appendix B).
As usual, we let Env1 , X → Z⊥ be the set of environments of Imp, and we
set Env⊥1 , Env1 ∪ {⊥}. The carrier sets of commands and expressions are
Jcom1KD1

, Env⊥1 → Env⊥1 and Jexp1KD1
, Env1 → Z⊥. Moreover, we assume

that Imp provides users with very basic operators, i.e., � ∈ {+, -, <, >, ==, !=}.
We let Num be a mathematical language with more advanced numerical

functions, such as modulo and bitwise operators, rational numbers, trigonometric
functions, etc. Its syntax is depicted in Fig. 4. We consider variables x ∈ X and
values q ∈ Q⊥ , Q ∪ {⊥} terminal symbols. We denote by fn mathematical
functions of the language with arity n, such as the modulo binary operator
%, the unary sin function, etc. Here too we assume a denotational semantics
J−KD2

induced by the Num-algebra D2, where Jexp2KD2
, Env2 → Q⊥ and

Jcom2KD2 , Env2 → Env2 with Env2 , X→ Q⊥.
The reader may want to check Appx. B for the thorough formalisation of the

algebraic semantics provided by D1 and D2.

Recall (Definition 5) that the signature of a multi-language, which we shall
refer to as SG, is specified by blending the order-sorted signatures Sg1 and Sg2 of
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res = 1;

while n > 0 do

if n & 1 then // true iff n is odd

res = res * a;

a = a * a;

n = n >> 1 // division by 2

The multi-language program on the right
implements the exponentiation by squar-
ing [10] for efficiently computing the powers
of an integer number: It stores in res the n-
th power of a. The binary operator & is the
bitwise and operator and >> is the right shift
operation.

Fig. 5. Multi-language exponentiation by squaring algorithm.

the single-languages through an interoperability relation n on sorts. In particular,
an interoperability constraint sn s′ implies that Sgi-terms of sort s can be used
in place of Sgj-terms of sort s′ (with i, j ∈ {1, 2} and i 6= j). This determines
the terms of the multi-language SG , (Sg1,Sg2,n).

Running Example 2. For instance, Num provides users with more advanced bi-
nary operators and values than those of Imp. However, the purpose of Num is
limited to define handy mathematical functions (indeed, it is not even Turing-
complete). We can take advantage of such mathematical expressiveness without
sacrificing computational power by allowing the use of Num-expressions (that is,
terms with sort exp2) into Imp-programs, in place of Imp-expression of sort exp1.
Therefore, the interoperability relation shall simply specify exp2 n exp1, and we
let NImp to be formally defined as NImp , (Imp,Num,n). As a result, program-
mers may write programs such as the one in Fig. 5, where terms in magenta are
Num-expressions used in place of Imp-expressions (i.e., we use colours rather
than applying the conversion operator ↪→exp2,exp1

for clarity reasons).

The multi-language SG-semantics C is then obtained by pairing the single-
language algebras C1 and C2 with boundary functions Jsn s′KC : JsKCi → Js′KCj

that specify how terms of sort s in Sgi can be interpreted as terms of sort s′
in Sgj . In other words, boundary functions regulate the flow of values between
the underlying languages [31]. For instance, they can act as a bridge between
different type representations in the underlying languages (e.g., to enable the
interoperability of Java and JavaScript in Nashorn [33] or the interoperability of
Java and Kotlin [25]), or deal between different machine-integers implementation
(e.g., the mapping between Java primitive types and C types in JNI [32]), etc.

Running Example 3. We denote by D the multi-language NImp-algebra defined
by coupling D1 and D2 with the boundary function Jexp2nexp1KD defined below
(recall Def. 6). Note that values of Num-expressions range over the set of rational
numbers Q, whereas Imp only handles integer values in Z. A natural choice for
the boundary function Jexp2 n exp1KD of NImp that converts Num-expressions
to Imp-expressions is to truncate the value of Num-expression to their nearest
integer value. Since expressions only have values with respect to an environment,
we shall specify a conversion from Env2 → Q⊥ to Env1 → Z⊥ (we use ρ1 and ρ2
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as metavariables for Env1 and Env2, respectively):

Jexp2 n exp1KD(e ∈ Env2 → Q⊥) , ρ1 ∈ Env1 7→ ψ(e(φ(ρ1))) ∈ Z⊥

where φ : Env1 → Env2 is the inclusion function and ψ : Q⊥ → Z⊥ truncates
rational values, i.e., ψ(q) , truncate(q) if q 6= ⊥ and ψ(⊥) , ⊥. For instance,
the semantics of the Num-expression Jn / 2KD2 = ρ2 7→ ρ2(n) / 2 is mapped by
Jexp2n exp1KD to the function ρ1 7→ ρ1(n)/Z 2, where /Z is the integer division.5

5.2 Combining Abstractions of Different Languages

The first step towards an abstract interpretation theory for multi-languages is
to find a suitable notion of multi-language collecting semantics.

Definition 15 (Multi-Language Collecting Semantics). Let C be a multi-
language SG-algebra over the multi-language signature SG , (Sg1,Sg2,n). The
multi-language collecting semantics C ∗ over C is specified by:

– the collecting Sgi-semantics C ∗i over Ci, for i = 1, 2; and
– boundary functions Jsn s′KC∗ , ℘Jsn s′KC for each sn s′.

We can then lift Prop. 1 and 2 to the multi-language world in order to show
that C ∗ has the desired properties:

Proposition 8. Let C be a multi-language SG-algebra. The collecting semantics
J−KC∗ induced by C ∗ computes the strongest program property for each multi-
language program P generated by SG, that is JPKC∗ = {JPKC }. Moreover, the
singleton function {−} : C → C ∗ is a multi-language SG-homomorphism.

We are now interested in whether we can obtain a fixpoint definition of the
multi-language collecting semantics J−KC∗ induced by C ∗. At a minimum, a fix-
point definition of the two underlying language semantics is needed, since every
single-language program is also a multi-language one. However, the semantics of
the multi-language does not only depend on these specifications (that is, it is
not a universal property of the underlying semantics) but is determined up to a
family of boundary functions defining the interoperability of Sg1 and Sg2.

Theorem 4. Let C be a multi-language SG-algebra whose boundary functions
admit a constructive definition, that is Js n s′KC , lfpFsns′ for each s n s′

in SG and for some Fsns′ : (JsKCi
→ Js′KCj

) → (JsKCi
→ Js′KCj

). Then, the
multi-language collecting semantics J−KC∗ induced by C ∗ admits a fixpoint com-
putation if and only if C1 and C2 does.

Proof (Sketch). Each operator in SG admits a fixpoint definition.

The second step is to combine the already existing abstractions of the un-
derlying languages. Let A1 and A2 be the Sgi-algebras providing the abstract
semantics of Sgi, with i , 1, 2, and γi : Ai → ℘(Di) their concretisation func-
tions, respectively. We can blend A1 and A2 into the multi-language SG-algebra
A by defining an abstract semantics of the conversion operators Js n s′KA , for
each sn s′. We call such an A an abstract multi-language algebra.



16 Anonymous Authors

>V

< 0 = 0 > 0

⊥V

Fig. 6. Sign abstract domain.

γ̃1(>V) , Z γ̃2(>V) , Q
γ̃1(< 0) , { v ∈ Z | v < 0 } γ̃2(< 0) , { v ∈ Q | v < 0 }
γ̃1(> 0) , { v ∈ Z | v > 0 } γ̃2(> 0) , { v ∈ Q | v > 0 }
γ̃1(= 0) , {0} γ̃2(= 0) , {0}
γ̃1(⊥V) , {⊥} γ̃2(⊥V) , {⊥}

Fig. 7. Concretisation functions γ̃i : AV → ℘(Vi).

Running Example 4. Let 〈AV ,vV ,tV ,uV ,⊥V ,>V〉 be the standard sign domain
(Fig. 6) and γ̃i : AV → ℘(Vi) (where V1 , Z⊥ and V2 , Q⊥) the corresponding
concretisation function (Fig. 7). We let A1 and A2 be the abstract algebras
defining a sign analysis for languages Imp and Num, respectively (that is, the
computation induced by Ai is carried out using abstract values in AV instead
of concrete ones in Vi). The abstract semantics Ai is the standard one (see, for
instance, [38]), and it is reported in Appx. B for completeness.

The concretisation of abstract environments Env\ , X → AV is defined by
γ̊i(ρ

\ ∈ Env\) , { ρi ∈ Envi | ∀x ∈ X . ρi(x) ∈ γ̃i(ρ\(x)) }. The abstract interpre-
tation of an expression E in Imp or Num is a function e\ ∈ JexpiKAi

, Env\ → AV
that takes abstract environments to abstract values. Similarly, the abstract in-
terpretation c\ ∈ JcomiKAi , Env\ → Env\ of a command C is a transformation
of abstract environments. The concretisations of e\ and c\ are therefore (sorted)
functions (γi)expi

: JexpiKAi
→ JexpiKD∗i and (γi)comi

: JcomiKAi
→ JcomiKD∗i

from the carrier sets of Ai to those of the collecting semantics D∗i :

(γi)expi
(e\) , { ei ∈ JexpiKDi

| ∀ρ\ ∈ Env\ . ∀ρi ∈ γ̊i(ρ\) . ei(ρi) ∈ γ̃i(e\(ρ\)) }
(γi)comi(c

\) , { ci ∈ JcomiKDi | ∀ρ\ ∈ Env\ . ∀ρi ∈ γ̊i(ρ\) . ci(ρi) ∈ γ̊i(c\(ρ\)) }

The following theorems aim to show that all the properties of interest of the
resulting multi-language abstraction rely entirely on the abstract semantics of
the boundary functions. We recall that when we write sns′ we implicitly assume
that s is a sort of Sgi and s′ one of Sgj for i, j ∈ {1, 2} and i 6= j.

Theorem 5 (Soudness). Let A1 and A2 be sound Sgi-algebras with concreti-
sation functions γi : Ai → ℘(Ci), for i , 1, 2. If Jsn s′KC∗ ◦ γi ⊆ γj ◦ Jsn s′KA
for each s n s′, then the multi-language abstract semantics A is sound, that is
JPKC∗ ⊆ γJPKA for each multi-language program P generated by SG.

The derived abstraction A of the multi-language semantics preserves the
completeness of single-language operators.

Theorem 6 (Completeness). Let A be the multi-language abstract seman-
tics. If the order-sorted Sgi-algebra Ai is forward (resp., backward) complete
with respect to k : s and f : w → s in Sgi, then A is forward (resp., backward)
complete with respect ki : s and fi : w → s in SG, respectively.
5 We ignore the case where ρ2(n) = ⊥, as it is clearly trivial.
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Step 0 1 2

res (> 0) (> 0) (> 0)
a (> 0) (> 0) (> 0)
n (> 0) >V >V

The abstract interpretation of the program
in Fig. 5 guarantees the result of an, with
a, n > 0, to be positive. The imprecision on
the final abstract value of the variable n is
due to poor choice of the abstract domain.

Fig. 8. The abstract iterates of the loop in Fig. 5.

Then, complete boundary functions do not alter the completeness of complete
programs as a corollary:

Corollary 1. Let A be the multi-language abstract semantics and Js n s′KA a
forward (resp., backward) complete boundary functions. For each multi-language
program P sorted by s, if P is forward (resp., backward) complete, then so too is
the program ↪→sns′(P).

Equivalent multi-language versions of Props. 6 and 7 also apply. The proof
boils down to the fact that multi-language homomorphisms are pair of order-
sorted homomorphisms that also commute with boundary functions.

Running Example 5. The multi-language abstract algebra A is obtained by
combining A1 and A2 with an abstraction of the boundary function Jexp2 n
exp1KD defined in Ex. 3. Since the underlying algebras share the same ab-
stract domain for expressions, that is Jexp1KA1

= Jexp2KA2
, there is no need

to convert abstract values between two identical domains, therefore we set
Jexp2 n exp1KA = id .

Let us show the computation of the abstract semantics of the multi-language
program in Fig. 5, starting from the set of initial states in which both a and n

are greater than 0. The abstract precondition before entering the loop is given
by the abstract environment {a 7→ (> 0), n 7→ (> 0), res 7→ (> 0)}, where res

is positive due to the assignment on line 1. The abstract iterates of the loop
converge in three steps, as shown in Fig. 8. Since the example trivially satisfies
the hypotheses of Thm. 5, the result is sound.

6 Related Works

Cross-language interoperability is a popular field of research which has been
driven more by practical needs than by theoretical questions. Several works
focus on the implementation of runtime mechanisms for interoperability. Non-
exhaustive examples are [22], defining a type system for the Microsoft Inter-
mediate Language (IL) employed by the .NET to interoperate underlying lan-
guages (e.g., C#, Visual Basic, VBScript, etc.). [24] designs a virtual machine
able to interoperate with dynamically typed programming languages (Ruby and
JavaScript) with a statically typed one (C). [4] describes a multi-language run-
time mechanism obtained by blending single-language interpreters of Python
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and Prolog. More examples can be found in [31]. On the other hand, various
works [37,5,23,35] focus on specific theoretical problems arising from language
interoperability, such as typing issues and value exchanging techniques. To the
best of our knowledge, the first paper addressing the problem of formal reasoning
in a multi-language context has been [31]. The authors introduced the notion
of boundary functions as language constructs that move values between the un-
derlying languages (ML and Scheme), ensuring their interoperability. Buro and
Mastroeni [7] generalises such an approach in a language independent way, ex-
tending the construction to the broader class of order-sorted algebras. Finally, a
few works concentrated on analysis-related aspects in a multi-language scenario.
In the Java Native Interface context, [40] proposes a specification language which
extends the Java Virtual Machine Language with primitives that approximate
C code that cannot be compiled into Java. [28] introduces Pungi, a system that
transforms Python/C interface code to affine programs with the aim of correctly
handling Python’s heap when it interoperates with C++.

7 Discussion and Concluding Remarks

The lack of static analysis techniques for verifying multi-language programs is
a major issue so long as modern software relies on heterogenous code. Current
state of the art sees relatively few works [28,40] that solve context-specific tasks
in the cross-language interoperability field. However, none of these works address
the problem from a general, theoretical point of view.

In this paper, we applied abstract interpretation theory to the algebraic
framework of multi-languages, providing a general technique for defining the
abstract semantics of the combined language. The taken approach has the ad-
vantage of being independent both from the underlying languages and analyses,
and, at the same time, guarantees theoretical properties of interest, e.g., sound-
ness and completeness of the abstraction. Moreover, we have shown that such
properties rely crucially on the definition of the boundary functions, thus pro-
viding guidelines for defining their abstract semantics.

Further research should consider the asymmetrical lifting of a single-language
analysis to a multi-language. In the previous section, we assumed the existence
of two algebras, A1 and A2, providing the abstract semantics of the underlying
languages. Then, the abstract semantics of boundary functions defines the flow
of abstract values during the abstract computations. Even though our framework
is general enough to allow such algebras to be different (e.g., A1 may define a
sign semantics whereas A2 provides an interval analysis), we do not discuss the
case in which there exists only one anlaysis. It may be fruitful to investigate
this asymmetrical situation, for instance in the case where one of the underlying
languages cannot alter the values flowing from the other (see the lump embedding
construction of [31]).

In addition, future studies must focus on practical aspects of implementation.
The proof of Thm. 2 in [7] provides a recursive definition of homomorphisms out
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of the multi-language term algebra, i.e., semantic functions, that suggests there
is a straightforward implementation of the multi-language abstract interpreter.
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A Proofs

Proposition 9. C ∗ is a proper order-sorted Sg-algebra in the category Alg(Sg).

Proof. Firstly, note that JsKC∗ ⊆ JrKC∗ whenever s ≤ r. Now, let f : w1 → s
and f : w2 → r with w1 ≤ w2 be subsort polymorphic in Sg. Therefore, s ≤ r by
monotonicity condition 1. We need to prove that6

Js ≤ rKC∗ ◦ Jf : w1 → sKC∗ = Jf : w2 → rKC∗ ◦ Jw1 ≤ w2KC∗

By Def. 9, functoriality of ℘, and Js ≤ rKC∗ = ℘Js ≤ rKC , it is equivalent to
prove

℘(Js ≤ rKC ◦ Jf : w1 → sKC ) ◦ × = ℘(Jf : w2 → rKC ◦ Jw1 ≤ w2KC ) ◦ ×

that holds since C is an Sg-algebra.

Proposition 1. J−KC∗ : TSg → C ∗ computes the strongest program property for
each program P generated from Sg, that is JPKC∗ = {JPKC }.

Proof (Sketch). By structural induction on P.

Proposition 2. The singleton function {−} : C → ℘(C) defined by c 7→ {c} is
an Sg-homomorphism {−} : C → C ∗, and therefore {−} ◦ J−KC = J−KC∗ .

Proof. Let s ≤ r in Sg and x ∈ JsKC . Then, {−}s(x) = {x} = {−}r(x). Now, let
f : w → s be a function symbol in Sg and let x ∈ JwKC . Then,

({−}s ◦ Jf : w → sKC )(x) = {Jf : w → sKC (x)}
= (℘Jf : w → sKC ◦ ×)({x})
= (Jf : w → sKC∗ ◦ {−}w)(x)

Finally, let k : s be a constant in Sg. Then, {−}s ◦ JkKC = {JkKC } = JkKC∗ .

Lemma 1. Let D ⊆ ℘(C) be a non-empty set of atoms of the form {x} for some
x ∈ C. Then, g∗D exists if and only if g∪D exists, and when either one exists
g∗D = {g ∪ D}.

Proof. ( ⇐= ) Suppose ĉ , g ∪ D is exists. Then, x 4 ĉ for each {x} ∈ D,
and therefore {x} 4∗ {ĉ} by (1). Now, let Y ∈ ℘(C) be such that {x} 4∗ Y for
each {x} ∈ D. If Y = {y}, we conclude ĉ 4 y and therefore {ĉ} 4∗ {y} by (1).
Otherwise, if Y 6= {y}, then by (3) every atom is smaller than Y , including {ĉ}.
Hence, g∗D = {ĉ}. ( =⇒ ) Suppose g∗D is exists, and let X,Y ∈ ℘(C) be
two distinct non-atomic sets (which exist since C is assumed not to be {⊥}).
Note that by (3) they both are greater than every atom {x} ∈ D. Since they are
non-comparable according to 4∗, then g∗D must be atomic for some ĉ ∈ C, and
therefore x 4 ĉ by (1). Now, let y ∈ C be such that x 4 y for every {x} ∈ D.
Then, {x} 4∗ {y} and therefore {ĉ} 4∗ {y} by (1). Hence, we conclude that
ĉ 4 y and g ∪ D = ĉ.
6 Js ≤ rKC denotes the inclusion function from JsKC to JrKC , for any Sg-algebra C .
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Theorem 3 (Fixpoint Collecting Semantics). The function {−} : C →
℘(C) satisfies the hypotheses (i), (ii), and (iii) of Thm. 2, hence

JPKC∗
Prop. 1

= {JPKC }
Hypo.
= {lfp4

⊥ F}
Thm. 2

= lfp4∗

⊥∗ F
∗

Proof. (i) follows from ⊥∗ = {⊥}, (iii) is a consequence of Proposition 3, and
(ii) holds by (F ∗ ◦ {−})(c) = {F (c)} = ({−} ◦ F )(c) for each c ∈ C.

Proposition 4. If A is sound, then JPKC∗ ⊆ γJPKA for each program P.

Proof. By structural induction on P:

– Let P , k for some k : s in Sg. Then, it follows directly by Def. 11.
– Let P , f(P1, . . . , Pn). By regularity, there are w , s1, . . . , sn and s for

which f : w → s and such that (w, s) is the small rank with respect to
w0 , ls(P1), . . . , ls(Pn). Since P is well-formed, it follows that Pi : si for each
1 ≤ i ≤ n and P : s. Then,

γJf(P1, . . . , Pn)KA = (γ ◦ Jf : w → sKA )(JP1KA , . . . , JPnKA )

⊇ (Jf : w → sKC∗ ◦ γ)(JP1KA , . . . , JPnKA )

and since Jf : w → sKC∗ is monotone, then by induction hypothesis

⊇ Jf : w → sKC∗(JP1KC∗ , . . . , JPnKC∗)
= Jf(P1, . . . , Pn)KC∗

Proposition 5. A � soundly approximates the concrete semantics. Moreover,
A � is the most precise abstraction with respect to (α, γ), that is, for any other
sound algebra A , γ ◦Jf : w → sKA � ⊆ γ ◦Jf : w → sKA and γJkKA � ⊆ γJkKA for
each operator in Sg. Therefore, by Prop. 4, γJPKA � ⊆ γJPKA for each program P.

Proof. We first prove that A � is sound. First condition of Def. 11 follows by
extensivity of γ ◦ α and monotonicity of Jf : w → sKC∗ , and the second one
follows by (α, γ) being a Galois connection. Proving that A � is the most precise
abstraction with respect to (α, γ) simply means that (1) γ ◦ Jf : w → sKA � ⊆
γ ◦ Jf : w → sKA and (2) γJkKA � ⊆ γJkKA for each operator in Sg.

(1) By the soundness of A , Jf : w → sKC∗ ◦ γ ⊆ γ ◦ Jf : w → sKA . Then, since
(α, γ) is a Galois connection, α ◦ Jf : w → sKC∗ ◦ γ v Jf : w → sKA , that is
Jf : w → sKA � v Jf : w → sKA . The thesis follows by the monotonicity of γ.

(2) (The proof of γJkKA � ⊆ γJkKA is similar.)

Note that γJPKA � ⊆ γJPKA follows by a simple structural induction on P.

Proposition 6. Let α : C ∗ → A be an Sg-homomorphism. Then, A is com-
plete with respect to each operator in Sg, and therefore αJPKC∗ = JPKA for each
program P.
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Proposition 7. Let γ : A → C ∗ be an Sg-homomorphism. Then, A is forward
complete with respect to each operator in Sg, and therefore JPKC∗ = γJPKA for
each program P.

Proof. Both proofs follow by a simple structural induction on P, in the same
style of Prop. 4.

Proposition 8. Let C be a multi-language SG-algebra. The collecting semantics
J−KC∗ induced by C ∗ computes the strongest program property for each multi-
language program P generated by SG, that is JPKC∗ = {JPKC }. Moreover, the
singleton function {−} : C → C ∗ is a multi-language SG-homomorphism.

Proof. We first prove that JPKC∗ = {JPKC } by structural induction on P:

– if P , ki for some constant symbol k : s in Sgi, then

JkiKC∗ = JkKC∗i
Prop. 1

= {JkKCi} = {JkiKC }

– if P , fi(P1, . . . , Pn) for some function symbol f : w → s in Sgi with arity n,
then

Jfi(P1, . . . , Pn)KC∗ = JfiKC∗(JP1KC∗ , . . . , JPnKC∗)
= JfiKC∗({JP1KC }, . . . , {JPnKC }) B by induction hypothesis

= JfKC∗i ({JP1KC }, . . . , {JPnKC })
= {JfKCi(JP1KC , . . . , JPnKC )}
= {Jfi(P1, . . . , Pn)KC }

– if P , ↪→s,s′(P’) for some sn s′ in SG, then

J↪→s,s′(P’)KC∗ = J↪→s,s′KC∗(JP’KC∗)
= J↪→s,s′KC∗({JP’KC }) B by induction hypothesis

= {J↪→s,s′KC (JP’KC )}
= {J↪→s,s′(P’)KC }

Now, the homomorphic nature of {−} : C → C ∗ follows by Prop. 2 and by
observing that {−} trivially commutes with boundary functions.

Theorem 5 (Soudness). Let A1 and A2 be sound Sgi-algebras with concreti-
sation functions γi : Ai → ℘(Ci), for i , 1, 2. If Jsn s′KC∗ ◦ γi ⊆ γj ◦ Jsn s′KA
for each s n s′, then the multi-language abstract semantics A is sound, that is
JPKC∗ ⊆ γJPKA for each multi-language program P generated by SG.

Proof. We first prove that for each constant ki : s and function symbol fi : w → s
in SG we have JkiKC∗ ⊆ γsJkKA and Jfi : w → sKC∗ ⊆ γsJfi : w → sKA . Then,
JPKC∗ ⊆ γJPKA for each multi-language program P generated by SG follows by
a simple structural induction, in the same style of the proof of Prop. 4. Let
γi : ℘(Ci)→ Ai be the concretisation function of Ai,
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Jexp1KD1 , Env1 → Z⊥ Jexp1KA1 , Env\ → AV

JiKD1 , ρ1 7→ i JiKA1 , ρ\ 7→ α̃1({i})
JxKD1 , ρ1 7→ ρ1(x) JxKA1 , ρ\ 7→ ρ\(x)

Jbop�KD1(e1, e2) , ρ1 7→ e1(ρ1) � e2(ρ1) Jbop�KA1(e\1, e
\
2) , ρ\ 7→ e\1(ρ\) �\ e\2(ρ\)

Fig. 9. Denotational and sign semantics of Imp expressions.

– JkiKC∗ = JkKC∗i ⊆ (γi)sJkKAi
= γsJkiKA ; and

–

Jfi : w → sKC∗ ◦ γw = Jf : w → sKC∗i ◦ (γi)w

⊆ (γi)s ◦ Jf : w → sKAi

= γs ◦ Jfi : w → sKA

Theorem 6 (Completeness). Let A be the multi-language abstract seman-
tics. If the order-sorted Sgi-algebra Ai is forward (resp., backward) complete
with respect to k : s and f : w → s in Sgi, then A is forward (resp., backward)
complete with respect ki : s and fi : w → s in SG, respectively.

Proof. We only prove the forward completeness of the function symbol fi : w → s
in SG, the other cases are similar.

Jfi : w → sKC∗ ◦ γw = Jf : w → sKC∗i ◦ (γi)w

= (γi)s ◦ Jf : w → sKAi

= γs ◦ Jfi : w → sKA

where γi : ℘(Ci)→ Ai is the concretisation function of the abstract algebra Ai.

B Concrete and Abstract Semantics of Imp and Num

We provide a thorough formalisation of the algebraic semantics mentioned in
Sect. 5. In particular, we define the denotational semantics Di and the sign
semantics Ai for both languages Imp and Num.

Concrete and Abstract Semantics of Expressions Denotational and sign seman-
tics of expressions are defined in Figs. 9 and 10. The carrier sets on which they
are defined are JexpiKDi

, Envi → Vi and JexpiKAi
, Env\ → AV , respectively.

Note that there is an obvious abstraction function α̃i : ℘(Vi) → AV left adjoint
to γ̃i (Fig. 7) providing 〈℘(Vi),⊆〉 −−−→←−−−

α̃i

γ̃i 〈AV ,vV〉; and also note that we abuse
notation and assume that � and fn are both syntactical symbols and functions
over values, that is � : Z2

⊥ → Z⊥ and fn : Qn⊥ → Q⊥. We denote by �\ : A2
V → AV

and f \n : AnV → AV the sign semantics of � and fn, respectively.
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Jexp2KD2 , Env2 → Q⊥ Jexp2KA2 , Env\ → AV

JqKD2 , ρ2 7→ q JqKA2 , ρ\ 7→ α̃2({q})
JxKD2 , ρ2 7→ ρ2(x) JxKA2 , ρ\ 7→ ρ\(x)

JfnKD2(e1, e2) , ρ2 7→ fn(e1(ρ2), e2(ρ2)) JfnKA2(e\1, e
\
2) , ρ\ 7→ f \n(e\1(ρ\), e\2(ρ\))

J?KD2(e1, e2, e3) , ρ2 7→


⊥ e1(ρ2) = ⊥
e2(ρ2) e1(ρ2) 6= 0

e3(ρ2) e1(ρ2) = 0

J?KA2(e\1, e
\
2, e

\
3) , ρ\ 7→


⊥V e\1(ρ\) = ⊥V

e\2(ρ\) e\1(ρ\) ∈ {> 0, < 0}
e\3(ρ\) e\1(ρ\) = (= 0)

Fig. 10. Denotational and sign semantics of Num expressions.

Jcom1KD1 , Env⊥1
⊥−→ Env⊥i

JskipKD1 , ρ 7→ ρ

JassignxKD1(e) , ρ
⊥7−→ ρ[x← [ e(ρ)] JseqKD1(c1, c2) , ρ 7→ (c2 ◦ c1)(ρ)

JcondKD1(e, c1, c2) , ρ
⊥7−→
{
c1(ρ) e(ρ) 6= 0
c2(ρ) e(ρ) = 0

JloopKD1(e, c) , lfpv̊
⊥̊
Fe,c

Fe,c(f) = ρ
⊥7−→
{
ρ e(ρ) = 0
f(c(ρ)) e(ρ) 6= 0

Fig. 11. Denotational semantics of Imp commands.

Concrete Semantics of Commands Denotational semantics of Imp-commands is
depicted in Fig. 11. We omit the semantics of Num-commands since they are
a subset of those of Imp. The interpretation domain of commands is the set of
⊥-preserving functions Jcom1KD1

, Env⊥1
⊥−→ Env⊥1 . We use the notation ⊥7−→

to impose the strictness condition when defining anonymous functions. Consider
the flat ordering 〈Env⊥1 ,v〉 on environments where ⊥ v ρ for each ρ ∈ Env⊥1
and every pair ρ, ρ′ ∈ Env1 of non-bottom environments cannot be ordered. We
can then make Env⊥1

⊥−→ Env⊥1 into a pointed dcpo by defining the information
ordering f v̊ g if f(ρ) v g(ρ) for every ρ ∈ Env⊥1 . The smallest element is
⊥̊ = ρ 7→ ⊥ and the lub operator of a directed set D ⊆ Env⊥1

⊥−→ Env⊥1 is
t̊D = ρ 7→ t{ f(ρ) | f ∈ D } where t is the partially defined lub operator
on Env⊥1 (which is well-defined since D is directed).7 Finally, note that every
function f ∈ Env⊥1

⊥−→ Env⊥1 is trivially continuous, and so too is Fe,c (and
therefore it has a least fixpoint).

7 Indeed, 〈Env⊥1 ,v,⊥,t〉 is a pointed dcpo.
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Jcom1KA1 , Env\ → Env\

JskipKA1 , ρ\ 7→ ρ\

JassignxKA1(e\) , ρ\ 7→ ρ\[x←[ e\(ρ\)] JseqKA1(c\1, c
\
2) , ρ\ 7→ (c\2 ◦ c

\
1)(ρ\)

JcondKA1(e\, c\1, c
\
2) , ρ\ 7→


c\1(ρ\) t̊V c

\
2(ρ\) e\(ρ\) = >V

c\2(ρ\) e\(ρ\) = (= 0)

c\1(ρ\) e\(ρ\) ∈ {(< 0), (> 0)}
⊥̊V e\(ρ\) = ⊥V

JloopKA1(e\, c\) , lfpṽ
⊥̃
F \
e\,c\

F \
e\,c\

(f \) = ρ\ 7→


ρ\ t̊V f

\(c\(ρ\)) e\(ρ\) = >V

ρ\ e\(ρ\) = (= 0)

f \(c\(ρ\)) e\(ρ\) ∈ {(< 0), (> 0)}
⊥̊V e\(ρ\) = ⊥V

Fig. 12. Sign semantics of Imp commands.

Sign Semantics of Commands For the same reasons in the previous paragraph,
we just provide the sign semantics of Imp-commands. It is defined over the
carrier set Jcom1KA1

, Env\ → Env\. The poset 〈Env\, v̊V〉, where ρ\0 v̊V ρ\1
if ρ\0(x) v ρ\1(x) for each x ∈ X, is trivially a complete lattice 〈Env\, v̊V
, t̊V , ůV , ⊥̊V , >̊V〉. We can then lift such a posetal structure defined on Env\ to the
function space Env\ → Env\, thus making it a complete lattice 〈Env\ → Env\, ṽV
, t̃V , ũV , ⊥̃V , >̃V〉. In particular, the lub operator is t̃VS = ρ\ 7→ t̊V{ f \(ρ\) | f \ ∈
S }, and the smallest and greatest element are ⊥̃V = ρ\ 7→ ⊥̊V and >̃V = ρ\ 7→
>̊V , respectively. One can check that F \

e\,c\
(f \) is continuous, so that the loop

semantics is well-defined.

C A Simple Imperative Language

We illustrate a simple imperative language Imp on which we define various kinds
of semantics. Let X be a set of variables and V a set of scalar values with metavari-
ables x and v, respectively. Variables and values occur in the language as terminal
symbols, and for each production defining the syntax of the language (on the
right), we introduce a corresponding algebraic operator (on the left), or a family
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of operators when they are parametric on a subscript:

(v) 〈exp〉 ::= v scalar values
(x) 〈exp〉 ::= x variables
(bop�) 〈exp〉 ::= 〈exp〉� 〈exp〉 binary operations

(skip) 〈com〉 ::= skip do-nothing
(assignx) 〈com〉 ::= x = 〈exp〉 assignment
(cond) 〈com〉 ::= if 〈exp〉 then 〈com〉 else 〈com〉 conditional
(loop) 〈com〉 ::= while 〈exp〉 do 〈com〉 loop statement
(seq) 〈com〉 ::= 〈com〉; 〈com〉 composition

where � is a binary operator such as +, -, *, etc. We abuse notation and assume
that � denotes both a syntactical symbol of the language and a mathematical
function � : V2 → V over values. The rank of each algebraic operator can be
inferred by the non-terminals appearing in the production rules; for instance,
the operator cond is sorted as

cond : exp, com, com → com

In the examples in the following sections, we often use the correspondence be-
tween algebraic and context-free terms. For instance, we may write the algebraic
term cond(bop>(x, 0), skip, assignx(bop-(0, x))) in the less cumbersome context-
free form if x > 0 then skip else x = 0 - x.

C.1 A Small-Step Operational Semantics

We define a small-step operational semantics S describing the program exe-
cution steps. The presentation provided here is purely algebraic, and therefore
less intuitive than the traditional rule-based style. However, the algebraic frame-
work allows to express many more kinds of semantics in the same formalism, thus
favouring their comparison.

Expressions We treat expressions E as “atomic” terms that are fully evaluable
into a scalar value in a single-step. Let Sexp , { 〈E, ρ〉 | E ∈ JexpKTImp

∧ ρ ∈ Env }
be the set of configurations where E is an expression and ρ an environment in
Env , X → V. The small-step semantics of expressions is given in Fig. 13.
Intuitively, starting from an expression E, we build a set of pairs in ℘(Sexp × V)
representing the one-step evaluation of E in each environment ρ. More precisely,
〈E, ρ〉 _ v ∈ JEKS simply means that E is evaluated into v in ρ. We write JEKρS
for denoting such v (unique by construction).

Remark 5. Note that from the small-step semantics JEKS of an expression E,
we are able to recover the term E. Indeed, JEKS 6= ∅ and if 〈E1, ρ1〉 _ v1 and
〈E2, ρ2〉_ v2 are transitions (that is, pairs) in JEKS , then E1 = E = E2 (this can
be shown by a simple structural induction on E).
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JexpKS , ℘(Sexp × V)

JvKS , { 〈v, ρ〉_ v | ρ ∈ Env }
JxKS , { 〈x, ρ〉_ ρ(x) | ρ ∈ Env }

Jbop�KS (JE1KS , JE2KS ) , { 〈bop�(E1, E2), ρ〉_ JE1KρS � JE2KρS | ρ ∈ Env }

Fig. 13. Small-step operational semantics of Imp expressions.

JcomKS , ℘(S2
com)

JskipKS , { 〈skip, ρ〉_ 〈⊥, ρ〉 | ρ ∈ Env }
JassignxKS (JEKS ) , { 〈assignx(E), ρ〉_ 〈⊥, ρ[x←[ JEKρS ]〉 | ρ ∈ Env }

JcondKS (JEKS , JC1KS , JC2KS ) , { 〈cond(E, C1, C2), ρ〉_ 〈C1, ρ〉 | ρ ∈ Env ∧ JEKρS 6= 0 }
∪ { 〈cond(E, C1, C2), ρ〉_ 〈C2, ρ〉 | ρ ∈ Env ∧ JEKρS = 0 }

JloopKS (JEKS , JCKS ) , { 〈loop(E, C), ρ〉_ 〈⊥, ρ〉 | ρ ∈ Env ∧ JEKρS = 0 }
∪ { 〈loop(E, C), ρ〉_ 〈seq(C, loop(E, C)), ρ〉

| ρ ∈ Env ∧ JEKρS 6= 0 }

JseqKS (JC1KS , JC2KS ) , { 〈seq(C1, C2), ρ〉_ 〈C2, ρ
′〉

| ρ ∈ Env ∧ JC1KρS = 〈⊥, ρ′〉 }
∪ { 〈seq(C1, C2), ρ〉_ 〈seq(C′1, C2), ρ′〉

| ρ ∈ Env ∧ JC1KρS = 〈C′1, ρ′〉 }

Fig. 14. Small-step operational semantics of Imp commands.

Remark 6. There are some missing cases in the definition of the interpretation
functions for the operators in Fig. 13. For instance, we have defined Jbop�KS on
arguments JE1KS and JE2KS . However, there are semantic elements in ℘(Sexp×V)
that are not the image of any expressions E (e.g., the empty set ∅). We shall
leave implicit that Jbop�KS (e1, e2) , ∅ whenever there are no E1 or E2 such that
e1 = JE1KS and e2 = JE2KS . (This remark and Rem. 5 shall also apply to the
next definitions.)

Commands Let Scom , { 〈C, ρ〉 | C ∈ JcomKTImp
∪ {⊥} ∧ ρ ∈ Env } where C is

a command (or ⊥, denoting the end of a computation) and ρ an environment.
For each command operator of Imp we define its semantics by specifying exactly
the pairs of configurations which are related by the action of such an operator
(Fig. 14). We write JCKρS for the unique 〈C′, ρ′〉 such that 〈C, ρ〉_ 〈C′, ρ′〉 ∈ JCKS .

Example 3. We show a small example of the application of the newly defined
semantics J−KS . We adopt the more intuitive notation provided by the context-
free grammar for denoting terms, and we avoid the use of subscripts S . Sup-
pose we want to compute the small-step semantics of the conditional statement



30 Anonymous Authors

if x > 0 then skip else x = 0 - x. Then,

Jif x > 0 then skip else x = 0 - xK = JcondK(Jx > 0K, JskipK, Jx = 0 - xK)

where the semantics of the condition is

Jx > 0K = Jbop>K(JxK, J0K) = { 〈x > 0, ρ〉_ 1 | ρ ∈ Env ∧ (ρ(x) > 0) = 1 }
∪ { 〈x > 0, ρ〉_ 0 | ρ ∈ Env ∧ (ρ(x) > 0) = 0 }

and therefore,

JcondK (Jx > 0K, JskipK, Jx = 0 - xK) =
= { 〈if x > 0 then skip else x = 0 - x, ρ〉_ 〈skip, ρ〉
| ρ ∈ Env ∧ (ρ(x) > 0) = 1 }

∪ { 〈if x > 0 then skip else x = 0 - x, ρ〉_ 〈x = 0 - x, ρ〉
| ρ ∈ Env ∧ (ρ(x) > 0) = 0 }

Note that the same result would have been achieved with a traditional rule-based
style for specifying small-step semantics.

C.2 Fixpoint Definition of Prefix Trace Semantics

Prefix trace semantics associates each program P with the set of all finite traces
obtained by iterating an arbitrarily large number of times the small-step seman-
tics S from 〈P, ρ〉, for each environment ρ.

Let S∗com ,
⋃
n∈N Sncom be the set of finite sequences of command config-

urations (that is, finite traces). A trace τ ∈ Sncom is denoted by 〈C1, ρ1〉 _
· · ·_ 〈Cn, ρn〉. The prefix trace semantics P is defined by keeping the one-step
evaluation semantics for expressions E (i.e., JEKP , JEKS ), and by defining the
following fixpoint semantics for command operators f : w → s on the domain
〈JcomKP , ℘(S∗com),⊆,∅,∪〉:8

Jf : w → sKP(JP1KP , . . . , JPnKP) , lfp⊆∅ Ff(P1,...,Pn)

where Ff(P1,...,Pn) : ℘(S∗com)→ ℘(S∗com) is defined as

X 7→ {ε} ∪ { 〈f(P1, . . . , Pn), ρ〉 | ρ ∈ Env }
∪ { τ _ 〈C, ρ〉_ 〈C′, ρ′〉 ∈ S∗com | τ _ 〈C, ρ〉 ∈ X ∧ 〈C′, ρ′〉 = JCKρS }

The constructive computation of lfp⊆∅ Ff(P1,...,Pn) is guaranteed by the Kleene’s
theorem (Ff(P1,...,Pn) is continuous on the pointed dcpo 〈℘(S∗com),⊆,∅,∪〉).

Example 4. We restate Ex. 3 for the prefix trace semantics P applied to the
same term P , if x > 0 then skip else x = 0 - x:

Jif x > 0 then skip else x = 0 - xK = lfp⊆∅ FP

8 The trace semantics of the constant skip is trivially defined by JskipKP , {ε} ∪
{ 〈skip, ρ〉 | ρ ∈ Env } ∪ { 〈skip, ρ〉_ 〈⊥, ρ〉 | ρ ∈ Env }.
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where the iterates of FP are

F 0
P = ∅
F 1

P = {ε} ∪ {〈if x > 0 then skip else x = 0 - x, ρ〉}
F 2

P = { 〈if x > 0 then skip else x = 0 - x, ρ〉_ 〈skip, ρ〉
| ρ ∈ Env ∧ (ρ(x) > 0) = 1 }

∪ { 〈if x > 0 then skip else x = 0 - x, ρ〉_ 〈x = 0 - x, ρ〉
| ρ ∈ Env ∧ (ρ(x) > 0) = 0 }

∪ F 1
P

F 3
P = { 〈if x > 0 then skip else x = 0 - x, ρ〉_ 〈skip, ρ〉_ 〈⊥, ρ〉

| ρ ∈ Env ∧ (ρ(x) > 0) = 1 }
∪ { 〈if x > 0 then skip else x = 0 - x, ρ〉_ 〈x = 0 - x, ρ〉_

_ 〈⊥, ρ[x← [ -x]〉 | ρ ∈ Env ∧ (ρ(x) > 0) = 0 }
∪ F 1

P

F δ>3
P = F 3

P

and therefore JPKP is the union of the iterates.

C.3 Reachability Semantics as Abstraction of Trace Semantics

Reachability semantics aims at computing the set of states that a program P

may reach during its execution. Such a set can be parametric on program points
(that is, location) or it can be the union of all the environments reached in any
point. We show that both of these versions can be obtained by abstracting the
collecting semantics P∗ over traces provided in the previous section.

Reachability on Program Points Let R be the reachability semantics that col-
lects states per program point. Its carrier set of sort com is defined as JcomKR ,
℘(Scom), thus a command is interpreted as a set of configurations (where pro-
gram code denotes locations). We show that R can be obtained by abstracting
the collecting semantics P∗ by establishing a Galois connection between their
carrier sets:

〈℘(℘(S∗com))〉 −−−→←−−−α
γ

℘(Scom)

The abstraction function α maps a semantic property X ⊆ ℘(S∗com) (i.e., a set
of sets of finite traces) to the set of states that appears in those traces:

α(X ) , { 〈C, ρ〉 ∈ Scom | ∃τ ∈ ∪X : ∃〈C, ρ〉 ∈ τ }

Conversely, the concretization function γ maps each set of states C to the set
containing only those traces whose configurations are in C:

γ(C) , {X ∈ ℘(S∗com) | ∀τ ∈ X . 〈C, ρ〉 ∈ τ =⇒ 〈C, ρ〉 ∈ C }

Now, the definition of R follows by the existence of a best correct approximation,
as shown in Sect. 4.



32 Anonymous Authors

Reachability without Program Points The reachability semantics R∪ forgets
about program locations and simply collects the environments reached dur-
ing the exectuion of a program. The carrier set of commands is defined as
JcomKR∪ , ℘(Env). R∪ can be obtained by abstracting the collecting semantics
P∗ over traces:

α
(
X ∈ ℘(℘(S∗com))

)
, { ρ ∈ Env | ∃τ ∈ ∪X : ∃〈C, ρ〉 ∈ τ }

γ
(
R ∈ ℘(Env)

)
, {X ∈ ℘(S∗com) | ∀τ ∈ X . 〈C, ρ〉 ∈ τ =⇒ ρ ∈ R }
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