
The Bloom Clock for Causality Testing

Anshuman Misra and Ajay D. Kshemkalyani

University of Illinois at Chicago, Chicago, IL 60607, USA
{amisra7,ajay}@uic.edu

Abstract. Testing for causality between events in distributed execu-
tions is a fundamental problem. Vector clocks solve this problem but do
not scale well. The probabilistic Bloom clock can determine causality be-
tween events with lower space, time, and message-space overhead than
vector clock; however, predictions suffer from false positives. We give the
protocol for the Bloom clock based on Counting Bloom filters and study
its properties including the probabilities of a positive outcome and a false
positive. We show the results of extensive experiments to determine how
these above probabilities vary as a function of the Bloom timestamps of
the two events being tested, and to determine the accuracy, precision,
and false positive rate of a slice of the execution containing events in
the temporal proximity of each other. Based on these experiments, we
make recommendations for the setting of the Bloom clock parameters.
We postulate the causality spread hypothesis from the application’s per-
spective to indicate whether Bloom clocks will be suitable for correct
predictions with high confidence. The Bloom clock design can serve as
a viable space-, time-, and message-space-efficient alternative to vector
clocks if false positives can be tolerated by an application.

Keywords: Causality · vector clock · Bloom clock · Bloom filter · partial
order · distributed system · false positive · performance.

1 Introduction

1.1 Background and Motivation

Determining causality between pairs of events in a distributed execution is useful
to many applications [9,17]. This problem can be solved using vector clocks [11,5].
However, vector clocks do not scale well. Several works attempted to reduce the
size of vector clocks [18,20,12,6], but they had to make some compromises in
accuracy or alter the system model, and in the worst-case, were as lengthy as
vector clocks. A survey of such works is included in [8].

The Bloom filter, proposed in 1970, is a space-efficient probabilistic data
structure that supports set membership queries [1]. The Bloom filter is widely
used in computer science. Surveys of the variants of Bloom filters and their
applications in networks and distributed systems are given in [2,19]. Bloom filters
provide space savings, but suffer from false positives although there are no false
negatives. The confidence in the prediction by a Bloom filter depends on the

ar
X

iv
:2

01
1.

11
74

4v
1

 [
cs

.D
C

]
 2

3
N

ov
 2

02
0

2 Anshuman Misra and Ajay D. Kshemkalyani

size of the filter (m), the number of hash functions used in the filter (k), and
the number of elements added to the set (q). The use of the Bloom filter as a
Bloom clock to determine causality between events was suggested [16], where,
like Bloom filters, the Bloom clock will inherit false positives. The Bloom clock
and its protocol based on Counting Bloom filters, which can be significantly more
space-, time-, and message-space-efficient than vector clocks, was given in [7].
The expressions for the probabilities of a positive outcome and of a false positive
as a function of the corresponding vector clocks, as well as their estimates as a
function of the Bloom clocks were then formulated [7]. Properties of the Bloom
clock were also studied in [7], which then derived expressions to estimate the
accuracy, precision, and the false positive rate for a slice of the execution using
the events’ Bloom timestamps.

1.2 Contributions

In this paper, we first give the Bloom clock protocol and discuss its properties.
We examine the expressions for the probability of a positive and of a false positive
in detecting causality, and discuss their trends as the distance between the pair
of events varies. We then show the results of our experiments to:

1. analyze in terms of Bloom timestamps how the probability of a positive and
the probability of a false positive vary as the distance between a pair of
events varies;

2. analyze the accuracy, precision, and the false positive rate for a slice of the
execution that is representative of events that are close to each other. The
parameters varied are: number of processes n, size of Bloom clock m, number
of hash functions k, probability of a timestamped event being an internal
event pri, and temporal proximity between the two events being tested for
causality.

Based on our experiments, we

1. analyze the nature of false positive predictions,
2. make recommendations for settings of m and k,
3. state conditions and analyze dependencies on the parameters (e.g., n, pri)

under which Bloom clocks make correct predictions with high confidence
(high accuracy, precision, and low false positive rate), and

4. generalize the above results and state a general principle (the causality spread
hypothesis) based on the degree of causality in the application execution,
which indicates whether Bloom clocks can make correct predictions with
high confidence.

Thus our results and recommendations can be used by an application developer
to decide whether and how the application can benefit from the use of Bloom
clocks.
Roadmap: Section 2 gives the system model. Section 3 details the Bloom clock
protocol. Section 4 studies properties of the Bloom clock, discusses ways to

The Bloom Clock for Causality Testing 3

estimate the probabilities of a positive outcome and of a false positive, and
predicts the trends of these probability functions as the temporal proximity
between the events increases. Section 5 gives our experiments for the complete
graph and analyzes the results. Section 6 gives our experiments for the star graph
(client-server configuration) and analyzes the results. Section 7 summarizes the
observations of the experiments and discusses the conditions under which Bloom
clocks are advantageous to use. It also postulates the causality spread hypothesis
and validates it. Section 8 concludes.

2 System Model

A distributed system is modeled as an undirected graph (N ,L), where N is the
set of processes and L is the set of links connecting them. Let n = |N |. Between
any two processes, there may be at most one logical channel over which the
two processes communicate asynchronously. A logical channel from Pi to Pj is
formed by paths over links in L. We do not assume FIFO logical channels.

The execution of process Pi produces a sequence of events Ei = 〈e0i , e1i , e2i , · · ·-
〉, where eji is the jth event at process Pi. An event at a process can be an internal
event, a message send event, or a message receive event. Let E =

⋃
i∈N {e | e ∈

Ei} denote the set of events in a distributed execution. The causal precedence
relation between events, defined by Lamport’s “happened before” relation [10],
and denoted as →, induces an irreflexive partial order (E,→).

Mattern [11] and Fidge [5] designed the vector clock which assigns a vector V
to each event such that: e→ f ⇐⇒ Ve < Vf . The vector clock is a fundamental
tool to characterize causality in distributed executions [9,17]. Each process needs
to maintain a vector V of size n to represent the local vector clock. Charron-Bost
has shown that to capture the partial order (E,→), the size of the vector clock
is the dimension of the partial order [3], which is bounded by the size of the
system, n. Unfortunately, this does not scale well to large systems.

3 The Bloom Clock Protocol

The Bloom clock is based on the Counting Bloom filter. Each process Pi main-
tains a Bloom clock B(i) which is a vector B(i)[1, . . . ,m] of integers, where m
< n. The Bloom clock is operated as shown in Algorithm 1. To try to uniquely
update B(i) on a tick for event exi , k random hash functions are used to hash
(i, x), each of which maps to one of the m indices in B(i). Each of the k indices
mapped to is incremented in B(i); this probabilistically tries to make the result-
ing B(i) unique. As m < n, this gives a space, time, and message-space savings
over the vector clock. We would like to point out that the scalar clock [10] can
be thought of as a Bloom clock with m = 1 and k = 1.

The Bloom timestamp of an event e is denoted Be. Let V and B denote the
sets of vector timestamps and Bloom timestamps of events. The standard vector
comparison operators <, ≤, and = [5,11] apply to pairs in V and in B. Thus, for

4 Anshuman Misra and Ajay D. Kshemkalyani

Algorithm 1: Operation of Bloom clock B(i) at process Pi.

1 Initialize B(i) = 0.

2 (At an internal event exi):
apply k hash functions to (i, x) and increment the corresponding k positions
mapped to in B(i) (local tick).

3 (At a send event exi):
apply k hash functions to (i, x) and increment the corresponding k positions
mapped to in B(i) (local tick). Then Pi sends the message piggybacked with
B(i).

4 (At a receive event exi for message piggybacked with B′):
Pi executes
∀j ∈ [1,m], B(i)[j] = max(B(i)[j], B′[j]) (merge);
apply k hash functions to (i, x) and increment the corresponding k positions
mapped to in B(i) (local tick).

Then deliver the message.

example, Bz ≥ By is ∀i ∈ [1,m], Bz[i] ≥ By[i]. The Bloom clock mapping from
E to B is many-one. (B,≤) is a partial order that is not isomorphic to (E,→).

Proposition 1. Test for y → z using Bloom clocks: if Bz ≥ By then declare
y → z else declare y 6→ z.

4 Properties of the Bloom Clock

We have the following cases based on the actual relationship between events y
and z, and the relationship inferred from By and Bz.

1. y → z and Bz ≥ By: From Proposition 1, this results in a true positive.
2. y → z and Bz 6≥ By: This false negative is not possible because from the

rules of operation of the Bloom clock, Bz must be ≥ By when y → z.
3. y 6→ z and Bz 6≥ By: From Proposition 1, this results in a true negative.
4. y 6→ z and Bz ≥ By: From Proposition 1, this results in a false positive.

Let prfp, prtp, and prtn denote the probabilities of a false positive, a true
positive, and a true negative, respectively. Also, let prp denote the probability
of a positive. To evaluate these probabilities, we need pr(y → z) and pr(Bz ≥
By). As we do not have access to vector clocks, we cannot evaluate y → z as
Vy ≤ Vz. So we estimate pr(y → z) as the probability that Bz ≥ By, which is
the probability of a positive, prp. So the estimate of prfp is (1− prp) · prp, from
Case (4) above. However, the second term prp can be precisely evaluated, given
By and Bz, as prδ(p), where

prδ(p) =

{
1 if Bz ≥ By
0 otherwise

(1)

The Bloom Clock for Causality Testing 5

So prfp = (1−prp) ·prδ(p). Also, prtp = prp ·prδ(p) from Case (1) above. Further,
as a negative outcome (Bz 6≥ By) is always true from Cases (2,3) above and a
negative outcome can be determined precisely, prtn = 1− prδ(p). Thus,

prfp = (1− prp) · prδ(p),
prtp = prp · prδ(p),
prtn = 1− prδ(p)

(2)

If prδ(p) were not precisely evaluated but used as a probability, we would have:

prfp = (1− prp) · prp,
prtp = pr2p,

prtn = 1− prp

(3)

We now show how to estimate prp using Bloom timestamps By and Bz.

Definition 1. For a vector X, Xsum ≡
∑|X|
i=1X[i].

For a positive outcome to occur, for each increment to By[i], there is an
increment to Bz[i]. The number of increments to By[i], which we denote as c
the count threshold, is By[i]. The probability prp of Bz ≥ By is now formulated.
Let b(l, q, 1/m) denote the probability mass function of a binomial distribution
having success probability 1/m, where l increments have occurred to a position
in Bz after applying uniformly random hash mappings q times.

b(l, q, 1/m) =

(
q
l

)
(

1

m
)l(1− 1

m
)q−l (4)

Observe that the total number of trials q = Bsumz . Then,

b(l, Bsumz , 1/m) =

(
Bsumz

l

)
(

1

m
)l(1− 1

m
)B

sum
z −l (5)

The probability that less than the count threshold By[i] increments have oc-
curred to Bz[i] is given by:

By [i]−1∑
l=0

b(l, Bsumz , 1/m) (6)

The probability that each i of the m positions of Bz is incremented at least
By[i] times, which gives prp, can be given by:

prp(k,m,By, Bz) =

m∏
i=1

(1−
By [i]−1∑
l=0

b(l, Bsumz , 1/m)) (7)

Equation 7 is time-consuming to evaluate for events y and z as the execution
progresses. This is because Bsumz and By[i] increase. A binomial distribution

6 Anshuman Misra and Ajay D. Kshemkalyani

b(l, q, 1/m) can be approximated by a Poisson distribution with mean q/m, for
large q and small 1/m. Also, the cumulative mass function of a Poisson distribu-
tion is a regularized incomplete gamma function. This provides an efficient way
of evaluating Equation 7.

For arbitrary event y at Pi, to predict whether y → z where events z occur at
Pj , there are at first true negatives, then false positives, and then true positives
as z occurs progressively later. As Bsumz − Bsumy increases, we can predict the
following trends from the definitions of prp and prfp.

1. prp, the probability of a positive, is low if z is close to y and this probability
increases as z goes further in the future of y. This is because, in Equa-
tion 7, as Bsumz increases with respect to Bsumy or rather its m components,
the summation (cumulative probability distribution function) decreases and
hence prp increases.
This behavior is intuitive because intuition says that as z becomes more
distant from y, the more is the likelihood that some causal relationship will
get established from y to z either directly or transitively, by the underlying
message communication pattern.

2. prfp, the probability of a false positive, which is the product (1− prp) · prp
using Equation 3, is lower than the two terms. It will increase, reach a
maximum of 0.25, and then decrease.
If Equation 2 were used, then prfp = (1 − prp) · prδ(p) would be higher for
a positive outcome. Once Bz ≥ By becomes true, it steps up from 0 and
then as z goes into the future of y, it decreases. Given a positive outcome,
if Bz ≥ By and z is close to y (Bsumz is just a little greater than Bsumy),
there are two opposing influences on prfp: (i) it is unlikely that “a causal
relationship has been established either directly or transitively from y to z
by the underlying message communication pattern”, and thus 1 − prp and
prfp should tend to be high; (ii) it is also unlikely that “for each h ∈ [1,m],
Bz[h] ≥ By[h] due to Bloom clock local ticks only (and not due to causality
merge for y → z)”, and thus prfp should tend to be low. As z goes more
distant from y, the likelihood of influence (i) that a causal relation has been
established increases, resulting in a lower 1 − prp and hence lower prfp.
This overrides any conflicting impact of the likelihood of influence (ii), that
∀h,Bz[h] ≥ By[h] due to local ticks only and not due to causality merge for
y → z, increasing and thus increasing prfp.
Based on the above reasoning, it is not apparent whether Equation 2 or 3 is
better for modeling prfp behavior. However, Equation 2 uses the full range of
[0,1] (as opposed to [0,0.25]), and uses an approximation only for pr(y → z)
and not for pr(Bz ≥ By).

We remind ourselves that these probabilities depend on By, Bz, k, and m, and
observe that they are oblivious of the communication pattern in the distributed
execution.

We are also interested in calculating the accuracy, precision, and false positive
rate of Bloom clocks. Accuracy (Acc), precision (Prec), recall (Rec), and false
positive rate (fpr) are metrics defined over all data points, i.e, pairs of events, in

The Bloom Clock for Causality Testing 7

the execution. Let TP, FP, TN, and FN be the number of true positives, number
of false positives, number of true negatives, and the number of false negatives,
respectively. Observe that FN is 0 as there are no false negatives. We have:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP

TP + FP
,

Recall =
TP

TP + FN
, fpr =

FP

FP + TN

(8)

Recall is always 1 with Bloom clocks. Given events y and z and their Bloom
timestamps By and Bz, there is not enough data to compute these metrics. So
we consider the slice of the execution from y to z and define the metrics over
the set of events in this slice.

We observe that many applications in distributed computing require testing
for causality between pairs of events that are temporally close to each other.
In checkpointing, causality needs to be tracked only between two consistent
checkpoints. In fair mutual exclusion in which requests need to be satisfied in
order of their logical timestamps, contention occurs and request timestamps need
to be compared only for temporally close requests. For detecting data races in
multi-threaded environments, a causality check based on vector clocks can be
used; however, in practice one needs to check for data races only between events
that occur in each other’s temporal locality [14,15]. In general, many applications
are structured as phases and track causality only within a bounded number of
adjacent phases [4,13]. Thus, in our experiments to measure accuracy, precision,
and false positive rate, as well as the probability of positives and the probability
of false positives, we consider an execution slice that is relatively thin.

There is a trade-off using Bloom clocks. m can be chosen less than n, for
space, time, and message-space savings. But for acceptable precision, accuracy,
and fpr, and a suitable prfp distribution, an appropriate combination of values
for the clock parameters m and k can be determined.

5 Experiments for the Complete Graph

In the complete graph, we assume a logical channel between each pair of pro-
cesses. This experiment consists of a decentralized system of processes asyn-
chronously passing messages to each other over shared memory. The processes
are scheduled in a fair manner and are identical to each other. Even though FIFO
channels are not maintained, a majority of messages arrive in order. The param-
eters of this experiment are number of processes (n), size of Bloom clock (m),
internal event probability (pri), and number of hash functions (k). Each event
can be uniquely identified with a Global Sequence Number (GSN). An event is
modelled as an object with the following attributes: (i) vector timestamp, (ii)
Bloom timestamp, (iii) GSN, (iv) executing process ID, (v) sending process ID,
(vi) receiving process ID, (vii) physical timestamp.

The main program establishes shared memory, creates n processes and sup-
plies them with parameters pri, k, and m. It then waits for all processes to

8 Anshuman Misra and Ajay D. Kshemkalyani

complete execution and analyzes the distributed execution log. Shared memory
consists of an integer tracking GSN, a message queue containing messages (send
events) yet to be received, and an execution log containing all events executed at
any point of the distributed execution. All processes maintain a local queue con-
taining messages asynchronously pulled from the shared message queue. Message
receive events are executed by processing messages one at a time from the local
queue with probability (1 − pri)/2. Send events are executed with probability
(1−pri)/2. For each send event the sending process randomly selects a receiving
process from the other n − 1 processes. Processes execute internal events with
probability pri. All executed events are pushed into the global execution log.
Send events are also pushed into the global message queue.

Each process maintains its own vector clock and Bloom clock which are
ticked in accordance to the vector clock and Bloom clock protocols, whenever
an event is executed. The event object stores the local process’s revised clocks
as its vector and Bloom timestamps. In addition to this, upon executing an
event, each process increments the global GSN variable by 1 and stores it in the
event object. Whenever a process increments the global GSN counter, it has to
acquire a lock. This is done to prevent race conditions on the GSN counter as
it is stored in shared memory. Other operations that are required to be atomic
and around which locks are used include accessing the global message queue
in shared memory containing messages that are waiting to be retrieved. Each
process continues to iterate and execute events until the GSN reaches n2. Once
all processes terminate, the main program analyzes the execution to compute
precision, accuracy, and fpr of the Bloom clock protocol from the execution log.
The execution log contains approximately n2 events at the end of the execution.

The main program computes causal relationships of pairs of events in the ex-
ecution slice beginning with the event with GSN = 10n (to eliminate any startup
effects) and until the last event (with GSN = n2) in steps of 100. This means
that the sample that we use to check for causality predictions consists of a series
of events where two closest events have a difference of 100 in GSN. Further, the
number of pairs of events for which we tested for causality was approximately
n4/104. The main program compares causality predictions of the Bloom times-
tamps of events with predictions of vector timestamps and classifies the Bloom
clock predictions as true positives, false positives and true negatives. The preci-
sion, accuracy, and fpr are computed over this execution slice. We intentionally
chose an execution slice with n events per process because in practice, causality
tests are applied to pairs of events in the temporal proximity of each other. Had
we chosen a larger execution slice, we expect the metrics would have improved.

Finally, in this section and the next on experiments with the star configura-
tion, each reading reported is the average of at least 3 runs of each setting of the
parameters indicated. Also, in Sections 5.2 to 5.4, where indicated, each reported
reading is also averaged over multiple settings of m and/or k for simplicity of
presentation of results; the impact of varying each individual parameter is clear
when the results of all experiments are considered.

The Bloom Clock for Causality Testing 9

5.1 Number of Processes

We ran the decentralized experiment for n = 100 to n = 700 in increments of
100 to ascertain scalability of Bloom clocks. Parameters were fixed to maintain
uniformity of results with pri = 0, k = 2, and m = 0.1 ∗ n. The results are
compiled in Table 1. A visual representation of the trend can be seen in Figure
1. We see that as n increases Bloom clock performance improves considerably.
Accuracy increases from 85.2% for n = 100 to 95.7% for n = 700 and the
fpr drops from 20.3% for n = 100 to 7.4% for n = 700. Since Bloom clocks
are not prone to false negatives, a critical method of measuring performance is
to calculate the ratio of positive predictions that are correct to overall positive
predictions. Precision measures exactly that. We observe that precision increases
from 64.4% for n = 100 to 90.7% for n = 700. Overall from Table 1, we conclude
that Bloom clocks are highly scalable.

Table 1. Variation of metrics with n

n Precision Accuracy fpr

100 0.644 0.852 0.203
200 0.781 0.905 0.145
300 0.833 0.926 0.118
400 0.856 0.935 0.107
500 0.883 0.947 0.089
600 0.897 0.953 0.081
700 0.907 0.957 0.074

5.2 Internal Event Probability

We ran the decentralized experiment for fixed n = 200 and averaged metrics over
m = 0.1 ∗ n, 0.2 ∗ n, 0.3 ∗ n and k = 2, 3, 4 for individual values of pri in order
to observe the variation of metrics with pri. The results are shown in Table 2.
We observed that by introducing more relevant (and therefore timestamped)
internal events in the decentralized execution, the performance of Bloom clocks
deteriorates significantly. So with an increase in send events and thus message-
passing, i.e., a relative decrease in the number of relevant timestamped internal
events, more causal relationships get established among events across processes,
which get captured through the merging of Bloom clocks at receive events. This
results in a higher fraction of the number of pairs of events being related by
causality and a smaller fraction of the number of pairs of events being concurrent.
Bloom clocks performed best at pri = 0. We generalize this observation as the
causality spread hypothesis later in Section 7.2.

The practical implication of setting pri = 0 is that most of the relevant events
at which clocks tick are send and receive events, and only a few internal events
(of interest to the application) cause the clocks to tick. In contrast, with a high

10 Anshuman Misra and Ajay D. Kshemkalyani

Fig. 1. A plot of metrics vs. number of processes for decentralized execution

Table 2. Variation of metrics with pri

pri Precision Accuracy fpr

0 0.807 0.918 0.125
0.90 0.609 0.847 0.201
0.95 0.311 0.760 0.269

1 0.101 0.773 0.232

value of pri (such as 0.9 at which 90% of events at which clocks tick are internal
events), accuracy and precision drop significantly, and fpr increases significantly.
Thus, Bloom clocks are practical only when the percentage of relevant events
(where clock ticks) that are internal events is small.

5.3 Number of Hash Functions

We ran the decentralized experiment for fixed n = 200 and fixed pri = 0 and
averaged metrics over m = 0.1 ∗ n, 0.2 ∗ n, 0.3 ∗ n for individual values of k to
check the variation of Bloom clock performance with respect to k. The results
are shown in Table 3. We observe that the effect of changing the number of hash
functions does not have a quantifiable effect on Bloom clock performance.

The Bloom Clock for Causality Testing 11

Table 3. Variation of metrics with k

k Precision Accuracy fpr

2 0.804 0.917 0.126
3 0.809 0.919 0.124
4 0.808 0.919 0.124

5.4 Size of Bloom Clock

We ran the decentralized experiment for fixed n = 200 and fixed pri = 0 and
averaged metrics over k = 2, 3, 4 for individual values of m to check the variation
of Bloom clock performance with respect to m. The results are shown in Table 4.
As expected, Bloom clock performance improves, but by up to 4.3% points, as m
increases from 0.1∗n to 0.3∗n. The improvement seems intuitive because with a
larger number of indices the probability of hash function outputs mapping to the
same indices reduces, due to which there is a lower probability of false positives.

Table 4. Variation of metrics with m

m Precision Accuracy fpr

0.1 ∗ n 0.784 0.906 0.143
0.2 ∗ n 0.811 0.920 0.122
0.3 ∗ n 0.827 0.929 0.109

In addition, we ran the experiment with scalar clock (m = 1 and k = 1)
instead of Bloom clock, in order to investigate improvement in metrics for Bloom
clock over scalar clock. We compared Bloom clock of size m = 0.1 ∗ n and k = 2
to scalar clock at various values of n for pri = 0. The results are presented in
Table 5. We observe significant performance improvements over scalar clock by
utilizing Bloom clock at all values of n – precision was 0.06 to 0.11, accuracy
was 0.07 to 0.09, and fpr was 0.10 to 0.12 better.

Table 5. Bloom clock vs. scalar clock

Bloom Clock Scalar Clock

n Precision Accuracy fpr Precision Accuracy fpr

50 0.492 0.788 0.266 0.434 0.713 0.368
100 0.644 0.852 0.203 0.542 0.769 0.318
200 0.781 0.905 0.145 0.672 0.835 0.248

5.5 Plots for prp and prfp

We ran the decentralized experiment for fixed parameters n = 100, pri = 0, k = 2
and m = 0.1 ∗ n to obtain plots for prp, and prfp computed using Equations 2

12 Anshuman Misra and Ajay D. Kshemkalyani

and 3. These plots demonstrate the behavior of Bloom clocks throughout an
execution as the temporal proximity between events y and z varies, using just the
Bloom timestamps of the two events being compared for causality. For these plots
we fix event y withGSN = 10∗n, which is 1000, to allow for any startup transient
effects, and compare its Bloom timestamp with all events z with GSN = 10∗n+1
to GSN = 4500 (∼ n2/2). This slice of the execution is adequate to capture all
the trends. The x-axis of Figures 2 to 4 is the GSN of z and the y-axis is the
probability being plotted.

Figure 2 shows a plot of prp as a function of GSN. We observe that as GSN
increases, the probability of a positive prediction increases and flattens to around
1 between GSN = 3500 and GSN = 4000. This is because as the distance between
two events increases, there is a higher probability of a causal relationship being
established either directly or transitively. The split view of prp vs. GSN allows
us to observe that most false positives occur in the middle of the distribution
while all true negatives occur within the first half of the execution. This is due
to the fact that initially the probability of a true negative is very high because
the probability of a causal relationship being established is lower.

Figure 3 shows plots for prfp = (1 − prp) · prδ(p) (Equation 2) vs. GSN.
We observe that Bloom clocks correctly predict the probability of false positive
being 0 for all true negatives in the execution. Most of the false positives are
distributed in the middle of the execution slice; the prfp jumps from 0 to large
values once false positives start occurring and then gradually decreases as GSN
increases. The (few) false positives that occur towards the end of the execution
slice are not captured correctly with low values of prfp. The probability of false
positive for a majority of true positives is below 0.25; however, for the initial few
true positives, the prfp is inaccurately evaluated as being high. This probability
prfp (for the true positives) rapidly decreases to 0 as GSN increases.

Figure 4 shows plots for prfp = (1 − prp) ∗ prp (Equation 3) vs. GSN. As
expected, prfp has values below 0.05 for most true negatives and true positives
and reaches a maximum value of 0.25 in the middle of the execution where most
of the false positives reside. Thus, the prfp is inaccurately evaluated as being
low for the false positives in the middle of the execution slice.

Thus, Figures 2 to 4 confirm the theoretical predictions made in Section 4.
Equation 2 uses a range of [0,1] for prfp, gives a high prfp to the initial few true
positives, and does not seem to capture the two conflicting influences on prfp
described in Section 4 when the GSN of z is just a little greater than the GSN
of y. Equation 3 uses a range of only [0,0.25] and inaccurately gives a low prfp
for the false positives in the middle of the execution slice.

The Bloom Clock for Causality Testing 13

Fig. 2. prp vs. GSN, showing combined view and split view

14 Anshuman Misra and Ajay D. Kshemkalyani

Fig. 3. prfp = (1−prp) ·prδ(p) using Equation 2 vs. GSN, showing combined view and
split view

The Bloom Clock for Causality Testing 15

Fig. 4. prfp = (1 − prp) · prp using Equation 3 vs. GSN, showing combined view and
split view

16 Anshuman Misra and Ajay D. Kshemkalyani

6 Experiments for the Star Graph

We set up an experiment with a client-server architecture to investigate how
faithfully the Bloom clock determines causality. Client processes connect to a
multi-threaded server accepting TCP connections. Each server thread connects
to a single client. The internal event probability, pri was set to 0. All message
sends were synchronous and blocking and receives were blocking. Each client
consisted of a process and had its own vector clock and Bloom clock. The server
had a single vector clock and a single Bloom clock shared across all threads.

The server threads used a single lock to make sure that there were no race
conditions on the vector clock and the Bloom clock while executing events. We
did not use locks at the client end because GSN was not maintained. Further,
not using locking mechanisms allowed interleaving of client processes.

Each client sent n messages to the server and received n corresponding mes-
sages from the server. This resulted in overall O(n2) events in the execution.
Post execution, each 100th event was taken from the execution log containing
all the events from the execution to create a sample of events to be compared
for causality. Each event y was compared to each other event z to determine if
Bloom clock correctly classified whether y → z or y 6→ z. The correctness of
the Bloom clock prediction was ascertained by comparing it with the prediction
from vector clock. The results for the client-server experiment for k = 2 are
shown in Table 6.

As can be seen from the results, Bloom clock performs quite well with high
values of precision and low fpr. The first four rows are for m = 0.1 ∗ n and the
last four rows are for m = 0.05 ∗ n. We observed that for a small Bloom clock
of size m = 3 for n = 50, the accuracy is high at 100% (There was one false
positive, but rounding off to three decimal places results in the stated accuracy
value). The difference in precision, accuracy, and fpr for smaller Bloom clocks
as compared to larger Bloom clocks is not significant, therefore it is safe to say
that for this configuration, smaller Bloom clocks perform well. The reason for
strong performance of Bloom clock is that there are a lot of merge events with
a centralized process, and the inherent message pattern at the server resulted in
automatic and widespread distribution/broadcasting of information contained
in individual Bloom clocks among all client processes. The server is always up to
date with a client’s Bloom clock after it executes a receive event corresponding
to a message send event from the client. We generalize the reasoning behind
the good performance of the Bloom clock for the client-server configuration by
postulating the causality spread hypothesis in Section 7.2.

7 Observations and Discussion

7.1 Summary of Results

The results of the experiments are summarized as follows.

1. In predicting the causality between events y and z using their Bloom times-
tamps, we observe the following.

The Bloom Clock for Causality Testing 17

Table 6. Results for client-server experiment with k = 2

n m Precision Accuracy fpr

50 5 0.985 0.992 0.015
100 10 0.990 0.995 0.010
125 13 0.991 0.996 0.009
150 15 0.995 0.997 0.005
50 3 100 100 0
100 5 0.996 0.998 0.004
125 7 0.997 0.998 0.003
150 8 0.997 0.998 0.003

(a) The probability of a positive prp increases relatively quickly from 0 to 1
as z occurs after but in the temporal vicinity of y.

(b) The probability of a false positive prfp is 0 or close to 0 except when
z occurs later than but in the temporal vicinity of event y. As z occurs
later at a process, the probability spikes up from 0 to a high value but
soon comes down to 0 as the occurrence of z get temporally separated
from the occurrence of y. Some true positives have a non-zero value of
prfp.

2. As the number of processes n increases, the Bloom clock performance im-
proves significantly – the accuracy and precision increase, and the fpr de-
creases.

3. When the number of internal events at which the clock ticks is low relative
to the number of send events, precision, accuracy, and fpr all improve signif-
icantly. Thus, with relatively more send events, performance of Bloom clock
improves. With more send events, causality between more pairs of events is
established. On the other hand, if the number of internal events being times-
tamped is high with respect to the number of send events, Bloom clocks do
not perform well.

4. The number of hash functions k used in the Bloom clock protocol does not
impact much the precision, accuracy, and the fpr. Hence, it is advantageous
to use a small number (such as 2 or 3) of hash functions.

5. The precision, accuracy, and the fpr improved by a few percentage points
as the size of the Bloom Clock m was increased from 0.1 ∗ n to 0.3 ∗ n.
The impact is noticeable but not much. Hence, this suggests that small-sized
Bloom Clocks can be used to gain significant space, time, and message-space
savings over vector clocks. As a baseline for comparison, we also measured
the precision, accuracy, and fpr for Lamport’s scalar clocks. The scalar clocks
performed noticeably worse.

6. For the client-server configuration, Bloom clocks performed exceedingly well.

Bloom clocks are seen to provide a viable space-, time-, and message-space-
efficient alternative to vector clocks when some false positives can be tolerated.
Bloom clock metrics improve as the number of processes increases. Bloom clock
sizes can be 10% or even lower of the number of processes, and can handle churn

18 Anshuman Misra and Ajay D. Kshemkalyani

transparently when processes join and leave the system. The probability of a
false positive is high only when the two events occur temporally very close to
each other. However, Bloom clocks do not perform well when the fraction of
timestamped events that are internal events is not very low. In the next section,
we generalize this behavior using the causality spread hypothesis.

7.2 Causality Spread

After conducting experiments to track causality using the Bloom clock for multi-
ple architectures and varying parameters, we develop a hypothesis to help system
engineers and software developers figure out whether the Bloom clock is a good
fit for a given application. This hypothesis is stated only from the application’s
perspective. We hypothesize that with an increase in spread of causality in an
execution, i.e., with a larger proportion of events related by causal relationships,
Bloom clock performance (i.e., confidence in its predictions) increases. We de-
fine and compute the causality spread, α, as the ratio of the number of ordered
pairs of events that are causally related, that is, total positives, to the sum of
all ordered pairs of events compared for each execution. The set of events that
we include in the computation of causality spread are the relevant events for the
application.

Definition 2 (Causality spread α).

Causality spread α =
Total Positives

All pairs of events

=
Total Positives

Total Positives + Total Negatives

=
TP + FN

TP + FN + FP + TN
=

TP

TP + FN + FP + TN

(9)

Hypothesis 1 (Causality spread hypothesis) The confidence in the predic-
tions of the Bloom clock as measured by precision, accuracy, and fpr increases
as the causality spread α of the application’s set of relevant events increases.

A higher α signifies more (fraction of) event pairs being related by causality,
which are correctly classified as true positives, thereby increasing TP (say, by a),
decreasing FP, decreasing TN, and decreasing FP + TN (by a). Theoretically, we
expect precision and accuracy will improve (as per some non-linear functions),
while the impact on fpr depends on the factors by which its numerator FP and
its denominator FP + TN change.

This hypothesis is corroborated by our previously stated observation that
increased message passing results in superior Bloom clock predictions. In order
to quantify this hypothesis, we took a sample of executions from both the de-
centralized experiment and the client-server experiment and computed α. We
observed that precision and accuracy increase and fpr decreases as α increases,
for 0 < α < 0.5, empirically confirming our hypothesis. A graph showing the
increase in metrics as a function of causality spread is shown in Figure 5.

The Bloom Clock for Causality Testing 19

Fig. 5. A plot of metrics vs. causality spread

An important note about causality spread is that it will range between 0 and
0.5 in our experiment because we check for causality between all pairs of events.
An extreme case where α = 0 would be each process executing only one event.
Another extreme case where α = 0.5 would be a linear chain of events. In the
client-server experiment, α is near 0.5 due to the nature of transmission of causal
relationships because of the server behavior. In the complete graph configuration
with a high pri, the large number of timestamped internal events in the set of
relevant events significantly increases the number of pairs of concurrent events
and hence decreases α considerably, resulting in poor prediction by Bloom clocks.

We performed an experiment for multicast/broadcast messages to check if it
conforms to our causality spread hypothesis. In the broadcast experiment, each
process broadcasts a message to all n − 1 processes and waits to receive n − 1
broadcast messages from the other processes. Here, causality does not spread
much because there is only one message send event followed by many receive
events for each process. Here the receive events act as internal events that are
timestamped (akin to high pri), and in effect there are many pairs of events
that are concurrent and hence not related by causality, thereby resulting in a
low α. In the experiment, α = 0.005, precision = 0.014, accuracy = 0.661, and
fpr = 0.341. The poor performance of Bloom clock in this experiment can be
attributed to a low α as per the hypothesis.

20 Anshuman Misra and Ajay D. Kshemkalyani

8 Conclusions

Detecting the causality relationship between a pair of events in a distributed
execution is a fundamental problem. To address this problem in a scalable way,
this paper gave the formal Bloom clock protocol, and derived the expression for
the probability of false positives, given two events’ Bloom timestamps. We ran
experiments to calculate the accuracy, precision, and fpr for a slice of the exe-
cution. We also ran experiments to calculate the probability of a false positive
prediction based on the Bloom timestamps of two events. Based on the experi-
ments, we made suggestions for the number of hash functions and size of Bloom
clocks and identified conditions under which it is advantageous to use Bloom
clocks over vector clocks. The findings are summarized as follows.

1. Bloom clocks can perform well for small size m and small number of hash
functions k.

2. Bloom clocks perform well when the number of internal events considered is
low compared to the number of send events (low pri).

3. Bloom clocks perform increasingly better as the system size n increases.
4. We also postulated the causality spread hypothesis from the application’s

perspective to determine whether Bloom clocks would give good performance
(precision, accuracy, and fpr) for the application, and validated it through
experiments. A high α indicates good performance.

Thus, Bloom clocks are seen to provide a viable space-, time-, and message-
space-efficient alternative to vector clocks for the class of applications which meet
the properties summarized above, when some false positives can be tolerated. It
would be interesting to study the applicability of Bloom clocks to some practical
applications.

References

1. Bloom, B.: Space/time tradeoffs in hash coding with allowable errors. Communi-
cations of the ACM 13, 7 pp. 422–426 (1970)

2. Broder, A.Z., Mitzenmacher, M.: Survey: Network applications of
bloom filters: A survey. Internet Mathematics 1(4), 485–509 (2003).
https://doi.org/10.1080/15427951.2004.10129096

3. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett. 39(1), 11–16 (1991). https://doi.org/10.1016/0020-0190(91)90055-
M

4. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended ab-
stract). In: Proceedings of the 12th International Conference on Distributed
Computing Systems, Yokohama, Japan, June 9-12, 1992. pp. 486–493 (1992).
https://doi.org/10.1109/ICDCS.1992.235005

5. Fidge, C.J.: Logical time in distributed computing systems. IEEE Computer 24(8),
28–33 (1991). https://doi.org/10.1109/2.84874

6. Kshemkalyani, A.D., Khokhar, A.A., Shen, M.: Encoded vector clock: Us-
ing primes to characterize causality in distributed systems. In: Proceedings

https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.1109/2.84874

The Bloom Clock for Causality Testing 21

of the 19th International Conference on Distributed Computing and Network-
ing, ICDCN 2018, Varanasi, India, January 4-7, 2018. pp. 12:1–12:8 (2018).
https://doi.org/10.1145/3154273.3154305

7. Kshemkalyani, A.D., Misra, A.: The bloom clock to characterize causality in dis-
tributed systems. In: Barolli, L., Li, K.F., Enokido, T., Takizawa, M. (eds.) Ad-
vances in Networked-Based Information Systems - The 23rd International Confer-
ence on Network-Based Information Systems, NBiS 2020, Victoria, BC, Canada,
31 August - 2 September 2020. Advances in Intelligent Systems and Computing,
vol. 1264, pp. 269–279. Springer (2020). https://doi.org/10.1007/978-3-030-57811-
4 25

8. Kshemkalyani, A.D., Shen, M., Voleti, B.: Prime clock: Encoded vector clock to
characterize causality in distributed systems. J. Parallel Distributed Comput. 140,
37–51 (2020). https://doi.org/10.1016/j.jpdc.2020.02.008

9. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Princi-
ples, Algorithms, and Systems. Cambridge University Press (2011).
https://doi.org/10.1017/CBO9780511805318

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 pp. 558–565 (1978)

11. Mattern, F.: Virtual time and global states of distributed systems. Proceedings of
the Parallel and Distributed Algorithms Conference pp. 215–226 (1988)

12. Meldal, S., Sankar, S., Vera, J.: Exploiting locality in maintaining potential causal-
ity. In: Proceedings of the Tenth Annual ACM Symposium on Principles of Dis-
tributed Computing. pp. 231–239. PODC ’91, ACM, New York, NY, USA (1991).
https://doi.org/10.1145/112600.112620

13. Misra, J.: Phase synchronization. Inf. Process. Lett. 38(2), 101–105 (1991).
https://doi.org/10.1016/0020-0190(91)90229-B

14. Pozzetti, T.: Resettable Encoded Vector Clock for Causality Analysis with an Ap-
plication to Dynamic Race Detection. M.S. Thesis, University of Illinois at Chicago
(2019)

15. Pozzetti, T., Kshemkalyani, A.D.: Resettable encoded vector clock for
causality analysis with an application to dynamic race detection. IEEE
Transactions on Parallel and Distributed Systems 32(4), 772–785 (2021).
https://doi.org/10.1109/TPDS.2020.3032293

16. Ramabaja, L.: The bloom clock. CoRR (2019), http://arxiv.org/abs/1905.

13064

17. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: In search of the holy grail. Distributed Computing 7(3), 149–174 (1994).
https://doi.org/10.1007/BF02277859

18. Singhal, M., Kshemkalyani, A.D.: An efficient implementation of vector clocks. Inf.
Process. Lett. 43(1), 47–52 (1992). https://doi.org/10.1016/0020-0190(92)90028-T

19. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. IEEE Communications Surveys and Tutorials 14(1), 131–
155 (2012). https://doi.org/10.1109/SURV.2011.031611.00024

20. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: Constant size logical
clocks for distributed systems. Distributed Computing 12(4), 179–195 (1999).
https://doi.org/10.1007/s004460050065

https://doi.org/10.1145/3154273.3154305
https://doi.org/10.1007/978-3-030-57811-4_25
https://doi.org/10.1007/978-3-030-57811-4_25
https://doi.org/10.1016/j.jpdc.2020.02.008
https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1145/112600.112620
https://doi.org/10.1016/0020-0190(91)90229-B
https://doi.org/10.1109/TPDS.2020.3032293
http://arxiv.org/abs/1905.13064
http://arxiv.org/abs/1905.13064
https://doi.org/10.1007/BF02277859
https://doi.org/10.1016/0020-0190(92)90028-T
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1007/s004460050065

	The Bloom Clock for Causality Testing

