Skip to main content

Cost Effective Method for Ransomware Detection: An Ensemble Approach

  • Conference paper
  • First Online:
Distributed Computing and Internet Technology (ICDCIT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12582))

Abstract

In recent years, ransomware has emerged as a new malware epidemic that creates havoc on the Internet. It infiltrates a victim system or network and encrypts all personal files or the whole system using a variety of encryption techniques. Such techniques prevent users from accessing files or the system until the required amount of ransom is paid. In this paper, we introduce an optimal, yet effective classification scheme, called ERAND (Ensemble RANsomware Defense), to defend against ransomware. ERAND operates on an optimal feature space to yield the best possible accuracy for the ransomware class as a whole as well as for each variant of the family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://play.google.com/.

References

  1. The Evolution of Ransomware (2008). https://www.symantec.com/content/en/us/. Accessed 14 Feb 2019

  2. Alhawi, O.M.K., Baldwin, J., Dehghantanha, A.: Leveraging machine learning techniques for windows ransomware network traffic detection. In: Dehghantanha, A., Conti, M., Dargahi, T. (eds.) Cyber Threat Intelligence. AIS, vol. 70, pp. 93–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73951-9_5

    Chapter  Google Scholar 

  3. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994)

    Article  Google Scholar 

  4. Breiman, L.: Arcing the edge. Technical report (1997)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  7. Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., Ahn, G.: Uncovering the face of android ransomware: characterization and real-time detection. IEEE Trans. Inf. Forensics Secur. 13(5), 1286–1300 (2018). https://doi.org/10.1109/TIFS.2017.2787905

    Article  Google Scholar 

  8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016). https://doi.org/10.1145/2939672.2939785, http://doi.acm.org/10.1145/2939672.2939785

  9. Coello, C.A.: An updated survey of GA-based multiobjective optimization techniques. ACM Comput. Surv. 32(2), 109–143 (2000). https://doi.org/10.1145/358923.358929

    Article  Google Scholar 

  10. Cohen, A., Nissim, N.: Trusted detection of ransomware in a private cloud using machine learning methods leveraging meta-features from volatile memory. Exp. Syst. Appl. 102, 158–178 (2018). https://doi.org/10.1016/j.eswa.2018.02.039. http://www.sciencedirect.com/science/article/pii/S0957417418301283

    Article  Google Scholar 

  11. Cusack, G., Michel, O., Keller, E.: Machine learning-based detection of ransomware using SDN. In: Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization, pp. 1–6. ACM (2018)

    Google Scholar 

  12. Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5, 1531–1555 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, R., et al.: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)

    Article  Google Scholar 

  14. Gazet, A.: Comparative analysis of various ransomware virii. J. Comput. Virol. 6(1), 77–90 (2010). https://doi.org/10.1007/s11416-008-0092-2

    Article  Google Scholar 

  15. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  16. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R.: Know abnormal, find evil: frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans. Emerg. Top. Comput. 8, 341–351 (2017)

    Article  Google Scholar 

  17. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  Google Scholar 

  18. Scaife, N., Carter, H., Traynor, P., Butler, K.R.: Cryptolock (and drop it): stopping ransomware attacks on user data. In: 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), pp. 303–312. IEEE (2016)

    Google Scholar 

  19. Sgandurra, D., Muñoz-González, L., Mohsen, R., Lupu, E.C.: Automated dynamic analysis of ransomware: benefits, limitations and use for detection. CoRR abs/1609.03020 (2016). http://arxiv.org/abs/1609.03020

  20. Shaukat, S.K., Ribeiro, V.J.: Ransomwall: a layered defense system against cryptographic ransomware attacks using machine learning. In: 2018 10th International Conference on Communication Systems Networks (COMSNETS), pp. 356–363 (January 2018). https://doi.org/10.1109/COMSNETS.2018.8328219

  21. Vinayakumar, R., Soman, K., Velan, K.S., Ganorkar, S.: Evaluating shallow and deep networks for ransomware detection and classification. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 259–265. IEEE (2017)

    Google Scholar 

  22. Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., Sangaiah, A.K.: Classification of ransomware families with machine learning based on N-gram of opcodes. Future Gener. Comput. Syst. 90, 211–221 (2019). https://doi.org/10.1016/j.future.2018.07.052. http://www.sciencedirect.com/science/article/pii/S0167739X18307325

  23. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthajit Borah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borah, P., Bhattacharyya, D.K., Kalita, J.K. (2021). Cost Effective Method for Ransomware Detection: An Ensemble Approach. In: Goswami, D., Hoang, T.A. (eds) Distributed Computing and Internet Technology. ICDCIT 2021. Lecture Notes in Computer Science(), vol 12582. Springer, Cham. https://doi.org/10.1007/978-3-030-65621-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65621-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65620-1

  • Online ISBN: 978-3-030-65621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics